Skip to main content
Log in

Cytoplasmic ribosomal protein S15a from Brassica napus: Molecular cloning and developmental expression in mitotically active tissues

  • Research Article
  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

We have isolated two cDNA clones which appear to encode the 40S ribosomal subunit protein S15a from Brassica napus (oilseed rape). The open reading frame in both clones contains 390 bases, encoding a deduced polypeptide sequence of 130 amino acids (100% homology between clones) with 76% sequence identity to the N-terminal 37 amino acids of the rat ribosomal protein S15a and 80% identity to the S24 polypeptide of yeast. Both the yeast and rapeseed proteins have a net positive charge of +9 and the rapeseed S15a protein has a molecular mass of 14778 Da compared to 14762 Da for the yeast protein. The rapeseed ribosomal protein S15a is encoded by a small multi-gene family with at least two actively transcribed members. A single transcript of ca. 1.0 kb, corresponding to ribosomal protein S15a, is abundant in actively dividing tissues such as apical meristem, flower buds and young leaves and less abundant in mature stem and fully expanded leaves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lindahl L, Zengel JM: Ribosomal genes in Escherichia coli. Annu Rev Genet 20: 297–326 (1986).

    Article  PubMed  Google Scholar 

  2. Nomura M, Gourse R, Baughman G: Regulation of the synthesis of ribosomes and ribosomal components. Annu Rev Biochem. 53: 75–118 (1984).

    Article  PubMed  Google Scholar 

  3. Shinozaki K, Ohme M, Tanaka M, Wakasugi T, Hayshida N, Matsubayasha T, Zaita N, Chunwongse J, Obokata J, Yamaguchi-Shinozaki K, Ohto C, Torazawa K, Meng BY, Sugita M, Deno H, Kamogashira T, Yamada K, Kusuda J, Takaiwa F, Kata A, Tohdoh N, Shimada H, Sugiura M: The complete nucleotide sequence of the tobacco chloroplast genome. Plant Mol Biol Rep 4: 111–147 (1986).

    Google Scholar 

  4. Ohyama K, Fukuzawa H, Hohchi T, Shirai H, Sano T, Sano S, Umesono K, Shiki Y, Takeuchi M, Chang Z, Aota S, Inokuchi H, Ozeki H: Complete nucleotide sequence of liverwort Marchantia polymorpha chloroplast DNA. Plant Mol Biol Rep 4: 148–175 (1986).

    Google Scholar 

  5. Hiratsuka J, Shimada H, Whittier R, Ishibashi T, Sakamoto M, Mori M, Kondo C, Honji Y, Sun C-R, Meng B-Y, Li Y-Q, Kanno A, Nishizawa Y, Hirai A, Shinozaki K, Sugiura M: The complete sequence of the rice (Oryza sativa) chloroplast genome: Intermolecular recombination between distinct tRNA genes accounts for a major plastid DNA inversion during the evolution of cereals. Mol Gen Genet 217: 185–194 (1989).

    PubMed  Google Scholar 

  6. Bonham-Smith PC, Bourque DP: The chloroplast genome and regulation of its expression. In: Chromosomes: Eukaryotic, Prokaryotic, and Viral, pp. 180–216. CRC Press, Boca Raton, FL (1990).

    Google Scholar 

  7. Gul'tyaev AP, Shestopalov BV: Secondary structures of mRNA coding for chloroplast and eukaryotic ribosomal proteins which determine the regulation of protein synthesis at the level of translation. Mol Biol 21: 850–858 (1988).

    Google Scholar 

  8. Ramagopal S, Ennis HL: Ribosomal protein synthesis during spore germination and vegetative growth in Dictyostelium discoideum. J Biol Chem 257: 1025–1031 (1982).

    PubMed  Google Scholar 

  9. Baum EZ, Hyman LE, Wormington WM: Post-translational control of ribosomal protein L1 accumulation in Xenopus oocytes. Devel Biol 126: 141–149 (1988).

    Google Scholar 

  10. Karlthoff H, Richter D: Subcellular transport and ribosomal incorporation of micro-injected protein S6 in oocytes from Xenopus laevis. Biochemistry 21: 741–745 (1982).

