Skip to main content
Log in

Transfection of Bacillus subtilis with bacteriophage H1 DNA: fate of transfecting DNA and transfection enhancement in B. subtilis uvr + and uvr - strains

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

H1 is a newly isolated virulent Bacillus subtilis bacteriophage. Its DNA is double-stranded, contains 5-hydroxymethyluracil instead of thymine and has a molecular weight of 83x106.

Transfection of B. subtilis with bacteriophage H1 DNA requires the cooperation of 4–5 H1 DNA molecules. Contrary to transfection enhancement effected by exposing competent cells to UV-irradiated homologous or heterologous DNA, enhancement by UV-irradiation of the competent cells requires that the cells are capable of carrying out the incision step in the excision-repair process of removal of UV-damage.

Irreversibly absorbed H1 DNA is double-stranded, has suffered endonucleolytic degradation and is subject to exonucleolytic attack. The observations that the amount of endonucleolytic damage is equal in normal and transfection enhancing conditions, and that exonucleolytic degradation is inhibited in enhancing conditions suggest that transfection enhancement is caused by protection from exonucleolytic activity, which is considered to be trapped by UV-irradiated DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abelson, J., Thomas, C. A., Jr.: The anatomy of the T5 bacteriophage DNA molecule. J. molec. Biol. 18, 262–291 (1966)

    Google Scholar 

  • Adams, M. H.: Bacteriophages. New York: Interscience Publishers Inc. 1959

    Google Scholar 

  • Arwert, F., Venema, G.: Transformation in Bacillus subtilis. Fate of newly introduced transforming DNA. Molec. gen. Genet. 123, 185–198 (1973)

    Google Scholar 

  • Biswal, N., Kleinschmidt, A. K., Spatz, H. Ch., Trautner, T. A.: Physical properties of the DNA of bacteriophage SP50. Molec. gen. Genet. 100, 39–55 (1967)

    Google Scholar 

  • Bodmer, W. F.: Recombination and integration in Bacillus subtilis transformation: involvement of DNA synthesis. J. molec. Biol. 14, 534–557 (1965)

    Google Scholar 

  • Bron, S., Venema, G.: Ultraviolet inactivation and excision repair in Bacillus subtilis. I. Construction and characterization of a transformable eightfold auxotrophic strain and two ultraviolet-sensitive derivatives. Mutation Res. 15, 1–10 (1972)

    Google Scholar 

  • Burgi, E., Hershey, A. D.: Sedimentation rate as a measure of molecular weight of DNA. Biophys. J. 36, 309–321 (1963)

    Google Scholar 

  • Ciardi, J. E., Anderson, E. P.: Separation of purine and pyrimidine derivates by thin-layer chromatography. Analyt. Biochem. 22, 398–408 (1968)

    Google Scholar 

  • Dubnau, D., Cirigliano, C.: Fate of transforming DNA following uptake by competent Bacillus subtilis. III. Formation and properties of products isolated from transformed cells which are derived entirely from donor DNA. J. molec. Biol. 64, 9–29 (1972a)

    Google Scholar 

  • Dubnau, D., Cirigliano, C.: Fate of transforming DNA following uptake by competent Bacillus subtilis. IV. The endwise attachment and uptake of transforming DNA. J. molec. Biol. 64, 31–46 (1972b)

    Google Scholar 

  • Dubnau, D., Davidoff-Abelson, R.: Fate of transforming DNA following uptake by competent Bacillus subtilis. I. Formation and properties of the donor-recipient complex. J. molec. Biol. 56, 209–221 (1971)

    Google Scholar 

  • Eberle, H., Lark, K. G.: Chromosome replication in Bacillus subtilis cultures growing at different rates. Proc. nat. Acad. Sci. (Wash.). 57, 95–101 (1967)

    Google Scholar 

  • Eigner, J., Doty, P.: The native, denatured and renatured states of deoxyribonucleic acid. J. molec. Biol. 12, 549–580 (1965).

