Skip to main content
Log in

The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

The effects of various local anesthetics (LAs) on the skeletal muscle ryanodine receptor were tested. The LAs were divided into three categories according to their effects on the binding of ryanodine to the junctional sarcoplasmic reticulum membranes. Ryanodine binding was assayed in the presence of 0.2 m NaCl and 10 μm CaCl2. Tetracaine and dibucaine inhibit the binding with half-maximal inhibition (CI50) of 0.12 and 0.25 mm, respectively, while inhibition by benzocaine and procaine occurs with CI50 of about 10-fold higher. Lidocaine, its analogue QX-314, and prilocaine, on the other hand, stimulate the binding up to fourfold with half-maximal stimulation occurring with about 2 mm of the drugs. Lidocaine increases both the receptor affinity for ryanodine by about fivefold and the rate of ryanodine association with its binding site by about 10-fold.

Tetracaine interacts with the ryanodine receptor in a non-competitive fashion with respect to ryanodine but it competes with lidocaine for its binding site, suggesting the existence of a single site for the inhibitory and stimulatory LA.

The LAs also interact with the purified ryanodine receptor and produce effects similar to those with the membrane-bound receptor.

Tetracaine and dibucaine inhibit binding of the photoreactive ATP analogue; [α-32P]benzoyl-benzoyl ATP (BzATP) to the ATP regulatory site of the ryanodine receptor, and high concentrations of ATP decrease the degree of ryanodine binding inhibition by tetracaine, indicating the relationship between the receptor conformations stabilized by ATP and LAs.

Based on a structure-activity relationship, a model for the LA site of interaction in the ryanodine receptor is suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Almers, W., Best, P.M. 1976. Effects of tetracaine on displacement currents and contraction in frog skeletal muscle. J. Physiol. 262:583–611

    Google Scholar 

  2. Antoniu, B., Kim, D.H., Morii, M., Ikemoto, N. 1985. Inhibitors of Ca2+ release from the isolated sarcoplasmic reticulum. I. Ca2+ channel blockers. Biochim. Biophys. Acta 816:9–17

    Google Scholar 

  3. Bianchi, C.P. 1968. Pharmacological actions on excitationcontraction coupling in striated muscle. Fed. Proc. 27: 126–131

    Google Scholar 

  4. Bianchi, C.P., Bolton, P.C. 1967. Action of local anaesthetics on coupling systems in muscle. J. Pharmacol. Exp. Ther. 157:388–405

    Google Scholar 

  5. Bindoli, A., Fleischer, S., 1983. Induced CA2+ release in skeletal muscle sarcoplasmic reticulum by sulfhydryl reagents and chlorpromazine. Arch. Biochem. Biophys. 221:458–466

    Google Scholar 

  6. Bolger, G.T., Marcus, K.A., Daly, J.W., Skolnick, P. 1987. Local anaesthetics differentiate dihydropyridine calcium antagonist binding site in rat brain and cardiac membranes. J. Pharmacol. Exp. Ther. 240:922–930

    Google Scholar 

  7. Butterworth, J.F., Strichartz, G.R. 1990. Molecular mechanism of local anesthesia. Anesthesiology 72:711–734

    Google Scholar 

  8. Campbell, K.P., Knudson, C.M., Imagawa, T., Leung, A.T., Sutko, J.L., Kahl, S.D., Raab, C.R., Madison, L. 1987. Identification and characterization of the high affinity [3H]ryanodine receptor of junctional sarcoplasmic reticulum Ca2+ release channel. J. Biol. Chem. 262:6460–6463

    Google Scholar 

  9. Carvalho, A.P. 1968. Calcium binding properties of sarco-plasmic reticulum as influenced by ATP, quinidine and local anaesthetics. J. Gen. Physiol. 52:622–644

    Google Scholar 

  10. De Boland, A.R., Jilka, R.L., Martonosi, A.N. 1975. Passive Ca2+ permeability of phospholipid vesicles and sarcoplasmic reticulum membranes. J. Biol. Chem. 250:7501–7510

    Google Scholar 

  11. Elliott, J.R., Haydon, D.A., Hendry, B.M. 1984. Anaesthetic action of esters and ketones: evidence for an interaction with the sodium channel protein in squid axons. J. Physiol. 354:407–418

