Skip to main content

Periostin and Integrin Signaling in Stem Cell Regulation

  • Chapter
  • First Online:
Periostin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1132))

Abstract

Stem cell function is regulated by a huge repertoire of external cues along with stem cell intrinsic genetic and epigenetic factors. These interactions come through a variety of cell adhesion receptors, of which integrins are one of the most important classes. They interact with extracellular matrix (ECM) components and various bound proteins. Apart from inside-out signaling through which integrins ensure that the cells are stably bound to the ECM, outside-in integrin signaling, through binding to a variety of ligands, play important roles in cell fate decisions. Periostin is one such ligand whose role in functional regulation of stem cells is emerging due to its wide expression profile. In this review, we discuss the recent advancements made in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Melton D (2014) Chapter 2 – ‘Stemness’: definitions, criteria, and standards. In: Lanza R, Atala A (eds) Essentials of stem cell biology, 3rd edn. Academic, Boston, pp 7–17

    Chapter  Google Scholar 

  2. Cheung TH, Rando TA (2013) Molecular regulation of stem cell quiescence. Nat Rev Mol Cell Biol 14(6):329–340

    Article  CAS  PubMed  Google Scholar 

  3. Jones DL, Wagers AJ (2008) No place like home: anatomy and function of the stem cell niche. Nat Rev Mol Cell Biol 9(1):11–21

    Article  CAS  PubMed  Google Scholar 

  4. Beerman I, Seita J, Inlay MA, Weissman IL, Rossi DJ (2014) Quiescent hematopoietic stem cells accumulate DNA damage during aging that is repaired upon entry into cell cycle. Cell Stem Cell 15(1):37–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. So WK, Cheung TH (2018) Molecular regulation of cellular quiescence: a perspective from adult stem cells and its niches. Cell Quiescence Methods Protoc 1686:1–25

    Article  CAS  Google Scholar 

  6. Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120(4):497–512

    Article  CAS  PubMed  Google Scholar 

  7. Tothova Z, Gilliland DG (2007) FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 1(2):140–152

    Article  CAS  PubMed  Google Scholar 

  8. Khurana S (2016) The effects of proliferation and DNA damage on hematopoietic stem cell function determine aging. Dev Dyn 245(7):739–750

    Article  CAS  PubMed  Google Scholar 

  9. Bjornson CRR, Cheung TH, Liu L, Tripathi PV, Steeper KM, Rando TA (2012) Notch signaling is necessary to maintain quiescence in adult muscle stem cells. Stem Cells 30(2):232–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simon MC, Keith B (2008) The role of oxygen availability in embryonic development and stem cell function. Nat Rev Mol Cell Biol 9(4):285–296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Roy IM, Biswas A, Verfaillie C, Khurana S (2018) Energy producing metabolic pathways in functional regulation of the hematopoietic stem cells. IUBMB Life 70(7):612–624

    Article  CAS  PubMed  Google Scholar 

  12. Legate KR, Wickstrom SA, Fassler R (2009) Genetic and cell biological analysis of integrin outside-in signaling. Genes Dev 23(4):397–418

    Article  CAS  PubMed  Google Scholar 

  13. Kudo Y, Siriwardena BS, Hatano H, Ogawa I, Takata T (2007) Periostin: novel diagnostic and therapeutic target for cancer. Histol Histopathol 22(10):1167–1174

    CAS  PubMed  Google Scholar 

  14. Takeshita S, Kikuno R, Tezuka K, Amann E (1993) Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294(Pt 1):271–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Merle B, Garnero P (2012) The multiple facets of periostin in bone metabolism. Osteoporos Int 23(4):1199–1212

    Article  CAS  PubMed  Google Scholar 

  16. Bornstein P (2009) Matricellular proteins: an overview. J Cell Commun Signal 3(3–4):163–165

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kudo A (2011) Periostin in fibrillogenesis for tissue regeneration: periostin actions inside and outside the cell. Cell Mol Life Sci 68(19):3201–3207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kudo A (2017) Introductory review: periostin-gene and protein structure. Cell Mol Life Sci 74(23):4259–4268

