Skip to main content

Polycystic Kidney Disease and Renal Fibrosis

  • Chapter
  • First Online:
Renal Fibrosis: Mechanisms and Therapies

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1165))

Abstract

Polycystic kidney disease (PKD) is a common genetic disorder characterized by formations of numerous cysts in kidneys and most caused by PKD1 or PKD2 mutations in autosomal dominant polycystic kidney disease (ADPKD). The interstitial inflammation and fibrosis is one of the major pathological changes in polycystic kidney tissues with an accumulation of inflammatory cells, chemokines, and cytokines. The immune response is observed across different stages and occurs prior to or coincident with cyst formation in ADPKD. Evidence for inflammation as an important contributor to cyst growth and fibrosis includes increased interstitial macrophages, upregulated expressions of pro-inflammatory cytokines, activated complement system, and activated pathways including NF-κB and JAK-STAT signaling in polycystic kidney tissues. Inflammatory cells are responsible for overproduction of several pro-fibrotic growth factors which promote renal fibrosis in ADPKD. These growth factors trigger epithelial mesenchymal transition and myofibroblast/fibrocyte activation, which stimulate the expansion of extracellular matrix (ECM) including collagen I, III, IV, V, and fibronectin, leading to renal fibrosis and reduced renal function. Besides, there are imbalanced ECM turnover regulators which lead to the increased ECM production and inadequate degradation in polycystic kidney tissues. Several fibrosis associated signaling pathways, such as TGFβ-SMAD, Wnt, and periostin–integrin-linked kinase are also activated in polycystic kidney tissues. Although the effective anti-fibrotic treatments are limited at the present time, slowing the cyst expansion and fibrosis development is very important for prolonging life span and improving the palliative care of ADPKD patients. The inhibition of pro-fibrotic cytokines involved in fibrosis might be a new therapeutic strategy for ADPKD in the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Anders HJ, Ryu M (2011) Renal microenvironments and macrophage phenotypes determine progression or resolution of renal inflammation and fibrosis. Kidney Int 80:915–925

    Article  CAS  PubMed  Google Scholar 

  • Anil Kumar Bhunia KP, Boletta Alessandra, Liu Lijuan, Qian Feng, Pei-Ning Xu et al (2002) PKD1 induces p21waf1 and regulation of the cell cycle via direct activation of the JAK-STAT signaling pathway in a process requiring PKD2. Cell 109:157–168

    Article  PubMed  Google Scholar 

  • Bakun M, Niemczyk M, Domanski D, Jazwiec R, Perzanowska A et al (2012) Urine proteome of autosomal dominant polycystic kidney disease patients. Clin Proteomics 9:13

    Article  PubMed  PubMed Central  Google Scholar 

  • Banzi M, Aguiari G, Trimi V, Mangolini A, Pinton P et al (2006) Polycystin-1 promotes PKCalpha-mediated NF-kappaB activation in kidney cells. Biochem Biophys Res Commun 350:257–262

    Article  CAS  PubMed  Google Scholar 

  • Bastos AP, Piontek K, Silva AM, Martini D, Menezes LF et al (2009) Pkd1 haploinsufficiency increases renal damage and induces microcyst formation following ischemia/reperfusion. J Am Soc Nephrol 20:2389–2402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bergmann C (2017) Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr 5:221

    Article  PubMed  Google Scholar 

  • Bernhardt WM, Wiesener MS, Weidemann A, Schmitt R, Weichert W et al (2007) Involvement of hypoxia-inducible transcription factors in polycystic kidney disease. Am J Pathol 170:830–842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cassini MF, Kakade VR, Kurtz E, Sulkowski P, Glazer P et al (2018) Mcp1 promotes macrophage-dependent cyst expansion in autosomal dominant polycystic kidney disease. J Am Soc Nephrol

    Google Scholar 

  • Catania JM, Chen G, Parrish AR (2007) Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 292:F905–F911

    Article  CAS  PubMed  Google Scholar 

  • Chauvet V, Tian X, Husson H, Grimm DH, Wang T et al (2004) Mechanical stimuli induce cleavage and nuclear translocation of the polycystin-1 C terminus. J Clin Invest 114:1433–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen WC, Tzeng YS, Li H (2008) Gene expression in early and progression phases of autosomal dominant polycystic kidney disease. BMC Res Notes 1:131

