Skip to main content
Log in

Bone composite behaviour: effects of mineral-organic bonding

  • Papers
  • Published:
Journal of Materials Science: Materials in Medicine Aims and scope Submit manuscript

The mechanical properties of a composite material rely not only on the volume fraction, orientation and properties of the individual constituents, but upon their bonding interactions as well. This study examines the role of bonding between the mineral and organic constituents of bovine compact bone. Intact and completely demineralized samples were tested in tension following treatment in varying ionic strength sodium chloride or phosphate ion containing buffers to examine the interfacial bonding forces between bone's constituents. Phosphate ion treatment caused a reduction in the mechanical properties of intact samples but not in the demineralized samples. A sodium chloride solution with ionic strength equal to that of the phosphate ion buffer did not alter the mechanical properties of the intact or demineralized samples. Ash weight analysis, calcium probe measurements and SDS-gel electrophoresis indicated intact samples were not demineralized nor were bone structural proteins removed during treatment. Data suggest that the reduction in the mechanical properties of intact samples with phosphate ion treatment was due to an alteration in the interfacial bonding between the mineral and organic constituents of bone. Phosphate ions can compete with the negative domains of organic constituents for calcium binding sites of bone mineral and thereby interrupt or partially debond the interactions between the mineral and organic constituents of bone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. KATZ, H. S. YOON, S. LIPSON R. MUHARIDGE, A. MEIMOER and P. CHRISTEL, Calcif. Tiss. Int. 36 (1984) S31.

  2. A. S. POSNER and F. BETTS, Acct. Chem. Res. 8 (1975) 273.

    Google Scholar 

  3. S. SKINNER, in “The scientific basis of orthopaedics”, edited by J. Albright and R. A. Brand (Appleton-Century Crofts, New York, 1979).

    Google Scholar 

  4. S. T. LI and E. KATZ, New England J. Medicine 22 (1990) 275.

    Google Scholar 

  5. R. B. MARTIN and J. ISHIDA, J. Biomechanics 5 (1989) 419.

    Google Scholar 

  6. S. C. COWIN, in “Bone Mechanics”, edited by S. C. Cowin (CRC Press, Boca Raton, FL, 1989) p. 97.

    Google Scholar 

  7. S. C. COWIN, W. C. VAN BURSKIRK and R. B. ASHAMN, in “Handbook of Bioengineering”, edited by R. Skalak and S. Chien (McGraw Hill, New York, 1987) p. 2.1.

    Google Scholar 

  8. J. D. CURREY, “The mechanical adaptations of bones” (Princeton University Press, Princeton, NJ, 1984).

    Google Scholar 

  9. K. PIEKARSKI, ASME Technical Report No. T9-2.2 1969.

  10. K. PIEKARSKI, Int. J. Eng. Sci. 11 (1973) 557.

    Google Scholar 

  11. R. B. MARTIN and D.B. BURR, “Structure, function and adaptation of compact bone” (Raven Press, New York, 1989).

    Google Scholar 

  12. A. H. BURSTEIN, J. M. ZIKA, K. G. HEIPLE and L. K. KLEIN, JBJS 57-A (1975) 956.

    Google Scholar 

  13. S. SAHA, J. Mater. Sci. 12 (1977) 1798.

    Google Scholar 

  14. S. S. GILMORE and J. L. KATZ, J. Mater. Sci. 17 (1982) 1131.

    Google Scholar 

  15. J. D. CURREY, Biorheology 2 (1964) 1.

    Google Scholar 

  16. Y.-C. CHEN and C.-Y. HUI, Mech. Mater. 10 (1990) 161.

    Google Scholar 

  17. K. J. BUNDY, in “Bone mechanics”, edited by S. C. Cowin (CRC Press, Boca Raton, FL, 1989) p. 197.

    Google Scholar 

  18. K. J. BUNDY, Ann. Biomed. Engng. 13 (1985) 119.

    Google Scholar 

  19. C. C. CHAMIS, NASA Technical Note TND-6588, Washington, DC 1972.

  20. D. HULL, “An introduction to composite materials” (Cambridge University Press, Cambridge, 1981).

    Google Scholar 

  21. Y. WANG, S. BACKER and V. C. LI, J. Mater. Sci. 22 (1987) 4281.

    Google Scholar 

  22. M. J. GLIMCHER and S. M. KRANE, in “Treatise on collagen”, Vol. 2B, edited by G. N. RAMACHANDRAN and B. S. GOULD (Academic Press, New York, 1968) p. 68.

