Skip to main content

Neuronal Calcium Signaling and Alzheimer’s Disease

  • Chapter
  • First Online:
Calcium Signaling

Abstract

Calcium plays a major role in normal functioning of the cells. Deregulation of calcium-mediated signaling has been implicated in many neurodegenerative diseases including Alzheimer’s disease. Studies in neurons and mice expressing Alzheimer’s disease-associated transgenes have shown that the expression of familial Alzheimer’s disease (FAD) mutants of presenilin (PS) and amyloid precursor protein (APP) alter calcium homeostasis and cause synaptic dysfunction and dendritic spine loss in neurons. Mechanistic studies have shown that FAD mutants of presenilin can affect the intracellular calcium levels by affecting the ER calcium stores. A function for presenilins as ER calcium leak channels has been established and studies show that presenilins affect ER calcium load through an effect on IP3 receptors, ryanodine receptors, or SERCA pumps. Even in the absence of an active gamma-secretase complex, presenilins seem to affect calcium homeostasis suggesting that these two functions of presenilins are independent of each other. Studies using FAD mutants of APP have shown that unlike presenilins, FAD-APP do not affect calcium homeostasis in the absence of Aβ. Both Aβ and presenilins seem to affect calcium homeostasis at very early stages of disease development affecting the synaptic transmission and function prior to neuritic plaque development. Altered calcium signaling differentially regulates genes such as calcineurin, calmodulin kinase II, MAP kinase etc and induces protein modifications and neurite degeneration. Since functional synapses and synaptic transmission are fundamental processes in memory formation, alterations in these processes can lead to neuronal dysfunction and memory deficit as seen in Alzheimer’s disease. This chapter gives an overview of calcium signaling in different systems, specifically neurons, the functioning of pre- and post-synaptic signaling, and how their deregulation influences pathology development in Alzheimer’s disease.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Weber A (1959) On the role of calcium in the activity of adenosine 5′-triphosphate hydrolysis by actomyosin. J Biol Chem 234:2764–2769

    PubMed  CAS  Google Scholar 

  2. Ebashi F (1961) Does EDTA bind to actomyosin? J Biochem 50:77–78

    PubMed  CAS  Google Scholar 

  3. Hasselbach W, Makinose M (1961) The calcium pump of the “relaxing granules” of muscle and its dependence on ATP-splitting. Biochem Z 333:518–528

    PubMed  CAS  Google Scholar 

  4. Ebashi S, Lipmann F (1962) Adenosine triphosphate-linked concentration of calcium ions in a particulate fraction of rabbit muscle. J Cell Biol 14:389–400

    Article  PubMed  CAS  Google Scholar 

  5. Ebashi F, Ebashi S (1962) Removal of calcium and relaxation in actomyosin systems. Nature 194:378–379

    Article  PubMed  CAS  Google Scholar 

  6. Carafoli E (1991) Calcium pump of the plasma membrane. Physiol Rev 71:129–153

    PubMed  CAS  Google Scholar 

  7. Carafoli E (1991) The calcium pumping ATPase of the plasma membrane. Annu Rev Physiol 53:531–547

    Article  PubMed  CAS  Google Scholar 

  8. Strehler EE, Heim R, Carafoli E (1991) Molecular characterization of plasma membrane calcium pump isoforms. Adv Exp Med Biol 307:251–261

    Article  PubMed  CAS  Google Scholar 

  9. Strehler EE, Treiman M (2004) Calcium pumps of plasma membrane and cell interior. Curr Mol Med 4:323–335

    Article  PubMed  CAS  Google Scholar 

  10. Schnetkamp PP (2004) The SLC24 Na+/Ca2+−K+ exchanger family: vision and beyond. Pflugers Arch 447:683–688

    Article  PubMed  CAS  Google Scholar 

  11. Catterall WA (1995) Structure and function of voltage-gated ion channels. Annu Rev Biochem 64:493–531

    Article  PubMed  CAS  Google Scholar 

  12. Perez-Reyes E, Schneider T (1995) Molecular biology of calcium channels. Kidney Int 48:1111–1124

    Article  PubMed  CAS  Google Scholar 

  13. Bezprozvanny I, Ehrlich BE (1995) The inositol 1,4,5-trisphosphate (InsP3) receptor. J Membr Biol 145:205–216

    PubMed  CAS  Google Scholar 

  14. Carafoli E, Santella L, Branca D, Brini M (2001) Generation, control, and processing of cellular calcium signals. Crit Rev Biochem Mol Biol 36:107–260