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Corbit KC, Shyer AE, Dowdle WE, Gaulden J, Singla V et al (2008) Kif3a constrains beta-catenin-dependent Wnt signalling through dual ciliary and non-ciliary mechanisms. Nat Cell Biol 10:70–76

    Article  CAS  PubMed  Google Scholar 

  • Cowley BD Jr, Ricardo SD, Nagao S, Diamond JR (2001) Increased renal expression of monocyte chemoattractant protein-1 and osteopontin in ADPKD in rats. Kidney Int 60:2087–2096

    Article  CAS  PubMed  Google Scholar 

  • Dai B, Liu Y, Mei C, Fu L, Xiong X et al (2010) Rosiglitazone attenuates development of polycystic kidney disease and prolongs survival in Han: SPRD rats. Clin Sci (Lond) 119:323–333

    Article  CAS  Google Scholar 

  • Dang Y, Liu B, Xu P, Zhu P, Zhai Y et al (2014) Gpr48 deficiency induces polycystic kidney lesions and renal fibrosis in mice by activating Wnt signal pathway. PLoS ONE 9:e89835

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dell KM, Nemo R, Sweeney WE Jr, Levin JI, Frost P et al (2001) A novel inhibitor of tumor necrosis factor-alpha converting enzyme ameliorates polycystic kidney disease. Kidney Int 60:1240–1248

    Article  CAS  PubMed  Google Scholar 

  • Desmouliere A, Geinoz A, Gabbiani F, Gabbiani G (1993) Transforming growth factor-beta 1 induces alpha-smooth muscle actin expression in granulation tissue myofibroblasts and in quiescent and growing cultured fibroblasts. J Cell Biol 122:103–111

    Article  CAS  PubMed  Google Scholar 

  • Du J, Wilson PD (1995) Abnormal polarization of EGF receptors and autocrine stimulation of cyst epithelial growth in human ADPKD. Am J Physiol 269:C487–C495

    Article  CAS  PubMed  Google Scholar 

  • Eddy AA (1996) Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 7:2495–2508

    CAS  PubMed  Google Scholar 

  • Eddy AA (2009) Serine proteases, inhibitors and receptors in renal fibrosis. Thromb Haemost 101:656–664

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrhardt A, Ehrhardt GR, Guo X, Schrader JW (2002) Ras and relatives–job sharing and networking keep an old family together. Exp Hematol 30:1089–1106

    Article  CAS  PubMed  Google Scholar 

  • Elberg D, Jayaraman S, Turman MA, Elberg G (2012) Transforming growth factor-beta inhibits cystogenesis in human autosomal dominant polycystic kidney epithelial cells. Exp Cell Res 318:1508–1516

    Article  CAS  PubMed  Google Scholar 

  • Follonier Castella L, Gabbiani G, McCulloch CA, Hinz B (2010) Regulation of myofibroblast activities: calcium pulls some strings behind the scene. Exp Cell Res 316:2390–2401

    Article  CAS  PubMed  Google Scholar 

  • Geiger B, Bershadsky A, Pankov R, Yamada KM (2001) Transmembrane crosstalk between the extracellular matrix–cytoskeleton crosstalk. Nat Rev Mol Cell Biol 2:793–805

    Article  CAS  PubMed  Google Scholar 

  • Gordon S, Taylor PR (2005) Monocyte and macrophage heterogeneity. Nat Rev Immunol 5:953–964

    Article  CAS  PubMed  Google Scholar 

  • Grantham JJ, Mulamalla S, Swenson-Fields KI (2011) Why kidneys fail in autosomal dominant polycystic kidney disease. Nat Rev Nephrol 7:556–566

    Article  CAS  PubMed  Google Scholar 

  • Harms JC, Song CJ, Mrug M (2018) The role of inflammation and fibrosis in cystic kidney disease

    Chapter  Google Scholar 

  • Harris PC, Torres VE (2014) Genetic mechanisms and signaling pathways in autosomal dominant polycystic kidney disease. J Clin Invest 124:2315–2324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hassane S, Leonhard WN, van der Wal A, Hawinkels LJ, Lantinga-van Leeuwen IS et al (2010) Elevated TGFbeta-Smad signalling in experimental Pkd1 models and human patients with polycystic kidney disease. J Pathol 222:21–31