    Article  CAS  PubMed  Google Scholar 

  19. Ruan K, Bao S, Ouyang G (2009) The multifaceted role of periostin in tumorigenesis. Cell Mol Life Sci 66(14):2219–2230

    Article  CAS  PubMed  Google Scholar 

  20. Rios H, Koushik SV, Wang H et al (2005) periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25(24):11131–11144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Norris RA, Kern CB, Wessels A, Moralez EI, Markwald RR, Mjaatvedt CH (2004) Identification and detection of the periostin gene in cardiac development. Anat Rec A Discov Mol Cell Evol Biol 281(2):1227–1233

    Article  PubMed  CAS  Google Scholar 

  22. Kii I, Nishiyama T, Li M et al (2010) Incorporation of tenascin-C into the extracellular matrix by periostin underlies an extracellular meshwork architecture. J Biol Chem 285(3):2028–2039

    Article  CAS  PubMed  Google Scholar 

  23. Norris RA, Damon B, Mironov V et al (2007) Periostin regulates collagen fibrillogenesis and the biomechanical properties of connective tissues. J Cell Biochem 101(3):695–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Horiuchi K, Amizuka N, Takeshita S et al (1999) Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14(7):1239–1249

    Article  CAS  PubMed  Google Scholar 

  25. Klamer S, Voermans C (2014) The role of novel and known extracellular matrix and adhesion molecules in the homeostatic and regenerative bone marrow microenvironment. Cell Adhes Migr 8(6):563–577

    Article  Google Scholar 

  26. Zhang F, Rong Z, Wang Z et al (2017) Periostin promotes ectopic osteogenesis of CTLA4-modified bone marrow mesenchymal stem cells. Cell Tissue Res 370(1):143–151

    Article  CAS  PubMed  Google Scholar 

  27. Bonnet N, Standley KN, Bianchi EN et al (2009) The matricellular protein periostin is required for sost inhibition and the anabolic response to mechanical loading and physical activity. J Biol Chem 284(51):35939–35950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD (2002) Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62(18):5358–5364

    CAS  PubMed  Google Scholar 

  29. Luo BH, Carman CV, Springer TA (2007) Structural basis of integrin regulation and signaling. Annu Rev Immunol 25:619–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Hynes RO (2002) Integrins: bidirectional, allosteric signaling machines. Cell 110(6):673–687

    Article  CAS  PubMed  Google Scholar 

  31. Takada Y, Ye X, Simon S (2007) The integrins. Genome Biol 8(5):215

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Amlot PL, Hayes AE (1985) Impaired human antibody response to the thymus-independent antigen, DNP-Ficoll, after splenectomy. Implications for post-splenectomy infections. Lancet 1(8436):1008–1011

    Article  CAS  PubMed  Google Scholar 

  33. Barczyk M, Carracedo S, Gullberg D (2010) Integrins. Cell Tissue Res 339(1):269–280

    Article  CAS  PubMed  Google Scholar 

  34. Dorn GW (2007) Periostin and myocardial repair, regeneration, and recovery. N Engl J Med 357(15):1552–1554

    Article  CAS  PubMed  Google Scholar 

  35. Bao SD, Ouyang G, Bai XF et al (2004) Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5(4):329–339

    Article  CAS  PubMed  Google Scholar 

  36. Bilezikian JP, Raisz LG, Martin TJ (2008) Principles of bone biology, 3rd edn, vol 2. Preface to the Third Edition, pp xxi–xxi

    Chapter  Google Scholar 

  37. Duchamp de Lageneste O, Julien A, Abou-Khalil R et al (2018) Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat Commun 9(1):773

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Nakazawa T, Nakajima A, Seki N et al (2004) Gene expression of periostin in the early stage of fracture healing detected by cDNA microarray analysis. J Orthop Res 22(3):520–525

    Article  CAS  PubMed  Google Scholar 

  39. Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24(2):218–235

    Article  CAS  PubMed  Google Scholar 

  40. Litvin J, Selim AH, Montgomery MO et al (2004) Expression and function of periostin-isoforms in bone. J Cell Biochem 92(5):1044–1061

