Skip to main content

Advertisement

Log in

The measurement of anterior cruciate ligament strain in vivo

  • Published:
International Orthopaedics Aims and scope Submit manuscript

Summary

This article describes the use of the Hall Effect strain transducer (HEST) in a new arthroscopic technique to study the normal anterior cruciate ligament (ACL) in-vivo. Study participants were patient volunteers with normal ACLs undergoing diagnostic arthroscopic or meniscal surgery under local anaesthesia. The HEST was implanted into the Anterior Medial Band (AMB) of the ACL. Anterior shear loading of the tibia in relation to the fixed femur at 30° of knee flexion (Lachman test), produced significantly greater strain values in comparison to anterior shear loading at 90° (Anterior Drawer test). During isometric quadriceps contraction a significant increase in AMB strain was measured with the knee flexed to 30°, while no significant change was measured at 90°. For quadriceps contraction there were significantly higher values of AMB strain measured at 30° of knee flexion in comparison to that observed at 90°. For active range of motion (AROM) the AMB was strained between 10° and 48°, and unstrained between 48° and 110°. During passive range of motion (PROM) the AMB remained unstrained until the joint was brought into extension. There were significant differences in strain values found between AROM and PROM at the flexion angles 10°, 20°, 30° and 40°, while between 50° and 110° there were no significant differences. These results confirm previous studies that the Lachman test is a superior technique in comparison to the classic anterior drawer test for evaluating the AMB. They suggest that isometric quadriceps activity at 90° of knee flexion can be prescribed for rehabilitation immediately after ACL reconstruction. These data indicate that AROM (between the limits of 50° and 110°) and PROM may also be performed with minimal risk of strain to a reconstructive replacement. The PROM data may also serve as an important standard for the reconstruction of the ACL.

Résumé

Cet article décrit l'utilisation du transducteur de tension par effet Hall (TTEH) dans une nouvelle technique arthroscopique pour étudier le ligament croisé antérieur (LCA) normal in vivo. Les participants à l'étude étaient des patients volontaires avec LCA normal, soumis à une arthroscopie à visée diagnostique ou à une intervention sur un ménisque, sous anesthésie locale. Le TTEH fut implanté dans la bande médiane antérieure (BMA) du LCA. La translation antérieure du tibia, le fémur étant fixé et le genou fléchi à 30° (test de Lachman), donne des chiffres de tension sensiblement plus élevés par rapport à ceux obtenus en flexion à 90° (épreuve de tiroir antérieur). Lors de la contraction isométrique du quadriceps, une augmentation significative de la tension de la BMA a été notée, le genou fléchi à 30°, alors qu'aucune modification n'était mesurable à 90°. Lors des contractions du quadriceps, les chiffres de tension de la BMA, le genou fléchi à 30° étaient notablement supérieurs à ceux enregistrés à 90°. Dans le secteur de mobilité active, la BMA était sous tension entre 10° et 48° et ne l'était pas de 48° à 110°. Durant la mobilisation passive la BMA restait détendue jusqu'à ce que l'articulation soit mise en extension complète. On a trouvé des différences significatives entre les tensions mesurées lors des mobilisations actives et passives aux angles de flexion de 10°, 20°, 30° et 40°, alors qu'il n'y en avait pas de 50° à 110°. Ces résultats confirment les études antérieures selon lesquelles le test de Lachman est une technique d'examen plus sensible que la classique recherche du tiroir antérieur pour évaluer la BMA. Ces résultats laissent à penser que l'activité isométrique du quadriceps, le genou fléchi à 90°, peut être prescrite pour la réeducation, immédiatement après reconstruction du LCA. Ces données indiquent également que la mobilisation active (entre 50° et 110°) et la mobilisation passive peuvent être effectuées avec des risques mineurs après reconstruction. Les données concernant la mobilité passive peuvent aussi fournir des repères valables pour la reconstruction du LLA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Arms SA (1989) Miniature Hall effect displacement sensors for medical applications. Proc from Sensors Expo International, Cleveland, OH, Sept 12–14

  2. Arms SA, Pope MH, Johnson RJ et al (1984) The biomechanics of anterior cruciate ligament rehabilitation and reconstruction. Am J Sports Med 12: 8–18

    Google Scholar 

  3. Arms SW, Beynnon B, Fischer RA, Miller LM, Pope MH, Renström P, Johnson RJ (1987) The biomechanics of ACL reconstructions in the canine model. Proc 33rd Annual Meeting Orthop Res Soc, San Francisco, Jan, p 101