    CAS  PubMed  Google Scholar 

  • Hayden MS, Ghosh S (2011) NF-kappaB in immunobiology. Cell Res 21:223–244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hayden MS, Ghosh S (2012) NF-kappaB, the first quarter-century: remarkable progress and outstanding questions. Genes Dev 26:203–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holditch SJ, Schreiber CA, Harris PC, LaRusso NF, Ramirez-Alvarado M et al (2017) B-type natriuretic peptide overexpression ameliorates hepatorenal fibrocystic disease in a rat model of polycystic kidney disease. Kidney Int 92:657–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Horie S, Higashihara E, Nutahara K, Mikami Y, Okubo A et al (1994) Mediation of renal cyst formation by hepatocyte growth factor. Lancet 344:789–791

    Article  CAS  PubMed  Google Scholar 

  • Hu MC, Piscione TD, Rosenblum ND (2003) Elevated SMAD1/beta-catenin molecular complexes and renal medullary cystic dysplasia in ALK3 transgenic mice. Development 130:2753–2766

    Article  CAS  PubMed  Google Scholar 

  • Huen SC, Cantley LG (2015) Macrophage-mediated injury and repair after ischemic kidney injury. Pediatr Nephrol 30:199–209

    Article  PubMed  Google Scholar 

  • John J O’Shea, SMH, Louis M Staudt (2013) JAKs and STATs in immunity, immunodeficiency, and cancer. N Engl J Med 368:161–170

    Article  CAS  PubMed  Google Scholar 

  • Joly D, Morel V, Hummel A, Ruello A, Nusbaum P et al (2003) Beta4 integrin and laminin 5 are aberrantly expressed in polycystic kidney disease: role in increased cell adhesion and migration. Am J Pathol 163:1791–1800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan MH (2013) STAT signaling in inflammation. Jak-Stat 2(1):e24198

    Article  PubMed  PubMed Central  Google Scholar 

  • Karihaloo A, Koraishy F, Huen SC, Lee Y, Merrick D et al (2011) Macrophages promote cyst growth in polycystic kidney disease. J Am Soc Nephrol 22:1809–1814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kistler AD, Mischak H, Poster D, Dakna M, Wuthrich RP et al (2009) Identification of a unique urinary biomarker profile in patients with autosomal dominant polycystic kidney disease. Kidney Int 76:89–96

    Article  CAS  PubMed  Google Scholar 

  • Kistler AD, Serra AL, Siwy J, Poster D, Krauer F et al (2013) Urinary proteomic biomarkers for diagnosis and risk stratification of autosomal dominant polycystic kidney disease: a multicentric study. PLoS ONE 8:e53016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Komiya Y, Habas R (2008) Wnt signal transduction pathways. Organogenesis 4:68–75

    Article  PubMed  PubMed Central  Google Scholar 

  • Kuo NT, Norman JT, Wilson PD (1997) Acidic FGF regulation of hyperproliferation of fibroblasts in human autosomal dominant polycystic kidney disease. Biochem Mol Med 61:178–191

    Article  CAS  PubMed  Google Scholar 

  • LeBleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG et al (2013) Origin and function of myofibroblasts in kidney fibrosis. Nat Med 19:1047–1053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leonhard WN, Kunnen SJ, Plugge AJ, Pasternack A, Jianu SB et al (2016) Inhibition of activin signaling slows progression of polycystic kidney disease. J Am Soc Nephrol 27:3589–3599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li L, Huang L, Sung SS, Vergis AL, Rosin DL et al (2008a) The chemokine receptors CCR47 and CX3CR47 mediate monocyte/macrophage trafficking in kidney ischemia-reperfusion injury. Kidney Int 74:1526–1537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Magenheimer BS, Xia S, Johnson T, Wallace DP et al (2008b) A tumor necrosis factor-alpha-mediated pathway promoting autosomal dominant polycystic kidney disease. Nat Med 14:863–868

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin SL, Castano AP, Nowlin BT, Lupher ML Jr, Duffield JS (2009) Bone marrow Ly6Chigh monocytes are selectively recruited to injured kidney and differentiate into functionally distinct populations. J Immunol 183:6733–6743

    Article  CAS  PubMed  Google Scholar 

  • Liu D, Wang CJ, Judge DP, Halushka MK, Ni J et al (2014) A Pkd1-Fbn1 genetic interaction implicates TGF-beta signaling in the pathogenesis of vascular complications in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 25:81–91