    Article  CAS  PubMed  Google Scholar 

  41. Bonnet N, Gineyts E, Ammann P, Conway SJ, Garnero P, Ferrari S (2013) Periostin deficiency increases bone damage and impairs injury response to fatigue loading in adult mice. PLoS One 8(10):e78347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zhang F, Luo KY, Rong ZG et al (2017) Periostin upregulates Wnt/beta-Catenin signaling to promote the osteogenesis of CTLA4-modified human bone marrow-mesenchymal stem cells. Sci Rep 7:41634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Butcher JT, Norris RA, Hoffman S, Mjaatvedt CH, Markwald RR (2007) Periostin promotes atrioventricular mesenchyme matrix invasion and remodeling mediated by integrin signaling through Rho/PI 3-kinase. Dev Biol 302(1):256–266

    Article  CAS  PubMed  Google Scholar 

  44. Kim CJ, Isono T, Tambe Y et al (2008) Role of alternative splicing of periostin in human bladder carcinogenesis. Int J Oncol 32(1):161–169

    CAS  PubMed  Google Scholar 

  45. Wu ZQ, Dai WY, Wang P et al (2018) Periostin promotes migration, proliferation, and differentiation of human periodontal ligament mesenchymal stem cells. Connect Tissue Res 59(2):108–119

    Article  CAS  PubMed  Google Scholar 

  46. Tang Y, Liu L, Wang P, Chen DL, Wu ZQ, Tang CB (2017, Dec) Periostin promotes migration and osteogenic differentiation of human periodontal ligament mesenchymal stem cells via the Jun amino-terminal kinases (JNK) pathway under inflammatory conditions. Cell Prolif 50(6)

    Article  CAS  PubMed Central  Google Scholar 

  47. Heo SC, Lee KO, Shin SH et al (2011) Periostin mediates human adipose tissue-derived mesenchymal stem cell-stimulated tumor growth in a xenograft lung adenocarcinoma model. BBA-Mol Cell Res 1813(12):2061–2070

    CAS  Google Scholar 

  48. Latroche C, Weiss-Gayet M, Muller L et al (2017) Coupling between myogenesis and angiogenesis during skeletal muscle regeneration is stimulated by restorative macrophages. Stem Cell Rep 9(6):2018–2033

    Article  CAS  Google Scholar 

  49. Hong L, Dai SJ, Chen FR, Gang Z, Lei D (2015) Periostin down-regulation attenuates the pro-fibrogenic response of hepatic stellate cells induced by TGF-1. J Cell Mol Med 19(10):2462–2468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Jagannathan-Bogdan M, Zon LI (2013) Hematopoiesis. Development 140(12):2463–2467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Morrison SJ, Scadden DT (2014) The bone marrow niche for haematopoietic stem cells. Nature 505(7483):327–334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Wilson A, Trumpp A (2006) Bone-marrow haematopoietic-stem-cell niches. Nat Rev Immunol 6(2):93–106

    Article  CAS  PubMed  Google Scholar 

  53. Grassinger J, Haylock DN, Storan MJ et al (2009) Thrombin-cleaved osteopontin regulates hemopoietic stem and progenitor cell functions through interactions with alpha(9)beta(1) and alpha(4)beta(1) integrins. Blood 114(1):49–59

    Article  CAS  PubMed  Google Scholar 

  54. Papayannopoulou T, Nakamoto B (1993) Peripheralization of hematopoietic progenitors in primates treated with anti-Vla4 integrin. Proc Natl Acad Sci U S A 90(20):9374–9378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. van der Loo JCM, Xiao XL, McMillin D, Hashino K, Kato I, Williams DA (1998) VLA-5 is expressed by mouse and human long-term repopulating hematopoietic cells and mediates adhesion to extracellular matrix protein fibronectin. J Clin Investig 102(5):1051–1061

    Article  PubMed  PubMed Central  Google Scholar 

  56. Hirsch E, Iglesias A, Potocnik AJ, Hartmann U, Fassler R (1996) Impaired migration but not differentiation of haematopoietic stem cells in the absence of beta(1) integrins. Nature 380(6570):171–175