    Article  PubMed  CAS  Google Scholar 

  15. Parekh AB, Penner R (1997) Store depletion and calcium influx. Physiol Rev 77:901–930

    PubMed  CAS  Google Scholar 

  16. Ehrlich BE, Bezprozvanny I (1994) Intracellular calcium release channels. Chin J Physiol 37:1–7

    PubMed  CAS  Google Scholar 

  17. Bootman MD, Berridge MJ, Roderick HL (2002) Calcium signalling: more messengers, more channels, more complexity. Curr Biol 12:R563–R565

    Article  PubMed  CAS  Google Scholar 

  18. Lee HC (2001) Physiological functions of cyclic ADP-ribose and NAADP as calcium messengers. Annu Rev Pharmacol Toxicol 41:317–345

    Article  PubMed  Google Scholar 

  19. Yamasaki M, Churchill GC, Galione A (2005) Calcium signalling by nicotinic acid adenine dinucleotide phosphate (NAADP). FEBS J 272:4598–4606

    Article  PubMed  CAS  Google Scholar 

  20. Lee HC (2005) Nicotinic acid adenine dinucleotide phosphate (NAADP)-mediated calcium signaling. J Biol Chem 280:33693–33696

    Article  PubMed  CAS  Google Scholar 

  21. Berridge MJ, Dupont G (1994) Spatial and temporal signalling by calcium. Curr Opin Cell Biol 6:267–274

    Article  PubMed  CAS  Google Scholar 

  22. Berridge M, Lipp P, Bootman M (1999) Calcium signalling. Curr Biol 9:R157–R159

    Article  PubMed  CAS  Google Scholar 

  23. De Waard M, Gurnett CA, Campbell KP (1996) Structural and functional diversity of voltage-activated calcium channels. Ion Channels 4:41–87

    PubMed  Google Scholar 

  24. Lacinova L (2005) Voltage-dependent calcium channels. Gen Physiol Biophys 24(Suppl 1):1–78

    PubMed  CAS  Google Scholar 

  25. Ertel EA, Campbell KP, Harpold MM, Hofmann F, Mori Y, Perez-Reyes E, Schwartz A, Snutch TP, Tanabe T, Birnbaumer L, Tsien RW, Catterall WA (2000) Nomenclature of voltage-gated calcium channels. Neuron 25:533–535

    Article  PubMed  CAS  Google Scholar 

  26. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555

    Article  PubMed  CAS  Google Scholar 

  27. Patil PG, de Leon M, Reed RR, Dubel S, Snutch TP, Yue DT (1996) Elementary events underlying voltage-dependent G-protein inhibition of N-type calcium channels. Biophys J 71:2509–2521

    Article  PubMed  CAS  Google Scholar 

  28. Ikeda SR, Dunlap K (1999) Voltage-dependent modulation of N-type calcium channels: role of G protein subunits. Adv Second Messenger Phosphoprotein Res 33:131–151

    Article  PubMed  CAS  Google Scholar 

  29. Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T, Catterall WA (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399:155–159

    Article  PubMed  CAS  Google Scholar 

  30. Lee A, Scheuer T, Catterall WA (2000) Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J Neurosci 20:6830–6838

    PubMed  CAS  Google Scholar 

  31. Burns ME, Augustine GJ (1995) Synaptic structure and function: dynamic organization yields architectural precision. Cell 83:187–194

    Article  PubMed  CAS  Google Scholar 

  32. Charvin N, L’Eveque C, Walker D, Berton F, Raymond C, Kataoka M, Shoji-Kasai Y, Takahashi M, De Waard M, Seagar MJ (1997) Direct interaction of the calcium sensor protein synaptotagmin I with a cytoplasmic domain of the alpha1A subunit of the P/Q-type calcium channel. EMBO J 16:4591–4596

    Article  PubMed  CAS  Google Scholar 

  33. Bajjalieh SM, Scheller RH (1995) The biochemistry of neurotransmitter secretion. J Biol Chem 270:1971–1974

    Article  PubMed  CAS  Google Scholar 

  34. Catterall WA (1999) Interactions of presynaptic Ca2+ channels and snare proteins in neurotransmitter release. Ann N Y Acad Sci 868:144–159