    Article  CAS  PubMed  Google Scholar 

  • Low SH, Vasanth S, Larson CH, Mukherjee S, Sharma N et al (2006) Polycystin-1, STAT6, and P100 function in a pathway that transduces ciliary mechanosensation and is activated in polycystic kidney disease. Dev Cell 10:57–69

    Article  CAS  PubMed  Google Scholar 

  • Mangos S, Lam PY, Zhao A, Liu Y, Mudumana S et al (2010) The ADPKD genes pkd1a/b and pkd2 regulate extracellular matrix formation. Dis Model Mech 3:354–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mason SB, Lai X, Bacallao RL, Blazer-Yost BL, Gattone VH et al (2009) The biomarker enriched proteome of autosomal dominant polycystic kidney disease cyst fluid. Proteomics Clin Appl 3:1247–1250

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McGlashan SR, Jensen CG, Poole CA (2006) Localization of extracellular matrix receptors on the chondrocyte primary cilium. J Histochem Cytochem 54:1005–1014

    Article  CAS  PubMed  Google Scholar 

  • McPherson EA, Luo Z, Brown RA, LeBard LS, Corless CC et al (2004) Chymase-like angiotensin II-generating activity in end-stage human autosomal dominant polycystic kidney disease. J Am Soc Nephrol 15:493–500

    Article  CAS  PubMed  Google Scholar 

  • Ming Wu MC, Jing Ying, Junhui Gu, Mei Shuqin (2016) The C-terminal tail of polycystin-1 regulates complement factor B expression by signal transducer and activator of transcription 1. Am J Physiol Renal Physiol 310:F1284–F1294

    Article  PubMed  CAS  Google Scholar 

  • Mrug M, Zhou J, Woo Y, Cui X, Szalai AJ et al (2008) Overexpression of innate immune response genes in a model of recessive polycystic kidney disease. Kidney Int 73:63–76

    Article  CAS  PubMed  Google Scholar 

  • Mrug M, Zhou J, Mrug S, Guay-Woodford LM, Yoder BK, Szalai AJ (2014) Complement C3 activation in cyst fluid and urine from autosomal dominant polycystic kidney disease patients. J Intern Med 276:539–540

    Article  CAS  PubMed  Google Scholar 

  • Mun H, Park JH (2016) Inflammation and Fibrosis in ADPKD. Adv Exp Med Biol 933:35–44

    Article  CAS  PubMed  Google Scholar 

  • Nakamura T, Ushiyama C, Suzuki S, Ebihara I, Shimada N et al (2000) Elevation of serum levels of metalloproteinase-1, tissue inhibitor of metalloproteinase-1 and type IV collagen, and plasma levels of metalloproteinase-9 in polycystic kidney disease. Am J Nephrol 20:32–36

    Article  CAS  PubMed  Google Scholar 

  • Niedermeier M, Reich B, Rodriguez Gomez M, Denzel A, Schmidbauer K et al (2009) CD4 + T cells control the differentiation of Gr1 + monocytes into fibrocytes. Proc Natl Acad Sci U S A 106:17892–17897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishio S, Hatano M, Nagata M, Horie S, Koike T et al (2005) Pkd1 regulates immortalized proliferation of renal tubular epithelial cells through p53 induction and JNK activation. J Clin Invest 115:910–918

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Norman J (2011) Fibrosis and progression of autosomal dominant polycystic kidney disease (ADPKD). Biochim Biophys Acta 1812:1327–1336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pahl HL (1999) Activators and target genes of Rel/NF-kB transcription factors. Oncogene 18:6853–6866

    Article  CAS  PubMed  Google Scholar 

  • Park EY, Seo MJ, Park JH (2010) Effects of specific genes activating RAGE on polycystic kidney disease. Am J Nephrol 32:169–178

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Chen X, Poronnik P, Pollock CA (2006) The renal cortical fibroblast in renal tubulointerstitial fibrosis. Int J Biochem Cell Biol 38:1–5

    Article  CAS  PubMed  Google Scholar 

  • Qian F, Boletta A, Bhunia AK, Xu H, Liu L et al (2002) Cleavage of polycystin-1 requires the receptor for egg jelly domain and is disrupted by human autosomal-dominant polycystic kidney disease 1-associated mutations. Proc Nat Acad Sci U S A 99:16981–16986