    Article  CAS  PubMed  Google Scholar 

  57. Scott LM, Priestley GV, Papayannopoulou T (2003) Deletion of alpha 4 integrins from adult hematopoietic cells reveals roles in homeostasis, regeneration, and homing. Mol Cell Biol 23(24):9349–9360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Umemoto T, Yamato M, Shiratsuchi Y et al (2008) CD61 enriches long-term repopulating hematopoietic stem cells. Biochem Biophys Res Commun 365(1):176–182

    Article  CAS  PubMed  Google Scholar 

  59. Umemoto T, Yamato M, Shiratsuchi Y et al (2006) Expression of integrin beta(3) is correlated to the properties of quiescent hemopoietic stem cells possessing the side population phenotype. J Immunol 177(11):7733–7739

    Article  CAS  PubMed  Google Scholar 

  60. Khurana S, Schouteden S, Manesia JK et al (2016) Outside-in integrin signalling regulates haematopoietic stem cell function via Periostin-Itgav axis. Nat Commun 7:13500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Siewe BT, Kalis SL, Le PT et al (2011) In vitro requirement for periostin in B lymphopoiesis. Blood 117(14):3770–3779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Umemoto T, Yamato M, Ishihara J et al (2012) Integrin-alpha v beta 3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood 119(1):83–94

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Umemoto T, Matsuzaki Y, Shiratsuchi Y et al (2017) Integrin alpha v beta 3 enhances the suppressive effect of interferon-gamma on hematopoietic stem cells. EMBO J 36(16):2390–2403

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Dzierzak E, Bigas A (2018) Blood development: hematopoietic stem cell dependence and independence. Cell Stem Cell 22(5):639–651

    Article  CAS  PubMed  Google Scholar 

  65. Potocnik AJ, Brakebusch C, Fassler R (2000) Fetal and adult hematopoietic stem cells require beta 1 integrin function for colonizing fetal liver, spleen, and bone marrow. Immunity 12(6):653–663

    Article  CAS  PubMed  Google Scholar 

  66. Boisset JC, Clapes T, van der Linden R, Dzierzak E, Robin C (2013) Integrin alpha(IIb) (CD41) plays a role in the maintenance of hematopoietic stem cell activity in the mouse embryonic aorta. Biol Open 2(5):525–532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Bergiers I, Andrews T, Bolukbasi OV et al (2018, Mar 20) Single-cell transcriptomics reveals a new dynamical function of transcription factors during embryonic hematopoiesis. Elife 7

    Google Scholar 

  68. Huang K, Gao J, Du J et al (2016) Generation and analysis of GATA2w/eGFP human ESCs reveal ITGB3/CD61 as a reliable marker for defining hemogenic endothelial cells during hematopoiesis. Stem Cell Rep 7(5):854–868

    Article  CAS  Google Scholar 

  69. Altman J, Das GD (1965) Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 124(3):319

    Article  CAS  PubMed  Google Scholar 

  70. Bond AM, Ming GL, Song HJ (2015) Adult mammalian neural stem cells and neurogenesis: five decades later. Cell Stem Cell 17(4):385–395

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Weiss S, Reynolds BA, Vescovi AL, Morshead C, Craig CG, vanderKooy D (1996) Is there a neural stem cell in the mammalian forebrain? Trends Neurosci 19(9):387–393

    Article  CAS  PubMed  Google Scholar 

  72. Ming GL, Song HJ (2011) Adult neurogenesis in the mammalian brain: significant answers and significant questions. Neuron 70(4):687–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Bonaguidi MA, Wheeler MA, Shapiro JS et al (2011) In vivo clonal analysis reveals self-renewing and multipotent adult neural stem cell characteristics. Cell 145(7):1142–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Calzolari F, Michel J, Baumgart EV, Theis F, Gotz M, Ninkovic J (2015) Fast clonal expansion and limited neural stem cell self-renewal in the adult subependymal zone. Nat Neurosci 18(4):490

    Article  CAS  PubMed  Google Scholar 

  75. Reynolds BA, Weiss S (1992) Generation of neurons and astrocytes from isolated cells of the adult mammalian central-nervous-system. Science 255(5052):1707–1710