    PubMed  Google Scholar 

  11. Bagni C, Mariottini P, Annesi F, Amaldi F: Structure of Xenopus laevis ribosomal protein L32 and its expression during development. Nucl Acids Res 18: 4423–4426 (1990).

    PubMed  Google Scholar 

  12. Wormington M: Developmental expression and 5S rRNA-binding activity of Xenopus laevis ribosomal protein L5. Mol Cell Biol 9: 5281–5288 (1989).

    PubMed  Google Scholar 

  13. Pierandrei-Amalfi P, Bozzoni I, Cardinali B: Expression of the gene for ribosomal protein L1 in Xenopus embryos: alteration of gene dosage by microinjection. Genes Devel 2: 23–31 (1988).

    PubMed  Google Scholar 

  14. Tamate HB, Patel RC, Riedl AE, Jacobs-Lorena M: Overproduction and translational regulation of rp49 ribosomal protein mRNA in transgenic Drosophila carrying extra copies of the gene. Mol Gen Genet 221: 171–175 (1990).

    PubMed  Google Scholar 

  15. Tyler BM, Harrison K: A Neurospora crassa ribosomal protein gene, homologous to yeast CRY1, contains sequences potentially coordinating its transcription with rRNA genes. Nucl Acids Res 18: 5759–5765 (1990).

    PubMed  Google Scholar 

  16. Gantt JS, Key JL: Coordinate expression of ribosomal protein mRNAs following auxin treatment of soybean hypocotyls. J Biol Chem 260: 6175–6181 (1985).

    PubMed  Google Scholar 

  17. Larkin JC, Hunsperger JP, Culley D, Rubenstein I, Silflow CD: The organization and expression of a maize ribosomal protein gene family. Genes Devel 3: 500–508 (1989).

    PubMed  Google Scholar 

  18. Lebrun M, Freyssinet G: Nucleotide sequence and characterization of a maize cytoplasmic ribosomal protein S11 cDNA. Plant Mol Biol 17: 265–268 (1991).

    Google Scholar 

  19. Bhargava AK, Padayatty JD: Cloning of rice DNA in lambda Charon 4 phage and identification of the gene for a ribosomal protein. Ind J Biochem Biophys 22: 261–267 (1985).

    Google Scholar 

  20. Madsen LH, Kreiberg JD, Graussing K: A small gene family in barley encodes ribosomal proteins homologous to yeast YL17 and L22 from archaebacteria, eubacteria and chloroplasts. Curr Genet 19: 417–422 (1991).

    Article  PubMed  Google Scholar 

  21. Gantt JS, Thompson MD: Plant cytosolic ribosomal protein S11 and chloroplast ribosomal protein CS17. J Biol Chem 265: 2763–2767 (1990).

    PubMed  Google Scholar 

  22. Kim Y, Zhang H, Scholl RL: Two evolutionarily divergent genes encode a cytoplasmic ribosomal protein of Arabidopsis thaliana. Gene 93: 177–182 (1990).

    Article  PubMed  Google Scholar 

  23. Wiersma PA, Schmiemann MG, Condie JA, Crosby WL, Moloney MM: Isolation, expression and phylogenetic inheritance of an acetolactate synthase gene from Brassica napus. Mol Gen Genet 219: 413–420 (1989).

    Article  PubMed  Google Scholar 

  24. Logemann J, Schell J, Willmitzer L: Improved method for the isolation of RNA from plant tissues. Anal Biochem 163: 16–20 (1987).

    PubMed  Google Scholar 

  25. Davis LG, Dibner MD, Battey JE: Basic Methods in Molecular Biology. Elsevier, New York (1986).

    Google Scholar 

  26. Bellemare G, Potvin C, Simard C, Larouche L: Use of a phage vector for rapid synthesis and cloning of singlestranded cDNA. Gene 52: 11–19 (1987).

    PubMed  Google Scholar 

  27. Dower WJ, Miller JF, Ragsdale CW: High efficiency transformation of E. coli by high voltage electroporation. Nucl Acids Res 16: 6127–6144 (1988).

    PubMed  Google Scholar 

  28. Steikema WJ, Heidekamp F, Dirksa WG, vanBeckum J, deHaan P, tenBosch C, Louwerse JD: Molecular cloning and analysis of four potato tuber mRNAs. Plant Mol Biol 11: 255–269 (1988).