    Article  CAS  Google Scholar 

  • Qin S, Taglienti M, Cai L, Zhou J, Kreidberg JA (2012) c-Met and NF-kappaB-dependent overexpression of Wnt7a and -7b and Pax2 promotes cystogenesis in polycystic kidney disease. J Am Soc Nephrol 23:1309–1318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raman A, Reif GA, Dai Y, Khanna A, Li X et al (2017) Integrin-linked kinase signaling promotes cyst growth and fibrosis in polycystic kidney disease. J Am Soc Nephrol 28:2708–2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rankin CA, Suzuki K, Itoh Y, Ziemer DM, Grantham JJ et al (1996) Matrix metalloproteinases and TIMPS in cultured C57BL/6 J-cpk kidney tubules. Kidney Int 50:835–844

    Article  CAS  PubMed  Google Scholar 

  • Rawlings Jason S, Rosler KM et al (2004) The JAK/STAT signaling pathway. J Cell Sci 117:1281–1283

    Article  CAS  PubMed  Google Scholar 

  • Ricklin D, Hajishengallis G, Yang K, Lambris JD (2010) Complement: a key system for immune surveillance and homeostasis. Nat Immunol 11:785–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schaefer L, Han X, Gretz N, Hafner C, Meier K et al (1996) Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han: SPRD rat. Kidney Int 49:75–81

    Article  CAS  PubMed  Google Scholar 

  • Schieren G, Rumberger B, Klein M, Kreutz C, Wilpert J et al (2006) Gene profiling of polycystic kidneys. Nephrol Dial Transplant 21:1816–1824

    Article  CAS  PubMed  Google Scholar 

  • Schulz C, Gomez Perdiguero E, Chorro L, Szabo-Rogers H, Cagnard N et al (2012) A lineage of myeloid cells independent of Myb and hematopoietic stem cells. Science 336:86–90

    Article  CAS  PubMed  Google Scholar 

  • Semedo P, Donizetti-Oliveira C, Burgos-Silva M, Cenedeze MA, Avancini Costa Malheiros DM et al (2010) Bone marrow mononuclear cells attenuate fibrosis development after severe acute kidney injury. Lab Invest 90:685–695

    Article  PubMed  Google Scholar 

  • Sica A, Mantovani A (2012) Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 122:787–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Snelgrove RJ, Jackson PL, Hardison MT, Noerager BD, Kinloch A et al (2010) A critical role for LTA4H in limiting chronic pulmonary neutrophilic inflammation. Science 330:90–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song X, Di Giovanni V, He N, Wang K, Ingram A et al (2009) Systems biology of autosomal dominant polycystic kidney disease (ADPKD): computational identification of gene expression pathways and integrated regulatory networks. Hum Mol Genet 18:2328–2343

    Article  CAS  PubMed  Google Scholar 

  • Song CJ, Zimmerman KA, Henke SJ, Yoder BK (2017) Inflammation and fibrosis in polycystic kidney disease. Results Probl Cell Differ 60:323–344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stark K, Vainio S, Vassileva G, McMahon AP (1994) Epithelial transformation of metanephric mesenchyme in the developing kidney regulated by Wnt-4. Nature 372:679–683

    Article  CAS  PubMed  Google Scholar 

  • Su Z, Wang X, Gao X, Liu Y, Pan C et al (2014) Excessive activation of the alternative complement pathway in autosomal dominant polycystic kidney disease. J Int Med 276:470–485

    Article  CAS  Google Scholar 

  • Sureshbabu A, Muhsin SA, Choi ME (2016) TGF-beta signaling in the kidney: profibrotic and protective effects. Am J Physiol Renal Physiol 310:F596–F606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swenson-Fields KI, Vivian CJ, Salah SM, Peda JD, Davis BM et al (2013) Macrophages promote polycystic kidney disease progression. Kidney Int 83:855–864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Talbot JJ, Shillingford JM, Vasanth S, Doerr N, Mukherjee S et al (2011) Polycystin-1 regulates STAT activity by a dual mechanism. Proc Nati Acad Sci U S A 108:7985–7990

    Article  CAS  Google Scholar 

  • Vernon MA, Mylonas KJ, Hughes J (2010) Macrophages and renal fibrosis. Semin Nephrol 30:302–317

    Article  CAS  PubMed  Google Scholar 

  • Vilayur E, Harris DC (2009) Emerging therapies for chronic kidney disease: what is their role? Nat Rev Nephrol 5:375–383

    Article  CAS  PubMed  Google Scholar 

  • Wada T, Sakai N, Sakai Y, Matsushima K, Kaneko S, Furuichi K (2011) Involvement of bone-marrow-derived cells in kidney fibrosis. Clin Exp Nephrol 15:8–13