    Article  CAS  PubMed  Google Scholar 

  76. Delgado AC, Ferron SR, Vicente D et al (2014) Endothelial NT-3 delivered by vasculature and CSF promotes quiescence of subependymal neural stem cells through nitric oxide induction. Neuron 83(3):572–585

    Article  CAS  PubMed  Google Scholar 

  77. Kazanis I, Ffrench-Constant C (2011) Extracellular matrix and the neural stem cell niche. Dev Neurobiol 71(11):1006–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Porcheri C, Suter U, Jessberger S (2014) Dissecting integrin-dependent regulation of neural stem cell proliferation in the adult brain. J Neurosci 34(15):5222–5232

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Zhu SM, Barbe MF, Amin N et al (2008) Immunolocalization of periostin-like factor and periostin during embryogenesis. J Histochem Cytochem 56(4):329–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Shimamura M, Taniyama Y, Katsuragi N et al (2012) Role of central nervous system periostin in cerebral ischemia. Stroke 43(4):1108–U1341

    Article  CAS  PubMed  Google Scholar 

  81. Chao CC, Ma YL, Chu KY, Lee EHY (2003) Integrin alpha v and NCAM mediate the effects of GDNF on DA neuron survival, outgrowth, DA turnover and motor activity in rats. Neurobiol Aging 24(1):105–116

    Article  CAS  PubMed  Google Scholar 

  82. Gary DS, Milhavet O, Camandola S, Mattson MP (2003) Essential role for integrin linked kinase in Akt-mediated integrin survival signaling in hippocampal neurons. J Neurochem 84(4):878–890

    Article  CAS  PubMed  Google Scholar 

  83. Ma SM, Chen LX, Lin YF et al (2015) Periostin promotes neural stem cell proliferation and differentiation following hypoxic-ischemic injury. PLoS One 10(4):e0123585

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  84. Clevers H (2011) The cancer stem cell: premises, promises and challenges. Nat Med 17(3):313–319

    Article  CAS  PubMed  Google Scholar 

  85. Malanchi I, Santamaria-Martinez A, Susanto E et al (2012) Interactions between cancer stem cells and their niche govern metastatic colonization. Nature 481(7379):85–U95

    Article  CAS  Google Scholar 

  86. Xu DY, Xu H, Ren Y et al (2012) Cancer stem cell-related gene periostin: a novel prognostic marker for breast cancer. PLoS One 7(10):e46670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lambert AW, Wong CK, Ozturk S et al (2016) Tumor cell-derived periostin regulates cytokines that maintain breast cancer stem cells. Mol Cancer Res 14(1):103–113

    Article  CAS  PubMed  Google Scholar 

  88. Wang XW, Liu J, Wang Z et al (2013) Periostin contributes to the acquisition of multipotent stem cell-like properties in human mammary epithelial cells and breast cancer cells. PLoS One 8(8):e72962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Liu GX, Xi HQ, Sun XY, Wei B (2015) Role of periostin and its antagonist PNDA-3 in gastric cancer metastasis. World J Gastroenterol 21(9):2605–2613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Mikheev AM, Mikheeva SA, Trister AD et al (2015) Periostin is a novel therapeutic target that predicts and regulates glioma malignancy. Neuro-Oncology 17(3):372–382

    Article  CAS  PubMed  Google Scholar 

  91. Miller PG, Al-Shahrour F, Hartwell KA et al (2013) In vivo RNAi screening identifies a leukemia-specific dependence on integrin beta 3 signaling. Cancer Cell 24(1):45–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Wellcome Trust/DBT India Alliance Fellowship (IA/I/15/2/502061) awarded to SK and intramural funds from Indian Institute of Science Education and Research Thiruvananthapuram (IISER TVM). AS is supported by INSPIRE fellowship from Department of Science and Technology, Government of India Scientific and Industrial Research, India. AB is supported by IISER TVM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satish Khurana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Suresh, A., Biswas, A., Perumal, S., Khurana, S. (2019). Periostin and Integrin Signaling in Stem Cell Regulation. In: Kudo, A. (eds) Periostin. Advances in Experimental Medicine and Biology, vol 1132. Springer, Singapore. https://doi.org/10.1007/978-981-13-6657-4_16

Download citation

Publish with us

Policies and ethics