    Article  PubMed  CAS  Google Scholar 

  35. Chapman ER, Jahn R (1994) Calcium-dependent interaction of the cytoplasmic region of synaptotagmin with membranes. Autonomous function of a single C2-homologous domain. J Biol Chem 269:5735–5741

    PubMed  CAS  Google Scholar 

  36. Collingridge GL, Randall AD, Davies CH, Alford S (1992) The synaptic activation of NMDA receptors and Ca2+ signalling in neurons. Ciba Found Symp 164:162–171; discussion 172–165

    PubMed  CAS  Google Scholar 

  37. Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences. Science 268:239–247

    Article  PubMed  CAS  Google Scholar 

  38. Ben-Ari Y, Aniksztejn L, Bregestovski P (1992) Protein kinase C modulation of NMDA currents: an important link for LTP induction. Trends Neurosci 15:333–339

    Article  PubMed  CAS  Google Scholar 

  39. Fiol CJ, Williams JS, Chou CH, Wang QM, Roach PJ, Andrisani OM (1994) A secondary phosphorylation of CREB341 at Ser129 is required for the cAMP-mediated control of gene expression. A role for glycogen synthase kinase-3 in the control of gene expression. J Biol Chem 269:32187–32193

    PubMed  CAS  Google Scholar 

  40. Henzi V, MacDermott AB (1992) Characteristics and function of Ca(2+)- and inositol 1,4,5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience 46:251–273

    Article  PubMed  CAS  Google Scholar 

  41. Berridge MJ (1993) Cell signalling. A tale of two messengers. Nature 365:388–389

    Article  PubMed  CAS  Google Scholar 

  42. Hua SY, Tokimasa T, Takasawa S, Furuya Y, Nohmi M, Okamoto H, Kuba K (1994) Cyclic ADP-ribose modulates Ca2+ release channels for activation by physiological Ca2+ entry in bullfrog sympathetic neurons. Neuron 12:1073–1079

    Article  PubMed  CAS  Google Scholar 

  43. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7:1–12

    Article  PubMed  CAS  Google Scholar 

  44. Putney JW Jr (2003) Capacitative calcium entry in the nervous system. Cell Calcium 34:339–344

    Article  PubMed  CAS  Google Scholar 

  45. Putney JW Jr (1994) Bird GS: calcium mobilization by inositol phosphates and other intracellular messengers. Trends Endocrinol Metab 5:256–260

    Article  PubMed  CAS  Google Scholar 

  46. Randriamampita C, Tsien RY (1995) Degradation of a calcium influx factor (CIF) can be blocked by phosphatase inhibitors or chelation of Ca2+. J Biol Chem 270:29–32

    Article  PubMed  CAS  Google Scholar 

  47. Fasolato C, Hoth M, Penner R (1993) A GTP-dependent step in the activation mechanism of capacitative calcium influx. J Biol Chem 268:20737–20740

    PubMed  CAS  Google Scholar 

  48. Irvine RF (1990) ‘Quantal’ Ca2+ release and the control of Ca2+ entry by inositol phosphates–a possible mechanism. FEBS Lett 263:5–9

    Article  PubMed  CAS  Google Scholar 

  49. Berridge MJ (1995) Capacitative calcium entry. Biochem J 312(Pt 1):1–11

    PubMed  CAS  Google Scholar 

  50. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21:13–26

    Article  PubMed  CAS  Google Scholar 

  51. Mothet JP, Fossier P, Meunier FM, Stinnakre J, Tauc L, Baux G (1998) Cyclic ADP-ribose and calcium-induced calcium release regulate neurotransmitter release at a cholinergic synapse of Aplysia. J Physiol 507(Pt 2):405–414

    Article  PubMed  CAS  Google Scholar 

  52. Leveque C, el Far O, Martin-Moutot N, Sato K, Kato R, Takahashi M, Seagar MJ (1994) Purification of the N-type calcium channel associated with syntaxin and synaptotagmin. A complex implicated in synaptic vesicle exocytosis. J Biol Chem 269:6306–6312

    PubMed  CAS  Google Scholar 

  53. Sheng ZH, Rettig J, Cook T, Catterall WA (1996) Calcium-dependent interaction of N-type calcium channels with the synaptic core complex. Nature 379:451–454