    Google Scholar 

  12. Endo, M. 1977. Ca2+ release from sarcoplasmic reticulum. Physiol. Rev. 57:71–108

    Google Scholar 

  13. Feinstein, M.B., Parimre, M. 1969. Pharmacological action of local anaesthetics on excitation-contraction coupling in striated and smooth muscle. Fed. Proc., Fall Meeting of the Am. Soc. for Pharm. and Exp. Therap. 28:5

    Google Scholar 

  14. Fernandez-Belda, F., Soler, F., Gomez-Fernandez, J.C. 1989. Quinacrine inhibits the calcium-induced calcium release in heavy sarcoplasmic reticulum. Biochim. Biophys. Acta 485:227–285

    Google Scholar 

  15. Ford, L.E., Podolasky, R.J., 1972. Calcium uptake and force development by skinned muscle fibers in EGTA buffered solutions. J. Physiol. 223:1–19

    Google Scholar 

  16. Hebette, L., Messineo, F.C., Katz, A.M. 1982. The interaction of drugs with sarcoplasmic reticulum. Annu. Rev. Pharmacol. Toxicol. 72:413–434

    Google Scholar 

  17. Heidman, T., Changeux, J.-P. 1979. Fast kinetic studies on the allosteric interactions between acetyl-choline receptor and local anesthetic binding site. Eur. J. Biochem. 94:281–296

    Google Scholar 

  18. Hille, B. 1977. Local anaesthetics: hydrophilic and hydrophobic pathways for the drug-receptor reaction. J. Gen. Physiol. 69:497–515

    Google Scholar 

  19. Hymel, L., Inui, M., Fleischer, S., Schindler, H. 1988. Purified ry anodine receptor of skeletal muscle sarcoplasmic reticulum forms Ca2+-activated oligomeric Ca2+ channels in planar bilayers. Proc. Natl. Acad. Sci. USA 85:441–445

    Google Scholar 

  20. Inui, M., Saito, A., Fleischer, S. 1987. Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J. Biol. Chem. 262:1740–1747

    Google Scholar 

  21. Isaacson, A., Hinkes, M.J., Taylor, S.R. 1970. Contracture and twitch potentiation of fast and slow muscle of the rate at 20 and 37 °C. Am. J. Physiol. 218:33–41

    Google Scholar 

  22. Johnson, P.N. Inesi, G. 1969. The effect of methylxanthines and local anaesthetics on fragmented sarcoplasmic reticulum. J. Pharmacol. Exp. Therap. 169:308–314

    Google Scholar 

  23. Josephson, I.R. 1988. Lidocaine blocks Na, Ca and K currents of chick ventricular myocytes. J. Mol. Cell Cardiol. 20:593–604

    Google Scholar 

  24. Kirino, Y., Shimizu, H. 1982. Ca2+-induced Ca2+ release from fragmented sarcoplasmic reticulum: a comparison with skinned muscle fiber studies. J. Biochem. (Tokyo) 92:1287–1296

    Google Scholar 

  25. Kwant, W.O., Seeman, P. 1969. The displacement of membrane calcium by a local anaesthetic (chlorpromazine). Biochim. Biophys. Acta 193:338–349

    Google Scholar 

  26. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  27. Lai, F.A., Meissner, G. 1989. The muscle ryanodinereceptor and its intrinsic Ca2+ channel activity. Bioenerg. Biomembr. 21:227–245

    Google Scholar 

  28. Lai, F.A., Erickson, H.P., Rousseau, E., Liu, Q-Y., Meissner, G. 1988. Purification and reconstitution of the calcium release channel from skeletal muscle. Nature 331:315–319

    Google Scholar 

  29. Lowry, O.H., Rosebrough, N.J., Farr, A.L., Randall, R.J. 1951. Protein measurements with folin phenol reagent. J. Biol. Chem. 193:265–275

    CAS  PubMed  Google Scholar 

  30. Michalak, M., Dupraz, P., Shoshan-Barmatz, V. 1988. Ryanodine binding to sarcoplasmic reticulum membranes; comparison between cardiac and skeletal muscle. Biochim. Biophys. Acta 939:587–594

    Google Scholar 

  31. Morii, H., Tonomura, Y. 1983. The gating behaviour of a channel for Ca2+-induced Ca2+ release in fragmented sarcoplasmic reticulum. J. Biochem. (Tokyo) 93:1271–1285

    Google Scholar 

  32. Pike, G.K., Abramson, J.J., Salama, G. 1989. Effect of tetracaine and procaine on skinned muscle fibers depend on free calcium. J. Muscle Res. Cell. Motil. 10:337–349