    Google Scholar 

  23. M. MARTIN, A. LAMURE, C. LACABANNE, C. BETIN and M. F. HARMARD, Biomaterials 11 (1990) 11.

    Google Scholar 

  24. E. D. SEDLIN and C. HIRSCH, Acta Orthop. Scand. 37 (1966) 29.

    Google Scholar 

  25. C. C. DANIELSEN, T. T. ANDREASSEN and L. MOSEKILDE, Calcif. Tiss. Int. 39 (1986) 69.

    Google Scholar 

  26. A. C. ABRAMS, T. S. KELLER and D. M. SPENGLER, J. Biomechanics 21 (1988) 755.

    Google Scholar 

  27. U. K. LAEMMLI, Nature 266 (1970) 680.

    Google Scholar 

  28. S. C. MILLER and W. S. S. JEE, Calcif. Tiss. Int. 41 (1987) 1.

    Google Scholar 

  29. J. D. CURREY and K. BREAR, Biomimetics 1 (1992) 103.

    Google Scholar 

  30. R. J. HUNTER, “Zeta potentials in colloid science (Academic Press, New York, 1981).

    Google Scholar 

  31. W. R. WALSH and N. GUZELSU, J. Orthop. Res. 9 (1990) 683.

    Google Scholar 

  32. A. HELENIUS and K. SIMONS, Biochim. Biophys. Acta 415 (1975) 29.

    Google Scholar 

  33. D. TRAGNER and A. CSORDAS, Biochem. J. 244 (1987) 605.

    Google Scholar 

  34. M. J. ROSEN, “Surfactants and interfacial phenomena” (New York, Wiley 1989).

    Google Scholar 

  35. F. G. EVANS, “Mechanical properties of bone” (C. C. Thomas, Springfield, IL, 1973).

    Google Scholar 

  36. G. BERNARDI and T. KAWASAKI, Biochim. Biophys. Acta 160 (1968) 301.

    Google Scholar 

  37. G. BERNARDI, M. GIRO and C. GAILLARD, Biochim. Biophys. Acta 278 (1972) 409.

    Google Scholar 

  38. E. GLUECKOUF and L. PATTERSON, Biochim. Biophys. Acta 315 (1974) 57.

    Google Scholar 

  39. E. C. MORENO, M. KRESAK and D. I. HAY, Arch. Oral Biol. 23 (1978) 525.

    Google Scholar 

  40. E. C. MORENO, M. KRESAK and D. I. HAY, Calcif. Tiss. Int. 36 (1984) 48.

    Google Scholar 

  41. N. GUZELSU and R. REGIMBAL, J. Biomechanics 23 (1990) 661.

    Google Scholar 

  42. N. GUZELSU and W. R. WALSH, J. Biomechanics 23 (1990) 673.

    Google Scholar 

  43. D. N. MISRA, in “Methods of calcified tissue preparation”, edited by G. R. Dickson (Elsevier, New York, 1984) p. 435.

    Google Scholar 

  44. R. GABLER, “Electrical interactions in molecular biophysics” (Academic Press, New York, 1978) p. 316.

    Google Scholar 

  45. Z. SALEEB and P. L. DEBRUYN, J. Electroanalytical Chem. 37 (1972) 99.

    Google Scholar 

  46. R. Z. LEGEROS and S. SUGA, Calcif. Tiss. Int. 32 (1980) 169.

    Google Scholar 

  47. R. Z. LEGEROS, L. SINGER, R. H. OPHAUG, G. QUIROLGICO, G. A. THEIN and J. P. LEGEROS, in “Osteoporosis”, edited by J. Menczel, G. C. Robin and R. Steinberg (J. Wiley & Sons, New York, 1982) p. 327.

    Google Scholar 

  48. E. I. F. PEARCE, Calcif. Tiss. Int. 33 (1981) 95.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walsh, W.R., Ohno, M. & Guzelsu, N. Bone composite behaviour: effects of mineral-organic bonding. J Mater Sci: Mater Med 5, 72–79 (1994). https://doi.org/10.1007/BF00121694

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00121694

Keywords

Navigation