    Article  PubMed  CAS  Google Scholar 

  54. Augustine GJ (2001) How does calcium trigger neurotransmitter release? Curr Opin Neurobiol 11:320–326

    Article  PubMed  CAS  Google Scholar 

  55. Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298:776–780

    Article  PubMed  CAS  Google Scholar 

  56. Schiller J, Helmchen F, Sakmann B (1995) Spatial profile of dendritic calcium transients evoked by action potentials in rat neocortical pyramidal neurones. J Physiol 487(Pt 3):583–600

    PubMed  CAS  Google Scholar 

  57. Sabatini BL, Maravall M, Svoboda K (2001) Ca(2+) signaling in dendritic spines. Curr Opin Neurobiol 11:349–356

    Article  PubMed  CAS  Google Scholar 

  58. Franks KM, Sejnowski TJ (2002) Complexity of calcium signaling in synaptic spines. Bioessays 24:1130–1144

    Article  PubMed  CAS  Google Scholar 

  59. Kennedy MB (2000) Signal-processing machines at the postsynaptic density. Science 290:750–754

    Article  PubMed  CAS  Google Scholar 

  60. Bear MF, Malenka RC (1994) Synaptic plasticity: LTP and LTD. Curr Opin Neurobiol 4:389–399

    Article  PubMed  CAS  Google Scholar 

  61. Cummings JA, Mulkey RM, Nicoll RA, Malenka RC (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16:825–833

    Article  PubMed  CAS  Google Scholar 

  62. Cull-Candy S, Brickley S, Farrant M (2001) NMDA receptor subunits: diversity, development and disease. Curr Opin Neurobiol 11:327–335

    Article  PubMed  CAS  Google Scholar 

  63. Hardingham GE, Fukunaga Y, Bading H (2002) Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci 5:405–414

    PubMed  CAS  Google Scholar 

  64. Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y, Medina I (2006) Opposing role of synaptic and extrasynaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol 572:789–798

    PubMed  CAS  Google Scholar 

  65. Scimemi A, Fine A, Kullmann DM, Rusakov DA (2004) NR2B-containing receptors mediate cross talk among hippocampal synapses. J Neurosci 24:4767–4777

    Article  PubMed  CAS  Google Scholar 

  66. Stocca G, Vicini S (1998) Increased contribution of NR2A subunit to synaptic NMDA receptors in developing rat cortical neurons. J Physiol 507(Pt 1):13–24

    Article  PubMed  CAS  Google Scholar 

  67. Thomas CG, Miller AJ, Westbrook GL (2006) Synaptic and extrasynaptic NMDA receptor NR2 subunits in cultured hippocampal neurons. J Neurophysiol 95:1727–1734

    Article  PubMed  CAS  Google Scholar 

  68. Zhou Y, Takahashi E, Li W, Halt A, Wiltgen B, Ehninger D, Li GD, Hell JW, Kennedy MB, Silva AJ (2007) Interactions between the NR2B receptor and CaMKII modulate synaptic plasticity and spatial learning. J Neurosci 27:13843–13853

    Article  PubMed  CAS  Google Scholar 

  69. Liu L, Wong TP, Pozza MF, Lingenhoehl K, Wang Y, Sheng M, Auberson YP, Wang YT (2004) Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science 304:1021–1024

    Article  PubMed  CAS  Google Scholar 

  70. Yashiro K, Philpot BD (2008) Regulation of NMDA receptor subunit expression and its implications for LTD, LTP, and metaplasticity. Neuropharmacology 55:1081–1094

    Article  PubMed  CAS  Google Scholar 

  71. Barria A, Derkach V, Soderling T (1997) Identification of the Ca2+/calmodulin-dependent protein kinase II regulatory phosphorylation site in the alpha-amino-3-hydroxyl-5-methyl-4-isoxazole-propionate-type glutamate receptor. J Biol Chem 272:32727–32730

    Article  PubMed  CAS  Google Scholar 

  72. Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci USA 96:3269–3274

    Article  PubMed  CAS  Google Scholar 

  73. Benke TA, Luthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393:793–797

    Article  PubMed  CAS  Google Scholar 

  74. Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267

    Article  PubMed  CAS  Google Scholar 

  75. Zhu JJ, Qin Y, Zhao M, Van Aelst L, Malinow R (2002) Ras and Rap control AMPA receptor trafficking during synaptic plasticity. Cell 110:443–455

