Skip to main content

Advertisement

Log in

A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 iodoamphetamine with one blood sampling

  • Original article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

A method has been developed to quantitate regional cerebral blood blow (rCBF) using iodine-123-labelled N-isopropyl-p-iodoamphetamine (IMP). This technique requires only two single-photon emission tomography (SPET) scans and one blood sample. Based on a two-compartment model, radioactivity concentrations in the brain for each scan time (early: t e ; delayed: td) aredescribed as: % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWG0baabeaakmaabmaabaGaamiDamaaBaaaleaacaWGLbaa% beaaaOGaayjkaiaawMcaaiabg2da9iaadAgacqWIpM+zcaWGdbWaaS% baaSqaaiaadggaaeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadwga% aeqaaaGccaGLOaGaayzkaaGaey4LIqSaamyzamaalaaabaGaamOzaa% qaaiaadAfadaWgaaWcbaGaamizaaqabaaaaOGaamiDamaaBaaaleaa% caWGLbaabeaaaaa!4D64!\[C_t \left( {t_e } \right) = fC_a \left( {t_e } \right) \otimes e\frac{f}{{V_d }}t_e \] and % MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4qamaaBa% aaleaacaWG0baabeaakmaabmaabaGaamiDamaaBaaaleaacaWGKbaa% beaaaOGaayjkaiaawMcaaiabg2da9iaadAgacqWIpM+zcaWGdbWaaS% baaSqaaiaadggaaeqaaOWaaeWaaeaacaWG0bWaaSbaaSqaaiaadsga% aeqaaaGccaGLOaGaayzkaaGaey4LIqSaamyzamaalaaabaGaamOzaa% qaaiaadAfadaWgaaWcbaGaamizaaqabaaaaOGaamiDamaaBaaaleaa% caWGKbaabeaaaaa!4D61!\[C_t \left( {t_d } \right) = fC_a \left( {t_d } \right) \otimes e\frac{f}{{V_d }}t_d \] respectively, where ⊗ denotes the convolution integral; C a (t), the arterial input function; f rCBF; and V d , the regional distribution volume of IMP. Calculation of the ratio of the above two equations and a “table look-up” procedure yield a unique pair of rCBF and V d for each region of interest (ROI). A standard input function has been generated by combining the input functions from 12 independent studies prior to this work to avoid frequent arterial blood sampling, and one blood sample is taken at 10 min following IMP administration for calibration of the standard arterial input function. This calibration time was determined such that the integration of the first 40 min of the calibrated, combined input function agreed best with those from 12 individual input functions (the difference was 5.3% on average). This method was applied to eight subjects (two normals and six patients with cerebral infarction), and yielded rCBF values which agreed well with those obtained by a positron emission tomography H2 15O autoradiography method. This method was also found to provide rCBF values that were consistent with those obtained by the non-linear least squares fitting technique and those obtained by conventional microsphere model analysis. The optimum SPET scan times were found to be 40 and 180 min for the early and delayed scans, respectively. These scan times allow the use of a conventional rotating gamma camera for clinical purposes. V d values ranged between 10 and 40 ml/g depending on the pathological condition, thereby suggesting the importance of measuring V d for each ROI. In conclusion, optimization of the blood sampling time and the scanning time enabled quantitative measurement of rCBF with two SPET scans and one blood sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Winchell HS, Horst WD, Braun L, Oldendorf WH, Hattner R, Parker H. N-Isopropyl [1231]p-iodoamphetamine: single-pass brain uptake and washout; binding to brain synaptosomes; and localization in dog and monkey brain. J Nucl Med 1982; 21: 947–952.

    Google Scholar 

  2. Kuhl DE, Barrio JR, Huang SC, Selin C, Ackermann RF, Lear JL, Wu JL, Lin TH, ME Phelps. Quantifying local cerebral blood flow by N-isopropyl-p(I-123) iodoamphetamine tomography. J Nucl Med 1982; 23: 196–203.

    Google Scholar 

  3. Podreka I, Baumgartner C, Suess E, Muller C, Brucke T, Lang W, Holzner F, Steier M, Deecke L. Quantification of regional cerebral blood flow with IMP-SPECT: reproducibility and clinical relevance of flow values. Stroke 1989; 20: 183–191.

    Google Scholar 

  4. Creutzig H, Schober O, Gielow P, Friedrich R, Becker H, Dietz H. Cerebral dynamics of N-isopropyl-(123I)p-iodoamphet-amine. J Nucl Med 1986; 27: 178–183.

    Google Scholar 

  5. Nishizawa S, Tanada S, Yonekura Y, Fujita T, Mukai T, Saji H. Regional dynamics of N-isopropyl-(123I)p-iodoamphet-amine in human brain. J Nucl Med 1989; 30: 150–156.

    Google Scholar 

  6. Greenberg JH, Kushner M, Rango M, Alavi A, Reivich M. Validation studies of iodine-123-iodoamphetamine as a cerebral blood flow tracer using emission tomography. J Nucl Med 1990; 31: 1364–1369.

    Google Scholar 

  7. Matsuda H, Higashi S, Tsuji S. A new noninvasive quantitative assessment of cerebral blood flow using N-isopropyl-(iodine 123)p-iodoamphetamine. Am J Physiol Imaging 1987; 2: 49–55.

    Google Scholar 

  8. Murase K, Tanada S, Mogami, Kawamura M, Miyagawa M, Yamada M, Higashino H, Iio A, Hamamoto K. Validity of microsphere model in cerebral blood flow measurement using Nisopropyl-p-(I-123) iodoamphetamine. Med Phys 1990; 17: 79–83.