    Google Scholar 

  • Epstein, H. T.: Transfection enhancement by ultraviolet irradiation. Biochem. biophys. Res. Commun. 27, 258–262 (1967)

    Google Scholar 

  • Epstein, H. T., Mahler, I.: Mechanisms of enhancement of SP82 transfection. J. Virol. 2, 710–715 (1968)

    Google Scholar 

  • Green, D. M.: Intracellular inactivation of infective SP82 bacteriophage DNA. J. molec. Biol. 22, 1–13 (1966)

    Google Scholar 

  • Green, D. M., Urban, M. I.: Recombination and transfection mapping of cistron 5 of bacteriophage SP82G. Genetics 70, 187–203 (1972)

    Google Scholar 

  • Günther, H. L., Prusoff, W. H.: Isolation of thymine dimers. In: Methods in enzymology XII (L. Grossman and K. Moldave, eds.), Part A, nucleic acids, p. 19–30. New York: Academic Press 1967

    Google Scholar 

  • Hoch, J. A., Barat, M., Anagnostopoulos, C.: Transformation and transduction in recombination defective mutants of Bacillus subtilis. J. Bact. 93, 1925–1937 (1967)

    Google Scholar 

  • Kallen, R. G., Simon, M., Marmur, J.: The occurrence of a new pyrimidine base replacing thymine in a bacteriophage DNA: 5-hydroxymethyluracil. J. molec. Biol. 5, 248–250 (1962)

    Google Scholar 

  • Marmur, J., Doty, P.: Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. molec. Biol. 5, 109–118 (1962)

    Google Scholar 

  • McAllister, W. T., Green, D. M.: Bacteriophage SP82G inhibition of an intracellular deoxyribonucleic acid inactivation process in Bacillus subtilis. J. Virol. 10, 51–59 (1972)

    Google Scholar 

  • Okubu, S., Strauss, B., Stodolsky, M.: The possible role of recombination in the infection of competent Bacillus subtilis by bacteriophage deoxyribonucleic acid. Virology 24, 552–562 (1964)

    Google Scholar 

  • Rupp, W. D., Howard-Flanders, P.: Discontinuities in the DNA synthesized in excisiondefective strain of Escherichia coli following ultraviolet irradiation. J. molec. Biol. 31, 291–304 (1968)

    Google Scholar 

  • Schildkraut, C. L., Marmur, J., Doty, P.: Determination of base composition of deoxyribonucleic acid from its buoyant density in CsCl. J. molec. Biol. 4, 430–443 (1962)

    Google Scholar 

  • Setlow, R. B.: Repair of DNA. Regulation in nucleic acid and protein synthesis (V. V. Koningsberger and L. Bosch, eds.), p. 51–62. Amsterdam-London-New York: Elsevier Publishing Company 1967

    Google Scholar 

  • Sluis, C. A. van: Repair of radiation damage in Micrococcus luteus. Thesis, State University, Leiden (1972)

  • Spatz, H. Ch., Trautner, T. A.: One way to do experiments on gene conversion? Transfection with heteroduplex SPP1 DNA. Molec. gen. Genet. 109, 84–106 (1970)

    Google Scholar 

  • Spatz, H. Ch., Trautner, T. A.: The role of recombination in transfection of Bacillus subtilis. Molec. gen. Genet. 113, 174–190 (1971)

    Google Scholar 

  • Spizizen, J.: Transformation of biochemically deficient strains of Bacillus subtilis by deoxyribonucleate. Proc. nat. Acad. Sci. (Wash.) 44, 1072–1078 (1958)

    Google Scholar 

  • Strauss, B., Searashi, T., Robbins, M.: Repair of DNA studied with a nuclease specific for UV-induced lesions. Proc. nat. Acad. Sci. (Wash.) 56, 932–939 (1966)

    Google Scholar 

  • Studier, F. W.: Sedimentation studies of the size and shape of DNA. J. molec. Biol. 11, 373–390 (1965)

    Google Scholar 

  • Thomas, C. A., Jr., MacHattie, L. A.: The anatomy of viral DNA molecules. Ann. Rev. Biochem. 36, 485–518 (1967)

    Google Scholar 

  • Truffaut, N., Revert, B., Soulie, M.-O.: Etude comparative des DNA phages 2C, SP8, SP82, Øe, SPO1 et SP50. Europ. J. Biochem. 15, 391–400 (1970)

    Google Scholar 

  • Vanema, G., Pritchard, R. H., Venema-Schröder, T.: Fate of transforming deoxyribonucleic acid in Bacillus subtilis. J. Bact. 89, 1250–1255 (1965)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by W. Arber

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arwert, F., Venema, G. Transfection of Bacillus subtilis with bacteriophage H1 DNA: fate of transfecting DNA and transfection enhancement in B. subtilis uvr + and uvr - strains. Molec. Gen. Genet. 128, 55–72 (1974). https://doi.org/10.1007/BF00267294

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00267294

Keywords

Navigation