  4. Arms SW, Pope MH, Johnson RJ, Renström P, Fischer RA, Jarvinen M, Beynnon BD (1990) Analysis of ACL failure strength and initial strains in the canine model. Proc 36th Annual Meeting Orthop Res Soc, New Orleans, LA, Feb, p 524

  5. Arms SW (1984) Knee ligament strain. Master's Thesis, Univ of Vermont

  6. Arms SW, Pope MH, Renström P, Johnson RJ (1986) The determination of zero strain within the anteriomedial fibers of the ACL. Proc 32nd Ann Meeting of Orthop Res Soc

  7. Bartel DL, Marshall JL, Schieck RA, Wang JB (1977) Surgical repositioning of the medial collateral ligament. J Bone and Joint Surg 59 A: 101–117

    Google Scholar 

  8. Bass P, Wiley JN (1972) Contractile force transducer for recording muscle activity in unanesthetized animals. J Appl Physiol 32: 567

    Google Scholar 

  9. Beynnon BD, Johnson RJ, Howe JG, Pope MH, Wertheimer CM (1988) An in-vivo study of ACL strain in the normal knee during Lachman and Drawer Tests. Presented at Amer Orthop Soc for Sports Med, Palm Desert, CA

  10. Beynnon BD, Pope MH, Fleming BC, Howe JG, Johnson RJ, Erickson AR, Wertheimer CM, Nichols C (1989) An in-vivo study of ACL strain biomechanics in the normal knee. Proc 35th Ann Orthop Res Soc, Las Vegas, NV pp 324

  11. Brown TD, Sigal L, Njus GO, Njus NM, Singerman RJ, Brand RA (1986) Dynamic performance characteristics of the liquid metal strain gage. J Biomech 19: 165–173

    Google Scholar 

  12. Butler DL, Grood ES, Zernicke RR, Hefzy MS, Noyes FR (1983) Non-uniform surface strains in young human tendons and fascia. Proc 29th Ann Orthop Res Soc, Anaheim

  13. Daniel D, Sachs R, Stone M, Penner D (1986) The quadriceps active test: to diagnose a posterior cruciate ligament disruption. Proceedings 53rd AAOS, New Orleans, February

  14. Daniel D, Robertson D, Flood D, Biden E (1987) The anterior cruciate deficient knee: new concepts in ligament repair. Fixation of soft tissue. Mosby Co, St Louis, pp 114–126

    Google Scholar 

  15. Daniel D, Malcolm L, Losse G, Stone M, Sachs R, Barks R (1985) Instrumented measurement of anterior laxity of the knee. J Bone Joint Surg 67 (A): 720–725

    CAS  PubMed  Google Scholar 

  16. Edwards RG, Lafferty JF, Lange KD (1970) Ligament strain in the human knee. J Basic Eng 38: 131–136

    Google Scholar 

  17. Emery M, Moffroid M, Boerman J, Fleming B, Howe J, Pope M (1988) Reliability of force/displacement measures in a clinical device designed to measure ligamentous laxity at the knee. J Orthop Sports Phys Ther 5: 441

    Google Scholar 

  18. Fleming BC, Beynnon BD, Erickson AE, Pope MH, Johnson RJ, Nichols CE, Howe JG (1990) An in-vivo study of the reconstructed anterior cruciate ligament at the time of implantation. Proc 36th Ann Orthop Res Soc, New Orleans, LA, Feb 5–8, p 84

  19. Fleming BC, Johnson RJ, Shapiro E, Fenwick J, Howe JG, Pope MH (1991) Clinical versus instrumental knee testing on autopsy specimens. Clin Orthop Rel Res (in press)

  20. Forster IW, Warren-Smith CD, Tew M (1989) Is the KT-1000 knee ligament arthrometer reliable? J Bone Joint Surg 71 (B) 5: 843–847

    Google Scholar 

  21. Galway RD, Beaupre A, MacIntosh DL (1972) Pivot shift: A clinical sign of symptomatic anterior cruciate insufficiency. J Bone Joint Surg 54 (B): 762–763

    Google Scholar 

  22. Häggmark T, Erickson E (1979) Cylinder or mobile cast brace after knee ligament surgery: a clinical analysis and morphological and enzymatic study of changes in the quadriceps muscle. Am J Sports Med 7: 48–56

