Skip to main content
Log in

Supraspinal cell populations projecting to the cerebellar cortex in the turtle (Pseudemys scripta elegans)

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

Neuronal cell populations giving rise to cerebellar projections in the turtle, Pseudemys scripta elegans, were analysed following injections of horseradish peroxidase into the cerebellar cortex. The most prominent retrograde cell labeling occurred bilaterally within the caudal rhombencephalon and especially in the ventral portion of the inferior reticular field. Based on the structural parameters of the labeled cells (size, dendritic tree), their location and laterality of projection, attempts were made to identify cell groups similar to the inferior olive, the lateral funicular (reticular) nucleus and the perihypoglossal complex of other vertebrates. There were some labeled neurons within the descending and principal trigeminal nuclei, but few if any within the dorsal column nuclear complex. Cerebellar projections on the other hand clearly arose from the n.vestibularis inferior and n.vestibularis dorsolateralis on both sides.

While there was little evidence for labeled cells located in a similar position as the pontine nuclei of higher vertebrates, a conspicuous number of neurons were observed in meso-diencephalic regions. Confirming the findings of Reiner and Karten (1978) characteristic accumulations of cells were seen in the nucleus opticus tegmenti, in the ipsilateral mesencephalic tegmentum and lateral and ventral to the ipsilateral nucleus pretectalis. Additional neurons were found in the periventricular hypothalamus, the nucleus of the fasciculus longitudinalis medialis and in the n.interstitialis of flm on both sides as well as in the red nucleus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

A:

rhombencephalic cell population

Ab:

n.nervi abducentis

Ap:

cell population at the spino-medullary level

B:

rhombencephalic cell population

C:

rhombencephalic cell population

Cbl:

cerebellum

CoM:

n.cochlearis dorsalis magnocellularis

D:

rhombencephalic cell population

DC:

dorsal column nuclear complex

Fa:

n.nervi facialis

FLM:

n. of flm

flm:

fasciculus longitudinalis medialis

GL:

n.geniculatus lateralis

Hg:

n.motorius nervi hypoglossi

Hy:

hypothalamus

ICP:

n.interstitialis commissuralis posterior

IFLM:

n.interstitialis of flm

IsM:

n. isthmi, pars magnocellularis

MTg:

mesencephalic tegmentum

Om:

n.nervi oculomotorii

om:

nervus oculomotorius

OT:

optic tectum

ot:

optic tract

OTg:

n.opticus tegmenti

PHg:

perihypoglossal region

PrT:

pretectum

Prt:

n.praetectalis

RaI:

n.raphes inferior

RaS:

n.raphes superior

RFI:

reticular formation, inferior field

RFIs:

reticular formation, isthmic field

RFM:

reticular formation, medial field

Ru:

n.ruber

So:

n.tractus solitarii

To:

n.nervi trochlearis

tr:

nervus trigeminus

TrM:

n.motorius nervi trigemini

TrMe:

n.mesencephalicus nervi trigemini

TrP:

n.princeps nervi trigemini

VeDl:

n.vestibularis dorsolateralis

VeI:

n.vestibularis inferior

VeVl:

n.vestibularis ventrolateralis

VgMD:

n.motorius dorsalis nervi vagi

References

  • Andrezik JA, King JS (1977) The lateral reticular nucleus of the opossum (Didelphis virginiana). I. Conformation, cytology and synaptology. J Comp Neurol 174: 119–150

    Google Scholar 

  • Armstrong DM (1974) Functional significance of connections of the inferior olive. Physiol Rev 54: 358–417

    Google Scholar 

  • Bangma GC, ten Donkelaar HJ, de Boer-van Huizen R, Pellegrino A (1981) Afferent connections of the cerebellum in various types of reptiles. Neurosci Lett 7: S119

    Google Scholar 

  • Bortolami RE, Callegari E, Lucchi ML (1972) Anatomical relationship between mesencephalic trigeminal nucleus and cerebellum in the duck. Brain Res 47: 317–329

    Google Scholar 

  • Brauth SE, Karten HJ (1977) Direct accessory optic projections to the vestibulo-cerebellum: A possible channel for oculomotor control systems. Exp Brain Res 28: 73–84

    Google Scholar 

  • Brodal A, Kawamura K (1980) Olivocerebellar projection: A review. Adv Anat Embryol Cell Biol 64: 1–140

    Google Scholar 

  • Brodal A, Kristiansen K, Jansen J (1950) Experimental demonstration of a pontine homologue in birds. J Comp Neurol 92: 23–69

    Google Scholar 

  • Brodal P (1980) The cortical projection to the nucleus reticularis tegmenti pontis in the rhesus monkey. Exp Brain Res 38: 19–28

