Skip to main content

Advertisement

Log in

Crystallographic lattice refinement of human bone

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

X-ray diffraction studies on bone microsamples (human iliac crest of 87 individuals aged 0–90 years) reveal that certain crystallographic parameters such as unit cell volume of bone apatite, and half-width of (002)-reflection are well correlated with age and with type of tissue (corticalis and spongiosa). Similar to inorganic apatite, the lattice parameters of bone apatite are intensely affected by ionic substitutions and vary mainly due to exchange of hydroxyl- and carbonate-apatite and, to a minor extent, of fluor- and chlorapatite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Trautz OR (1955) X-ray diffraction of biological and synthetic apatites. Ann NY Acad Sci 60:696–712

    Google Scholar 

  2. Young RA (1967) Dependence of apatite properties on crystal structural details. Trans NY Acad Sci 2 Ser 29:949–959

    Google Scholar 

  3. Montel G (1971) Sur les structures de quelques apatites d'intérêt biologique et leurs imperfections. Bull Soc Fr Min Cris 94:300–313

    Google Scholar 

  4. Baud CA, Véry JM (1975) Ionic substitutions in vivo in bone and tooth apatite crystals. In: Physicochimie et cristallo-graphie des apatites d'intérêt biologique, Colloques internationaux CNRS No 230 CNRS, Paris, pp 405–410

    Google Scholar 

  5. Legros R (1978) Contribution à l'étude physico-chimique de la phase minérale du squelette des vertébrés. Thèse, Institut nat polytechn de Toulouse

  6. Legros R (1984) Apport de la physico-chimie à l'étude de la phase minérale des tissue calcifiés. Thèse, Institut nat polytechn de Toulouse

  7. Daculsi G (1979) Ultrastructure et cristallographie des apatites biologiques. Thèse, Université de Nantes

  8. Balmain N, Legros R, Bonel G (1982) X-ray diffraction of calcined bone tissue: a reliable method for the determination of bone Ca/P molar ratio. Calcif Tissue Int 34:93–98

    Google Scholar 

  9. Baud CA, Véry JM (1982) Morphological and crystallographic analysis of bone mineral. In: Anghileri LJ, Tuffet-Anghileri, AM (eds) The role of calcium in biological systems. CRC Press, Boca Raton, pp 95–105

    Google Scholar 

  10. Vignoles-Montrejaud M (1984) Contribution à l'étude des apatites carbonatées de type B. Thèse, Institut nat polytechn de Toulouse

  11. Baud CA, Véry JM, Courvoisier B (1988) Biophysical study of bone mineral in biopsies of osteoporotic patients before and after long-term treatment with fluoride. Bone 9:361–365

    Google Scholar 

  12. Eanes ED (1965) Effect of fluoride on human bone apatite crystals. Ann NY Acad Sci 131/2:727–736

    Google Scholar 

  13. Posner AS, Harper RA, Muller SA, Menczel J (1965) Age changes in the crystal chemistry of bone apatite. Ann NY Acad Sci 131:737–774

    Google Scholar 

  14. Tannenbaum PJ, Termine JD (1965) Statistical analysis of the effect of fluoride on bone apatite. Ann NY Acad Sci 131:743–750

    Google Scholar 

  15. Termine JD (1972) Mineral chemistry and skeletal biology. Clin Orthop Rel Res 85:207–241

    Google Scholar 

  16. Termine JD, Eanes ED (1972) Comparative chemistry of amorphous and apatitic calcium phosphate preparations. Calcif Tissue Res 10:171–197

    Google Scholar 

  17. Grynpas M (1976) The crystallinity of bone mineral. J Mat Sci 11:1691–1696

    Google Scholar 

  18. Miller AG, Burnell JM (1977) The effects of crystal size distributions on the crystallinity analysis of bone mineral. Calcif Tissue Res 24:105–111

    Google Scholar 

  19. Burnell JM, Teubner EJ, Miller AG (1980) Normal maturational changes in bone matrix, mineral and crystal size in the rat. Calcif Tissue Int 31:13–19

    Google Scholar 

  20. Bonar LC, Roufosse AH, Sabine WK, Grynpas MD, Glimcher MJ (1983) X-ray diffraction studies of the crystallinity of bone mineral in newly synthesized and density fractionated bone. Calcif Tissue Int 35:202–209

    Google Scholar 

  21. Handschin R, Stern WB (1990) Preparation and analysis of microsamples for X-ray diffraction and fluorescence. Siemens Analysentechn Mitt 319

  22. Landis WJ, Glimcher MJ (1978) Electron diffraction and electron microanalysis of the mineral phase of bone tissue prepared by anhydrous techniques. J Ultrastruct Res 63:188–223

    Google Scholar 

  23. Véry JM, Baud CA (1984) In: Dickson GR (ed) X-ray diffraction of calcified tissues. Methods of calcified tissue preparation. Elsevier Science Publishers, B.V.

  24. Appleman DE, Evans HT Jr (1973) Indexing and least-squares refinement of powder diffraction data. Report PB 216188, US Dept Commerce, National Techn Inf Service, Springfield, VA

    Google Scholar 

  25. Stern WB (1987) Determination of mica cell parameters by X-ray powder diffractometry—a case study. Powder diffraction 2/4:249–252

    Google Scholar 

  26. Quinaux N, Richelle LJ (1967) X-ray diffraction and infrared analysis of bone specific gravity fractions in the growing rat. Israel J Med Sci 3/5:677–690

    Google Scholar 

  27. BMDP (Biomedical Programs) statistical software Inc. 1990, vols 1 and 2, Los Angles, CA

  28. Binder G (1985) Die Diadochie von Fluor, Chlor und Hydroxyl in Apatiten aus magmatischen und metamorphen Gesteinen. Dissertation, Universität München

  29. Posner AS (1987) Bone mineral and the mineralization process. Bone Miner Res 5:65–116

    Google Scholar 

  30. Menczel J, Posner AS, Harper RH (1965) Age changes in the crystallinity of rat bone apatite. Israel J Med Sci 1:251–252

    Google Scholar 

  31. Statistical analysis system. SAS Institute Inc., version 6.06, Cary NC

  32. Deer WA, Howie RA, Zussman J (1962) Rock forming minerals. Non-silicates, vol. 5. Longmans, London

    Google Scholar 

  33. JCPDS-International centre for diffraction data. PDF-2 Data-base Sets 1–39, Release 1989, Swarthmore, PA

  34. Young RA (1975) Some aspects of crystal structural modeling of biological apatites. In: Physicochimie et cristallo-graphie des apatites d'intérêt biologique, Colloques internationaux CNRS No 230 CNRS, Paris, pp 21–40

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handschin, R.G., Stern, W.B. Crystallographic lattice refinement of human bone. Calcif Tissue Int 51, 111–120 (1992). https://doi.org/10.1007/BF00298498

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298498

Key words

Navigation