    Google Scholar 

  29. Feinberg AP, Vogelstein B: A technique for radiolabelling DNA restriction endo-nuclease fragments to high specific activity (Addendum). Anal Biochem 137: 266–267 (1984).

    PubMed  Google Scholar 

  30. Sanger F, Nicklen S, Coulson AR: DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA 74: 545–546 (1977).

    Google Scholar 

  31. Leer RJ, vanRaamsdork-Durin MMC, Kraakman P, Mager WH, Planta RJ: The genes for yeast ribosomal proteins S24 and L46 are adjacent and divergently transcribed. Nucl Acids Res 13: 701–709 (1985).

    PubMed  Google Scholar 

  32. Heidecker G, Messing J: Structural analysis of plant genes. Annu Rev Plant Physiol 37: 439–466 (1986).

    Google Scholar 

  33. Wool IG, Chan YL, Gluck A, Suzuki K: The primary structure of rat ribosomal proteins PO, P1 and P2 and a proposal for a uniform mammalian and yeast ribosomal proteins. Biochimie 73: 861–870 (1991).

    Article  PubMed  Google Scholar 

  34. Kyte J, Doolittle RF: A simple method for displaying the hydropathic character of a protein. J Mol Biol 157: 105–132 (1982).

    PubMed  Google Scholar 

  35. U N: Genome analysis in Brassica with special reference to the experimental formation of B. napus and peculiar mode of fertilisation. Jpn J Bot 7: 389–452 (1935).

    Google Scholar 

  36. Underwood MA, Fried HM: Characterisation of nuclear localizing sequences derived from yeast ribosomal protein L29. EMBO J 9: 91–99 (1990).

    PubMed  Google Scholar 

  37. Moreland RM, Nam HG, Fried HM: Identification of a nuclear localisation signal of a yeast ribosomal protein. Proc Natl Acad Sci USA 82: 6561–6565 (1985).

    PubMed  Google Scholar 

  38. Lanford RE, White RG, Dunham RG, Kanda P: Effect of basic and nonbasic amino acid substitutions on transport induced by simian virus 40 T-antigen synthetic peptide nuclear transport signals. Mol Cell Biol 8: 2722–2729 (1988).

    PubMed  Google Scholar 

  39. Moreland RM, Langevin GL, Singer RH, Garcea RL, Hereford LM: Amino acid sequences that determine the nuclear localization of yeast histone 2B. Mol Cell Biol 7: 4048–4057 (1987).

    PubMed  Google Scholar 

  40. Bozzoni J, Beccari E, Luc ZX, Amaldi F: Xenopus laevis ribosomal protein genes: isolation of recombinant cDNA clones and study of the genomic organization. Nucl Acids Res 9: 1069–1086 (1981).

    PubMed  Google Scholar 

  41. Mark RJ, Meyuhas O, Perry RP: Mammals have multiple genes for individual ribosomal proteins. Cell 24: 301–306 (1981).

    Article  PubMed  Google Scholar 

  42. Molenaar CMT, Woudt LP, Jansen AEM, Mager WH, Planta RJ, Donovan D, Pearson NJ: Structure and organization of two linked ribosomal protein genes in yeast. Nucl Acids Res 12: 7345–7358 (1984).

    PubMed  Google Scholar 

  43. Dudov KP, Perry RP: The gene family encoding the mouse ribosomal protein L32 contains a uniquely expressed intron-containing gene and an unmutated processed gene. Cell 37: 451–468 (1984).

    Article  Google Scholar 

  44. Wagner M, Perry RP: Characterization of the multi-gene family encoding the mouse S16 ribosomal protein: Strategy for distinguishing an expressed gene from its processed pseudogene counterparts by an analysis of total genomic DNA. Mol Cell Biol 5: 3560–3576 (1985).

    PubMed  Google Scholar 

  45. Warner JR: Synthesis of ribosomes in Saccharomyces cerevisiae. Microbiol Rev 53: 256–271 (1989).

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonham-Smith, P.C., Oancia, T.L. & Moloney, M.M. Cytoplasmic ribosomal protein S15a from Brassica napus: Molecular cloning and developmental expression in mitotically active tissues. Plant Mol Biol 18, 909–919 (1992). https://doi.org/10.1007/BF00019205

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00019205

Key words

Navigation