    Google Scholar 

  33. Ritchie, J.M., Greengard, P. 1966. On the mode of action of local anaesthetics. Annu. Rev. Pharmacol. 6:405–430

    Google Scholar 

  34. Saida, K., Suzuki, A. 1981. Mode of action of prilocaine on sarcoplasmic reticulum in skinned skeletal muscle fibers. J. Pharm. Exp. Ther. 219:815–820

    Google Scholar 

  35. Saito, A., Seiler, S., Chu, A., Fleischer, S. 1984. Preparation and morphology of sarcoplasmic reticulum terminal cisternae from rabbit skeletal muscle. J. Cell Biol. 99:875–885

    Google Scholar 

  36. Schwartz, W., Palade, P.T., Hille, B. 1977. Local anaesthetics: effect of pH on use-dependent block of sodium channels in frog muscle. Biophys. J. 20:343–368

    Google Scholar 

  37. Shoshan-Barmatz, V. 1988. ATP-dependent interaction of propranolol and local anaesthetic with sarcoplasmic reticulum. Biochem. J. 256:733–739

    Google Scholar 

  38. Shoshan-Barmatz, V., Zarka, A. 1992. A simple, fast, one step method for the purification of skeletal muscle ryanodine receptor. Biochem. J. 285:61–66

    Google Scholar 

  39. Smith, I.C.P., Auger, M., Jarrell, H.C. 1991. Molecular details of anaesthetic-lipid interaction. In: Annals, New York Academy of Sciences. E. Rubin, K.W. Miller and S.H. Roth, editors. Vol. 625: pp.668–684

  40. Somlyo, A.P. 1985. The messenger across the gaps. Nature 316:298–299

    Google Scholar 

  41. Suko, J., Winkler, F., Scharinger, B., Hellman, G. 1976. Aspects of the mechanism of action of local anaesthetics on sarcoplasmic reticulum of skeletal muscle. Biochim. Biophys. Acta 443:571–586

    Google Scholar 

  42. Takeshima, H., Nishimura, S., Matsumoto, T., Ishida, H., Kangawa, K., Ninamino, N., Matsuo, H., Ueda, M., Hanoaka, M., Hirose, T., Numa, S. 1989. Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445

    Google Scholar 

  43. Volpe, P., Palade, P., Castello, B., Mitchell, R.D., Fleischer, S. 1983. Spontaneous calcium release from sarcoplasmic reticulum: Effect of local anaesthetics. J. Biol. Chem. 258:12434–12442

    Google Scholar 

  44. Weiland, G.A., Molinoff, P.B. 1981. Quantitative analysis of drug receptor interaction: I. Determination of kinetic and equilibrium properties. Life Sci. 29:313–330

    Google Scholar 

  45. Williams, N.F., Coleman, P.S. 1982. Exploring the adenine nucleotide binding sites on mitochondrial F1-ATPase with a new photoaffinity probe, 3′-0-(4-Benzoyl) benzoyl adenosine 5′-triphosphate. J. Biol. Chem. 257:2834–2841

    Google Scholar 

  46. Yagi, S., Endo, M. 1980. Effect of dibucaine on skinned skeletal muscle fibers. An example of multiple action of a drug on a single subcellular structure. Biomedical Res. (Tokyo) 1:269–272

    Google Scholar 

  47. Zarka, A., Shoshan-Barmatz, V., 1993. Characterization and photoaffinity labeling of the ATP binding site of the ryanodine receptor from skeletal muscle. Eur. J. Biochem. (in press)

  48. Zorzato, F., Fuyjii, J., Otsu, K., Phillips, M., Green, N.M., Lai, F.A., Meissner, G., MacLennan, D.H. 1990. Molecular cloning of cDNA encoding human and rabbit forms of Ca2+ release channel (Ry-Rec) of skeletal muscle sarcoplasmic reticulum. J. Biol. Chem. 265:2244–2256

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research was supported in part by a grant from the Ministry of Health. We thank Prof. A.H. Parola for his critical evaluation of the manuscript, and Mrs. L. Gheber for assistance in the drawing of Figs. 1 and 10.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shoshan-Barmatz, V., Zchut, S. The interaction of local anesthetics with the ryanodine receptor of the sarcoplasmic reticulum. J. Membarin Biol. 133, 171–181 (1993). https://doi.org/10.1007/BF00233797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00233797

Key Words

Navigation