    Article  PubMed  Google Scholar 

  • Wallace DP, White C, Savinkova L, Nivens E, Reif GA et al (2014) Periostin promotes renal cyst growth and interstitial fibrosis in polycystic kidney disease. Kidney Int 85:845–854

    Article  CAS  PubMed  Google Scholar 

  • Wei W, Hackmann K, Xu H, Germino G, Qian F (2007) Characterization of cis-autoproteolysis of polycystin-1, the product of human polycystic kidney disease 1 gene. J Biol Chem 282:21729–21737

    Article  CAS  PubMed  Google Scholar 

  • Weimbs T, Olsan EE, Talbot JJ (2013) Regulation of STATs by polycystin-1 and their role in polycystic kidney disease. Jak-Stat 2:e23650

    Article  PubMed  PubMed Central  Google Scholar 

  • Wilson PD, Burrow CR (1999) Cystic diseases of the kidney: role of adhesion molecules in normal and abnormal tubulogenesis. Exp Nephrol 7:114–124

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD, Hreniuk D, Gabow PA (1992) Abnormal extracellular matrix and excessive growth of human adult polycystic kidney disease epithelia. J Cell Physiol 150:360–369

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD, Norman JT, Kuo NT, Burrow CR (1996) Abnormalities in extracellular matrix regulation in autosomal dominant polycystic kidney disease. Contrib Nephrol 118:126–134

    Article  CAS  PubMed  Google Scholar 

  • Wilson PD, Geng L, Li X, Burrow CR (1999) The PKD1 gene product, “polycystin-1,” is a tyrosine-phosphorylated protein that colocalizes with alpha2beta1-integrin in focal clusters in adherent renal epithelia. Lab Invest 79:1311–1323

    CAS  PubMed  Google Scholar 

  • Wuthrich RP, Mei C (2012) Aquaretic treatment in polycystic kidney disease. N Engl J Med 367:2440–2442

    Article  CAS  PubMed  Google Scholar 

  • Xue C, Zhou CC, Wu M, Mei CL (2016) The clinical manifestation and management of autosomal dominant polycystic kidney disease in China. Kidney Dis (Basel) 2:111–119

    Article  Google Scholar 

  • Xue C, Zhou C, Mei C (2018) Total kidney volume: the most valuable predictor of autosomal dominant polycystic kidney disease progression. Kidney Int 93:540–542

    Article  PubMed  Google Scholar 

  • Yamashita S, Maeshima A, Kojima I, Nojima Y (2004) Activin A is a potent activator of renal interstitial fibroblasts. J Am Soc Nephrol 15:91–101

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Chen M, Zhou J, Lv J, Song S et al (2018) Interactions between macrophages and cyst-lining epithelial cells promote kidney cyst growth in Pkd1-deficient mice. J Am Soc Nephrol 29:2310–2325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeier M, Fehrenbach P, Geberth S, Mohring K, Waldherr R, Ritz E (1992) Renal histology in polycystic kidney disease with incipient and advanced renal failure. Kidney Int 42:1259–1265

    Article  CAS  PubMed  Google Scholar 

  • Zeltner R, Hilgers KF, Schmieder RE, Porst M, Schulze BD et al (2008) A promoter polymorphism of the alpha 8 integrin gene and the progression of autosomal-dominant polycystic kidney disease. Nephron Clin Pract 108:c169–c175

    Article  CAS  PubMed  Google Scholar 

  • Zheng D, Wolfe M, Cowley BD Jr, Wallace DP et al (2003) Urinary excretion of monocyte chemoattractant protein-1 in autosomal dominant polycystic kidney disease. J Am Soc Nephrol 14:2588–2595

    Article  CAS  PubMed  Google Scholar 

  • Zimmerman K, Yoder BK (2015) SnapShot: sensing and signaling by cilia. Cell 161(692–692):e691

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Lin Mei .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Xue, C., Mei, CL. (2019). Polycystic Kidney Disease and Renal Fibrosis. In: Liu, BC., Lan, HY., Lv, LL. (eds) Renal Fibrosis: Mechanisms and Therapies. Advances in Experimental Medicine and Biology, vol 1165. Springer, Singapore. https://doi.org/10.1007/978-981-13-8871-2_5

Download citation

Publish with us

Policies and ethics