    Google Scholar 

  • Brodal P (1982) Further observations on the cerebellar projections from the pontine nuclei and the nucleus reticularis tegmenti pontis in the rhesus monkey. J Comp Neurol 204: 44–55

    Google Scholar 

  • Chan-Palay V (1977) Cerebellar dentate nucleus; organization, cytology and transmitter. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Chiba M (1980) Patterns of organization of comments on the corticopontine projection in the cat with the pontocerebellar projection. J Hirnforsch 21: 89–99

    Google Scholar 

  • Clarke PGH (1977) Some visual and other connections to the cerebellum of the pigeon. J Comp Neurol 174: 535–552

    Google Scholar 

  • Cochran SL, Hackett JT (1977) The climbing fiber afferent system of the frog. Brain Res 121: 362–367

    Google Scholar 

  • Courville J, Brodal A (1966) Rubro-cerebellar connections in the cat: An experimental study with silver impregnation methods. J Comp Neurol 126: 471–486

    Google Scholar 

  • Courville J, de Montigny C, Lamarre Y (1980) The inferior olivary nucleus. Anatomy and physiology. Raven Press, New York

    Google Scholar 

  • Cruce WLR, Nieuwenhuys R (1974) The cell masses in the brain stem of the turtle Testudo hermanni; a topographical and topological analysis. J Comp Neurol 156: 277–306

    Google Scholar 

  • Crutcher KA, Humbertson AO Jr, Martin GF (1978) The origin of brainstem-spinal pathways in the North American Opossum (Didelphis virginiana). Studies using the horseradish peroxidase method. J Comp Neurol 179: 169–194

    Google Scholar 

  • Dietrichs E, Walberg F (1979) The cerebellar projection from the lateral reticular nucleus as studied with retrograde transport of horseradish peroxidase. Anat Embryol (Berl) 155: 273–290

    Google Scholar 

  • Donkelaar HJ ten, Kusama A, de Boer-van Huizen R (1980) Cells of origin of pathways descending to the spinal cord in some quadrupedal reptiles. J Comp Neurol 192: 827–851

    Google Scholar 

  • Dubbeldam JL, Karten HJ (1978) The trigeminal system in the pigeon (Columba livia). I. Projections of the Gasserian Ganglion. J Comp Neurol 180: 661–678

    Google Scholar 

  • Ebbesson SOE (1969) Brain stem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann NY Acad Sci 167: 80–101

    Google Scholar 

  • Finger TE (1978) Cerebellar afferents in teleost catfish (Ictaluridae). J Comp Neurol 181: 173–182

    Google Scholar 

  • Freedman SL, Voogd J, Vielvoye GJ (1977) Experimental evidence for climbing fibers in the avian cerebellum. J Comp Neurol 175: 243–252

    Google Scholar 

  • Fuller PM (1974) Projections of the vestibular complex in the bullfrog (Rana catesbeiana). Brain Behav Evol 10: 157–169

    Google Scholar 

  • Gould BB (1980) Organization of afferents from the brain stem nuclei to the cerebellar cortex in the cat. Adv Anat Embryol Cell Biol 62: 1–90

    Google Scholar 

  • Gray TS, Hazlett JC, Martin GF (1981) Organization of projections from the gracile, medial cuneate and lateral cuneate nuclei in the North American Opossum. Horseradish peroxidase study of the cells projecting to the cerebellum, thalamus and spinal cord. Brain Behav Evol 18: 140–156

    Google Scholar 

  • Griffin G, Watkins LR, Mayer DJ (1979) HRP pellet and slow-release gels: Two new techniques for greater localization and sensitivity. Brain Res 168: 595–601

    Google Scholar 

  • Groenewegen HJ, Voogd J (1979) The parasagittal zonation within the olivocerebellar projection. I. Climbing fiber distribution in the vermis of cat cerebellum. J Comp Neurol 174: 417–488

    Google Scholar 

  • Hall JA, Foster RE, Ebner FF, Hall WC (1977) Visual cortex in a reptile, the turtle (Pseudemys scripta and chrysemys picta). Brain Res 130: 197–216

    Google Scholar 

  • Hanker JS, Yates PE, Metz CB, Rustioni A (1977) A new specific sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J 9: 789–792

    Google Scholar 

  • Hartman-von Monakow K, Akert K, Künzle H (1981) Projections of precentral, premotor and prefrontal cortex to the basilar pontine grey and to the nucleus reticularis tegmenti pontis in the monkey (Macaca fascicularis). Schweiz Arch Neurol Neurochir Psychiatr 129: 189–208

    Google Scholar 

  • Hazlett JC, Dom R, Martin GF (1972) Spino-bulbar, spinothalamic and medial lemniscal connections in the American opossum, Didelphis marsupialis virginiana. J Comp Neurol 146: 95–118