    Google Scholar 

  23. Highgenboten CL, Jackson A, Meske N (1989) Genucom, KT-1000, and Stryker knee laxity measuring device comparisons. Am J Sports Med 17: 743

    Google Scholar 

  24. Howe JG, Wertheimer CM, Johnson RJ, Nichols CE, Pope MH, Beynnon BDB (1990) Arthroscopic Strain Gauge Measurement of the Normal Anterior Cruciate Ligament. J Arthroscopy: Arthrosc Rel Surg 6: 198–214

    Google Scholar 

  25. Girgis FG, Marshall JL, Monajem ARSH (1975) The cruciate ligaments of the knee joint. Clin Orthop Rel Res 106: 216–231

    Google Scholar 

  26. Grood ES, Suntay WJ, Noyes FA, Butler DL (1984) Biomechanics of the knee — extension exercise. J Bone Joint Surg 66 (A): 725–733

    Google Scholar 

  27. Henning CE, Lynch MA, Glick KR (1985) An in-vivo strain gauge study of the anterior cruciate ligament. Am J Sports Med 13: 22–26

    Google Scholar 

  28. Huble KH, Follick MF (1976) A small strain gauge for measuring intestinal mobility in rats. J Diag Dis 21: 1075–1078

    Google Scholar 

  29. Hughston JC, Andrews JR, Cross MJ, Moschi A (1976) Classification of knee ligament instabilities. Part 1. The medial compartment and cruciate ligaments. J Bone Joint Surg 58 (A): 159–172

    Google Scholar 

  30. Hughston JC, Andrews JR, Cross MJ, Moschi A (1976) Classification of knee ligament instabilities. Part 2. The lateral compartment. J Bone Joint Surg 58 (A): 173–179

    Google Scholar 

  31. Jacob RP (1981) Observations on rotary instability of the lateral compartment of the knee. Acta Orthop Scand Suppl 1, 52: 1–31

    Google Scholar 

  32. Johnson RJ (1982) The anterior cruciate: a dilemma in sports medicine. Int J Sports Med 3: 71–79

    Google Scholar 

  33. Jozsa L, Jarvinen M, Kannus P, Reffy A (1987) Fine structural changes in the articular cartilage of the rat's knee following short-term immobilization in various positions: a scanning electron microscopical study. Int Orthop 11: 129–133

    Google Scholar 

  34. Jozsa L, Reffy A, Jarvinen M, Kannus P, Lehto M, Kvist M (1988) Cortical and trabecular osteopenia after immobilization — a quantitative histological study in rats. Int Orthop 12: 169–172

    Google Scholar 

  35. Jozsa L, Thöring J, Jarvinen M, Kannus P, Lehto M, Kvist M (1988) Quantitative alterations in intramuscular connective tissue following immobilization: an experimental study in rat calf muscle. Exp Molecul Pathol 49: 267–278

    Google Scholar 

  36. Kannus P (1988) Conservative treatment of acute knee distortions — long term results and their evaluation methods. Academic dissertation, University of Tampere, Finland, Acta Universitatis Tamperensis Ser A, Vol 250: 1–110

  37. Kennedy JC, Haskins RJ, Willis RB (1977) Strain gauge analysis of knee ligaments. Clin Orthop Rel Res 129: 225–229

    Google Scholar 

  38. Kennedy JC, Hawkins RJ, Willis RB, Danylchuck KD (1976) Tension studies of human knee ligaments, yield point, ultimate failure and disruption of the cruciate and tibial collateral ligaments. J Bone Joint Surg 58 (A): 350–355

    Google Scholar 

  39. Kennedy JC (1982) Symposium: Current concepts in the management of knee instability. Contemp Orthop 5: 59–78

    Google Scholar 

  40. King JB, Kumar SJ (1989) The Stryker knee arthrometer in clinical practice. Am J Sports Med 17: 649–650

    Google Scholar 

  41. Losee RE, Ennis T, Johnson R et al. (1978) Anterior subluxation of the lateral tibial plateau. A diagnostic test and operative review. J Bone Joint Surg 60 (A): 1015–1030

    Google Scholar 

  42. MacIntosh DL, Galway HR (1972) The lateral pivot shift. A symptomatic and clinical sign of anterior cruciate insufficiency. Ann Mtg, Am Orthop Assoc