    Google Scholar 

  9. Ynokoi T, Iida H, Itoh, H, Kanno I. A new strategy based on graphical plot analysis for rCBF and partition coefficient with iodine-123 IMP and dynamic SPELT: validation study using O-15 water and PET. J Nucl Med 1993; 34: 498–505.

    Google Scholar 

  10. Takeshita G, Maeda H, Nakane K, Toyama H, Sakakibara E, Komai S, Takeuchi A, Koga S, Ono M, Nakagawa T. Quantitative measurement of regional cerebral blood flow using N-isopropyl-(iodine-123)p-iodoamphetamine and single-photon emission computed tomography. J Nucl Med 1992; 33: 1741–1749.

    Google Scholar 

  11. Itoh H, Iida H, Bloomfield PM, Murakami M, Higano S, Kanno I, Fukuda H, Uemura K. A technique for a rapid imaging of rCBF and partition coefficient using dynamic SPELT and I-123-amphetamine (IMP). J Nucl Med 1992; 33 (Suppl): 911.

    Google Scholar 

  12. Kanno I, Uemura K, Miura S, Miura Y. Headtome: A hybrid emission tomography for single photon and positron emission imaging of the brain. J Comput Assist Tomogr 1981; 5: 216–226.

    Google Scholar 

  13. Hirose Y, Ikeda Y, Higashi Y, Koga K, Hattori H, Kanno I, Miura Y, Miura S, Uemura K. A hybrid emission CT-Headtome II. IEEE Trans Nucl Sci 1982; NS-29: 520–523.

    Google Scholar 

  14. Iida H, Miura S, Kanno I, Murakami M, Takahashi K, Uemura K, Hirose Y, Amano M, Yamamoto S, Tanaka K. Design and evaluation of Headtome-IV, a whole-body positron emission tomograph. IEEE Trans Nucl Sci 1989; NS-36: 1006–1110.

    Google Scholar 

  15. Herscovitch P, Markham J, Raichle ME. Brain blood flow measured with intravenous H2150. I. Theory and error analysis. J Nucl Med 1983;24: 782–789.

    Google Scholar 

  16. Raichle ME, Martin WR, Herscovitch P, Markham J. Brain blood blow measured with intravenous H2 15O. H. Implementation and validation. J. Nucl Med 1983; 24: 790–798.

    Google Scholar 

  17. Kanno I, Iida H, Miura S, Murakami M, Takahashi K, Sasaki H, Inugami A, Shishido F, Uemura K. A system for cerebral blood flow measurement using an H2 15O autoradiographic method and positron emission tomography. J Cereb Blood Flow Metab 1987; 7: 143–153.

    Google Scholar 

  18. Iida H. Kanno I. Miura S, Murakami M, Takahashi K, Uemura K. Error analysis of a quantitative cerebral blood flow measurement using H2 15O autoradiography and positron emission tomography: with respect to the dispersion of the input function. J Cereb Blood Flow Metab 1986; 6: 536–545.

    Google Scholar 

  19. Iida H, Higano S, Tomura N, Shishido F, Kanno I, Miura S, Murakami M, Takahashi K, Sasaki H, Uemura K. Evaluation of regional difference of tracer appearance time in cerebral tissues using [15O]water and dynamic positron emission tomography. J Cereb Blood Flow Metab 1988; 8: 285–288.

    Google Scholar 

  20. Iida H, Kanno I, Miura S, Murakami M, Takahashi K, Uemura K. A determination of regional brain/blood partition coefficient of water using dynamic positron emission tomography. J Cereb Blood Flow Metab 1989; 9: 874–885.

    Google Scholar 

  21. Iida H, Kanno I, Miura S. Rapid measurement of cerebral blood flow with positron emission tomography. CIBA Found Symp 163: 23–42.

  22. Murase K, Tanada S, Inoue T, et al. Measurement of the blood-brain barrier permeability of I-123 IMP, Tc-99m HMPAO and Tc-99m ECD in the human brain using compartment model analysis and dynamic SPELT. J Nucl Med 1991; 32 (Suppl): 911.

    Google Scholar 

  23. Renkin EM. Transport of potassium-42 from blood to tissue in isolated mammalian skeletal muscles. Am J Physiol 1959; 197: 1205–1210.

    Google Scholar 

  24. Crone C. The permeability of capillaries in various organs as determined by use of the indicator diffusion method. Acta Physiol Scand 1963; 58: 292–305.

    Google Scholar 

  25. Huang SC, Mahoney DK, Phelps ME. Quantitation in positron emission tomography. 8. Effects of nonlinear parameter estimation on functional images. J Comput Assist Tomogr 1987; 1: 314–325.

    Google Scholar 

  26. Iida H, Itoh H, Munaka, M, Murakami M, Higano S, Murakami M, Uemura K. A clinical method to quantitate CBF using a rotating gamma camera and I-123-amphetamine (IMP) with one blood sampling. J Nucl Med 1992; 33: (Suppl): 963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Iida, H., Itoh, H., Bloomfield, P.M. et al. A method to quantitate cerebral blood flow using a rotating gamma camera and iodine-123 iodoamphetamine with one blood sampling. Eur J Nucl Med 21, 1072–1084 (1994). https://doi.org/10.1007/BF00181062

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00181062

Key words

Navigation