    Google Scholar 

  • Hrycyshyn AW, Flumerfelt BA (1981) A light microscopic investigation of the afferent connections of the lateral reticular nucleus in the cat. J Comp Neurol 197: 477–502

    Google Scholar 

  • Ikeda M (1979) Projections from the spinal and the principal sensory nuclei of the trigeminal nerve to the cerebellar cortex in the cat, as studied by retrograde transport of horseradish peroxidase. J Comp Neurol 184: 567–586

    Google Scholar 

  • Joseph BS, Whitlock DG (1968) Central projections of selected spinal dorsal roots in anuran amphibians. Anat Rec 160: 279–288

    Google Scholar 

  • Kamei I, Shiosaka S, Senba E, Takagi H, Sakanaka M, Inagaki S, Takatsuki K, Nakai K, Imai H, Itakura T, Komai N, Tohyama M (1981) Comparative anatomy of the distribution of catecholamines within the inferior olivary complex from teleosts to primates. J Comp Neurol 202: 125–134

    Google Scholar 

  • Karten HJ, Finger TE (1976) A direct thalamo-cerebellar pathway in pigeon and catfish. Brain Res 102: 335–338

    Google Scholar 

  • Kimoto Y, Satoh K, Sakumoto T, Tohyama M, Shimizu N (1978) Afferent fiber connections from the lower brain stem to the rat cerebellum by the horseradish peroxidase method combined with MAO staining with special reference to noradrenergic neurons. J Hirnforsch 19: 85–100

    Google Scholar 

  • Kotchabhakdi N, Walberg F (1978) Cerebellar afferent projections from the vestibular nuclei in the cat: An experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31: 591–604

    Google Scholar 

  • Kotchabhakdi N, Hoddevik GH, Walberg F (1978) Cerebellar afferent projections from the perihypoglossal nuclei: An experimental study with the method of retrograde axonal transport of horseradish peroxidase. Exp Brain Res 31: 13–30

    Google Scholar 

  • Kotchabhakdi N, Hoddevik GH, Walberg F (1980) The reticulocerebellar projection in the cat as studied with retrograde transport of horseradish peroxidase. Anat Embryol (Berl) 160: 341–360

    Google Scholar 

  • Künzle H (1973) The topographic organization of spinal afferents to the lateral reticular nucleus of the cat. J Comp Neurol 149: 103–116

    Google Scholar 

  • Künzle H (1975) Autoradiographic tracing of the cerebellar projections from the lateral reticular nucleus in the cat. Exp Brain Res 22: 255–266

    Google Scholar 

  • Künzle H (1982) Dorsal root projections to the cerebellum in turtle. Exp Brain Res 45: 464–466

    Google Scholar 

  • Künzle H, Woodson W (1982) Meso-diencephalic and other target regions of ascending spinal projections in the turtle, Pseudemys scripta elegans. J Comp Neurol (in press)

  • Lipp HP, Schwegler H (1980) Improved transport of horseradish peroxidase after injection with a non-ionic tetergent (Nonidet P-40) into mouse cortex and observations on the relationship between spread at the injection site and amount of transported label. Neurosci Lett 20: 49–54

    Google Scholar 

  • Llinás R, Hillman DE (1969) Physiological and morphological organization of the cerebellar circuits in various vertebrates. In: Llinás R (ed) Neurobiology of cerebellar evolution and development. AMA, Chicago, pp 43–73

    Google Scholar 

  • Martin GF, Dom R, Katz S, King J (1974) The organization of projection neurons in the opossum red nucleus. Brain Res 78: 17–34

    Google Scholar 

  • McCrea RA, Baker R, Delgado-Garcia J (1979) Afferent and efferent organization of the prepositus hypoglossi nucleus. Prog Brain Res 50: 653–665

    Google Scholar 

  • Mesulam MM (1978) Tetramethyl benzidine for horseradish peroxidase neurohistochemistry: A non-carcinogenic blue reaction product with superior sensitivity for visualizing neural afferents and efferents. J Histochem Cytochem 26: 106–117

    CAS  PubMed  Google Scholar 

  • Mihailoff GA, Burne RA, Azizi SA, Norell G, Woodward DJ (1981) The pontocerebellar system in the rat: An HRP study. II. Hemispheral components. J Comp Neurol 197: 559–578

    Google Scholar 

  • Miller MR, Kasahara M (1979) The cochlear nuclei of some turtles. J Comp Neurol 185: 221–236

    Google Scholar 

  • Molenaar GJ (1978) The sensory trigeminal system of a snake in the possession of infrared receptors. II. The central projections of the trigeminal nerve. J Comp Neurol 179: 137–152

    Google Scholar 

  • Mugnaini E, Dahl AL (1975) Mode of distribution of aminergic fibers in the cerebellar cortex of the chicken. J Comp Neurol 162: 417–432