  43. Markolf KL, Mensch JS, Amstutz H (1976) Stiffness and laxity of the knee — the contributions of the supporting structures. A quantitative in-vitro study. J Bone Joint Surg 58 (A): 583–594

    CAS  PubMed  Google Scholar 

  44. Markolf KL, Graff-Radford A, Amstutz HC (1978) In-vivo stability — A quantitative assessment using an instrumented clinical testing apparatus. J Bone Joint Surg 60 (A): 664–674

    CAS  PubMed  Google Scholar 

  45. Marks J, Palme M, Burke M, Smith P (1978) Observer variations in the examination of knee joints. Ann Rheum Dis 37: 376

    Google Scholar 

  46. Mutchler W, Burri C, Claes L (1979) A new possibility of measuring absolute stress and strain of ligaments. Dept of Traumatology, Univ of Ulm, West Germany, 1979

    Google Scholar 

  47. Norwood LA and Cross MJ (1979) Anterior cruciate ligament: functional anatomy and its bundles in rotatory instabilities. Am J Sports Med 7: 23–26

    Google Scholar 

  48. Noyes FR, Grood ES, Butler DL et al. (1980) Clinical laxity tests and functional stability of the knee: biomechanical concepts. Clin Orthop 146: 84–89

    Google Scholar 

  49. Noyes FR (1977) Functional properties of knee ligaments and alterations induced by immobilization. Clin Orthop Rel Res 123: 210–242

    Google Scholar 

  50. Pope MH, Johnson R, Kristiansen T, Lavalette R (1987) Variations in the examination of the medial collateral ligament. J Clin Biomech 2: 71–73

    Google Scholar 

  51. Renström P, Arms SW, Stanwyck TS, Johnson RJ, Pope MH (1986) Strain within the anterior cruciate ligament during hamstring and quadriceps activity. Am J Sports Med 14: 83–87

    Google Scholar 

  52. Rosenberg TD, Rasmussen GL (1984) The function of the anterior cruciate ligament during anterior drawer and Lachman's testing. Am J Sports Med 12: 318–321

    Google Scholar 

  53. Sapega AA, Moyer RJ, Schneck C, Komalahiranya N (1990) Testing for isometry during reconstruction of the anterior cruciate ligament. J Bone Joint Surg 72A (2): 259–267

    Google Scholar 

  54. Sidles JA, Larson RV, Garbini JL, Marsen III (1987) Ligament length relationships in the moving knee. Proc 33rd Ann Orthop Res Soc, San Francisco

  55. Shelbourne KD, Nitz P (1990) Accelerated rehabilitation after ACL reconstruction. Am J Sports Med 18: 292–299

    Google Scholar 

  56. Sherman O, Markolf K, Weibel W, Ferkel R (1984) Instrumented testing of normal and ACL-deficient knees: a comparison of two devices. Trans Orthop Res Soc 10: 275

    Google Scholar 

  57. Torg J, Conrad W, Kalen V (1976) Clinical diagnosis of ACL instability. Am J Sports Med 4: 84–92

    Google Scholar 

  58. Torzilli P, Greenberg R, Hood R, Pavlov H, Insall J (1984) Measurement of anterior-posterior motion of the knee in injured patients using a biomechanical stress technique. J Bone Joint Surg 66 (A): 1438–1442

    CAS  PubMed  Google Scholar 

  59. Trent PS, Walker PS, Wolf B (1976) Ligament length patterns, strength and rotational axes of the knee joint. Clin Orthop 117: 263–279

    Google Scholar 

  60. Wang CJ, Walker PS, Wolf B (1973) The effects of flexion and rotation on the length patterns of the ligaments of the knee. J Biomech 6: 587–596

    Google Scholar 

  61. Warren LF, Marshall JL, Girgis F (1974) The prime static stabilizer of the medial side of the knee. J Bone Joint Surg 56 (A): 665–674

    Google Scholar 

  62. White AA, Raphael IG (1972) The effect of quadriceps loads and knee position on strain measurements of the tibial collateral ligament. Acta Orthop 43: 176

    Google Scholar 

  63. Woo SL-Y, Gomez MA, Akerson WH (1983) Mechanical properties along the medial collateral ligament. Trans 29th Annual Mtg Orthop Res Soc

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beynnon, B., Howe, J.G., Pope, M.H. et al. The measurement of anterior cruciate ligament strain in vivo . International Orthopaedics 16, 1–12 (1992). https://doi.org/10.1007/BF00182976

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00182976

Keywords

Navigation