    Article  PubMed  CAS  Google Scholar 

  76. Luscher C, Xia H, Beattie EC, Carroll RC, von Zastrow M, Malenka RC, Nicoll RA (1999) Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24:649–658

    Article  PubMed  CAS  Google Scholar 

  77. Schulman H (2004) Activity-dependent regulation of calcium/calmodulin-dependent protein kinase II localization. J Neurosci 24:8399–8403

    Article  PubMed  CAS  Google Scholar 

  78. Mulkey RM, Endo S, Shenolikar S, Malenka RC (1994) Involvement of a calcineurin/inhibitor-1 phosphatase cascade in hippocampal long-term depression. Nature 369:486–488

    Article  PubMed  CAS  Google Scholar 

  79. Ehlers MD (2000) Reinsertion or degradation of AMPA receptors determined by activity-dependent endocytic sorting. Neuron 28:511–525

    Article  PubMed  CAS  Google Scholar 

  80. Mulkey RM, Herron CE, Malenka RC (1993) An essential role for protein phosphatases in hippocampal long-term depression. Science 261:1051–1055

    Article  PubMed  CAS  Google Scholar 

  81. Garner CC, Nash J, Huganir RL (2000) PDZ domains in synapse assembly and signalling. Trends Cell Biol 10:274–280

    Article  PubMed  CAS  Google Scholar 

  82. Kelly PT, Weinberger RP, Waxham MN (1988) Active site-directed inhibition of Ca2+/calmodulin-dependent protein kinase type II by a bifunctional calmodulin-binding peptide. Proc Natl Acad Sci USA 85:4991–4995

    Article  PubMed  CAS  Google Scholar 

  83. Lisman J, Schulman H, Cline H (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3:175–190

    Article  PubMed  CAS  Google Scholar 

  84. Miller SG, Kennedy MB (1986) Regulation of brain type II Ca2+/calmodulin-dependent protein kinase by autophosphorylation: a Ca2+−triggered molecular switch. Cell 44:861–870

    Article  PubMed  CAS  Google Scholar 

  85. Strack S, Barban MA, Wadzinski BE, Colbran RJ (1997) Differential inactivation of postsynaptic density-associated and soluble Ca2+/calmodulin-dependent protein kinase II by protein phosphatases 1 and 2A. J Neurochem 68:2119–2128

    Article  PubMed  CAS  Google Scholar 

  86. Genoux D, Haditsch U, Knobloch M, Michalon A, Storm D, Mansuy IM (2002) Protein phosphatase 1 is a molecular constraint on learning and memory. Nature 418:970–975

    Article  PubMed  CAS  Google Scholar 

  87. Westphal RS, Tavalin SJ, Lin JW, Alto NM, Fraser ID, Langeberg LK, Sheng M, Scott JD (1999) Regulation of NMDA receptors by an associated phosphatase-kinase signaling complex. Science 285:93–96

    Article  PubMed  CAS  Google Scholar 

  88. Colledge M, Dean RA, Scott GK, Langeberg LK, Huganir RL, Scott JD (2000) Targeting of PKA to glutamate receptors through a MAGUK-AKAP complex. Neuron 27:107–119

    Article  PubMed  CAS  Google Scholar 

  89. Kornau HC, Schenker LT, Kennedy MB, Seeburg PH (1995) Domain interaction between NMDA receptor subunits and the postsynaptic density protein PSD-95. Science 269:1737–1740

    Article  PubMed  CAS  Google Scholar 

  90. Kim JH, Liao D, Lau LF, Huganir RL (1998) SynGAP: a synaptic RasGAP that associates with the PSD-95/SAP90 protein family. Neuron 20:683–691

    Article  PubMed  CAS  Google Scholar 

  91. Scannevin RH, Huganir RL (2000) Postsynaptic organization and regulation of excitatory synapses. Nat Rev Neurosci 1:133–141

    Article  PubMed  CAS  Google Scholar 

  92. Chen HJ, Rojas-Soto M, Oguni A, Kennedy MB (1998) A synaptic Ras-GTPase activating protein (p135 SynGAP) inhibited by CaM kinase II. Neuron 20:895–904