    Google Scholar 

  • Mugnaini E, Atluri RL, Houk JC (1974) Fine structure of granular layer in turtle cerebellum with emphasis on large glomeruli. J Neurophysiol 37: 1–29

    Google Scholar 

  • Parent A (1973) Distribution of monoamine-containing nerve terminals in the brain of the painted turtle, Chrysemys picta. J Comp Neurol 148: 153–166

    Google Scholar 

  • Parent A (1976) Striatal afferent connections in the turtle (Chrysemys picta) as revealed by retrograde axonal transport of horseradish peroxidase. Brain Res 108: 25–36

    Google Scholar 

  • Reiner A, Karten H (1978) A bisynaptic retinocerebellar pathway in the turtle. Brain Res 150: 163–169

    Google Scholar 

  • Reiner A, Brauth SE, Kitt CA, Karten HJ (1980) Basal ganglionic pathways to the tectum: Studies in reptiles. J Comp Neurol 193: 565–589

    Google Scholar 

  • Saigal RP, Karamanlidis AN, Voogd J, Mangana O, Michaloudi H (1980a) Secondary trigeminocerebellar projections in sheep studied with horseradish peroxidase tracing method. J Comp Neurol 189: 537–553

    Google Scholar 

  • Saigal RP, Karamanlidis AN, Voogd J, Michaloudi H, Mangana O (1980b) Cerebellar afferents from the motor nuclei of cranial nerves, the nucleus of the solitary tract and nuclei coeruleus and parabrachialis in sheep, demonstrated with retrograde transport of horseradish peroxidase. Brain Res 197: 200–206

    Google Scholar 

  • Schwab ME, Javoy-Agid F, Agid Y (1978) Labeled wheat germ agglutinin (WGA) as a new, highly sensitive retrograde tracer in the rat brain hippocampal system. Brain Res 152: 145–150

    Google Scholar 

  • Schwarz IE, Schwarz DWF (1980) Afferents to the cerebellar cortex of turtles studied by means of the horseradish peroxidase technique. Anat Embryol (Berl) 160: 39–52

    Google Scholar 

  • Simon H, Moal LeM, Calas A (1979) Efferents and afferents of the ventral tegmental-A 10 region studied after local injection of (3H)leucine and horseradish peroxidase. Brain Res 178: 17–40

    Google Scholar 

  • Somana R, Walberg F (1980) A re-examination of the cerebellar projections from the gracile, main and external cuneate nuclei in the cat. Brain Res 186: 33–42

    Google Scholar 

  • Somana R, Kotchabhakdi N, Walberg F (1980) Cerebellar afferents from the trigeminal sensory nuclei in the cat. Exp Brain Res 38: 57–64

    Google Scholar 

  • Taber-Pierce E, Hoddevik GH, Walberg F (1977) The cerebellar projection from the raphe nuclei in the cat as studied with the method of retrograde transport of horseradish peroxidase. Anat Embryol (Berl) 152: 73–88

    Google Scholar 

  • Tohyama M (1976) Comparative anatomy of cerebellar catecholamine innervation from teleosts to mammals. J Hirnforsch 17: 43–60

    Google Scholar 

  • Wiesendanger M, Rüegg DG, Wiesendanger R (1979) The corticopontine system in primates: Anatomical and functional considerations. In: Massion J, Sasaki K (eds) Cerebrocerebellar interactions. Elsevier/North Holland, Amsterdam, pp 45–65

    Google Scholar 

  • Winfield JA, Hendrickson A, Kimm J (1978) Anatomical evidence that the medial terminal nucleus of the accessory optic tract in mammals provides a visual mossy fiber input to the flocculus. Brain Res 151: 175–182

    Google Scholar 

  • Woodson W, Künzle H (1982) Distribution and structural characterization of neurons giving rise to descending spinal projections in the turtle, Pseudemys scripta elegans. J Comp Neurol (in press)

  • Yamamoto K, Tohyama M, Shimizu N (1977) Comparative anatomy of the topography of catecholamine containing neuron system in the brain stem from birds to teleosts. J Hirnforsch 18: 229–240

    Google Scholar 

  • Zemlan FP, Leonard CM, Kow LM, Pfaff DW (1978) Ascending tracts of the lateral columns of the rat spinal cord. A study using the silver impregnation and horseradish peroxidase techniques. Exp Neurol 62: 298–334

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by the Swiss National Science Foundation (grant No. 3.433.78 and No. 3.505.79) and the Dr. Eric Slack-Gyr Stiftung, Zürich

Rights and permissions

Reprints and permissions

About this article

Cite this article

Künzle, H. Supraspinal cell populations projecting to the cerebellar cortex in the turtle (Pseudemys scripta elegans). Exp Brain Res 49, 1–12 (1983). https://doi.org/10.1007/BF00235536

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00235536

Key words

Navigation