    Article  PubMed  CAS  Google Scholar 

  93. Cullen PJ, Lockyer PJ (2002) Integration of calcium and Ras signalling. Nat Rev Mol Cell Biol 3:339–348

    Article  PubMed  CAS  Google Scholar 

  94. Husi H, Ward MA, Choudhary JS, Blackstock WP, Grant SG (2000) Proteomic analysis of NMDA receptor-adhesion protein signaling complexes. Nat Neurosci 3:661–669

    Article  PubMed  CAS  Google Scholar 

  95. Naisbitt S, Kim E, Tu JC, Xiao B, Sala C, Valtschanoff J, Weinberg RJ, Worley PF, Sheng M (1999) Shank, a novel family of postsynaptic density proteins that binds to the NMDA receptor/PSD-95/GKAP complex and cortactin. Neuron 23:569–582

    Article  PubMed  CAS  Google Scholar 

  96. Sheng M, Thompson MA, Greenberg ME (1991) CREB: a Ca(2+)-regulated transcription factor phosphorylated by calmodulin-dependent kinases. Science 252:1427–1430

    Article  PubMed  CAS  Google Scholar 

  97. Ginty DD, Bonni A, Greenberg ME (1994) Nerve growth factor activates a Ras-dependent protein kinase that stimulates c-fos transcription via phosphorylation of CREB. Cell 77:713–725

    Article  PubMed  Google Scholar 

  98. Cardinaux JR, Notis JC, Zhang Q, Vo N, Craig JC, Fass DM, Brennan RG, Goodman RH (2000) Recruitment of CREB binding protein is sufficient for CREB-mediated gene activation. Mol Cell Biol 20:1546–1552

    Article  PubMed  CAS  Google Scholar 

  99. Kwok RP, Lundblad JR, Chrivia JC, Richards JP, Bachinger HP, Brennan RG, Roberts SG, Green MR, Goodman RH (1994) Nuclear protein CBP is a coactivator for the transcription factor CREB. Nature 370:223–226

    Article  PubMed  CAS  Google Scholar 

  100. Dash PK, Karl KA, Colicos MA, Prywes R, Kandel ER (1991) CAMP response element-binding protein is activated by Ca2+/calmodulin- as well as cAMP-dependent protein kinase. Proc Natl Acad Sci USA 88:5061–5065

    Article  PubMed  CAS  Google Scholar 

  101. Parker D, Jhala US, Radhakrishnan I, Yaffe MB, Reyes C, Shulman AI, Cantley LC, Wright PE, Montminy M (1998) Analysis of an activator: coactivator complex reveals an essential role for secondary structure in transcriptional activation. Mol Cell 2:353–359

    Article  PubMed  CAS  Google Scholar 

  102. Sun P, Enslen H, Myung PS, Maurer RA (1994) Differential activation of CREB by Ca2+/calmodulin-dependent protein kinases type II and type IV involves phosphorylation of a site that negatively regulates activity. Genes Dev 8:2527–2539

    Article  PubMed  CAS  Google Scholar 

  103. Xing J, Ginty DD, Greenberg ME (1996) Coupling of the RAS-MAPK pathway to gene activation by RSK2, a growth factor-regulated CREB kinase. Science 273:959–963

    Article  PubMed  CAS  Google Scholar 

  104. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 98:2808–2813

    Article  PubMed  CAS  Google Scholar 

  105. Cooper DM, Mons N, Karpen JW (1995) Adenylyl cyclases and the interaction between calcium and cAMP signalling. Nature 374:421–424

    Article  PubMed  CAS  Google Scholar 

  106. Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999

    Article  PubMed  CAS  Google Scholar 

  107. Schwartz PM, Borghesani PR, Levy RL, Pomeroy SL, Segal RA (1997) Abnormal cerebellar development and foliation in BDNF−/− mice reveals a role for neurotrophins in CNS patterning. Neuron 19:269–281

    Article  PubMed  CAS  Google Scholar 

  108. Hirai K, Aliev G, Nunomura A, Fujioka H, Russell RL, Atwood CS, Johnson AB, Kress Y, Vinters HV, Tabaton M, Shimohama S, Cash AD, Siedlak SL, Harris PL, Jones PK, Petersen RB, Perry G, Smith MA (2001) Mitochondrial abnormalities in Alzheimer’s disease. J Neurosci 21:3017–3023

    PubMed  CAS  Google Scholar 

  109. Ghosh A, Carnahan J, Greenberg ME (1994) Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618–1623

    Article  PubMed  CAS  Google Scholar 

  110. Sala C, Rudolph-Correia S, Sheng M (2000) Developmentally regulated NMDA receptor-dependent dephosphorylation of cAMP response element-binding protein (CREB) in hippocampal neurons. J Neurosci 20:3529–3536

    PubMed  CAS  Google Scholar 

  111. Hardy J, Allsop D (1991) Amyloid deposition as the central event in the aetiology of Alzheimer’s disease. Trends Pharmacol Sci 12:383–388

    Article  PubMed  CAS  Google Scholar 

  112. Selkoe DJ (1986) Altered structural proteins in plaques and tangles: what do they tell us about the biology of Alzheimer’s disease? Neurobiol Aging 7:425–432

    Article  PubMed  CAS  Google Scholar 

  113. Selkoe DJ (1989) The deposition of amyloid proteins in the aging mammalian brain: implications for Alzheimer’s disease. Ann Med 21:73–76

    Article  PubMed  CAS  Google Scholar 

  114. Henderson VW, Finch CE (1989) The neurobiology of Alzheimer’s disease. J Neurosurg 70:335–353

    Article  PubMed  CAS  Google Scholar 

  115. Silva AJ, Paylor R, Wehner JM, Tonegawa S (1992) Impaired spatial learning in alpha-calcium-calmodulin kinase II mutant mice. Science 257:206–211

    Article  PubMed  CAS  Google Scholar 

  116. Shoji M, Golde TE, Ghiso J, Cheung TT, Estus S, Shaffer LM, Cai XD, McKay DM, Tintner R, Frangione B et al (1992) Production of the Alzheimer amyloid beta protein by normal proteolytic processing. Science 258:126–129

    Article  PubMed  CAS  Google Scholar 

  117. Masters CL, Multhaup G, Simms G, Pottgiesser J, Martins RN, Beyreuther K (1985) Neuronal origin of a cerebral amyloid: neurofibrillary tangles of Alzheimer’s disease contain the same protein as the amyloid of plaque cores and blood vessels. EMBO J 4:2757–2763

    PubMed  CAS  Google Scholar 

  118. Abraham CR, Selkoe DJ, Potter H (1988) Immunochemical identification of the serine ­protease inhibitor alpha 1-antichymotrypsin in the brain amyloid deposits of Alzheimer’s disease. Cell 52:487–501

    Article  PubMed  CAS  Google Scholar 

  119. McGeer PL, Schulzer M, McGeer EG (1996) Arthritis and anti-inflammatory agents as ­possible protective factors for Alzheimer’s disease: a review of 17 epidemiologic studies. Neurology 47:425–432

    PubMed  CAS  Google Scholar 

  120. Rogers J, Webster S, Lue LF, Brachova L, Civin WH, Emmerling M, Shivers B, Walker D, McGeer P (1996) Inflammation and Alzheimer’s disease pathogenesis. Neurobiol Aging 17:681–686

    Article  PubMed  CAS  Google Scholar 

  121. Smith MA, Perry G, Richey PL, Sayre LM, Anderson VE, Beal MF, Kowall N (1996) Oxidative damage in Alzheimer’s. Nature 382:120–121

    Article  PubMed  CAS  Google Scholar 

  122. LaFerla FM (2002) Calcium dyshomeostasis and intracellular signalling in Alzheimer’s disease. Nat Rev Neurosci 3:862–872

    Article  PubMed  CAS  Google Scholar 

  123. Demuro A, Mina E, Kayed R, Milton SC, Parker I, Glabe CG (2005) Calcium dysregulation and membrane disruption as a ubiquitous neurotoxic mechanism of soluble amyloid oligomers. J Biol Chem 280:17294–17300

    Article  PubMed  CAS  Google Scholar 

  124. Querfurth HW, Selkoe DJ (1994) Calcium ionophore increases amyloid beta peptide production by cultured cells. Biochemistry 33:4550–4561

    Article  PubMed  CAS  Google Scholar 

  125. Wu HY, Hudry E, Hashimoto T, Kuchibhotla K, Rozkalne A, Fan Z, Spires-Jones T, Xie H, Arbel-Ornath M, Grosskreutz CL, Bacskai BJ, Hyman BT (2010) Amyloid beta induces the morphological neurodegenerative triad of spine loss, dendritic simplification, and neuritic dystrophies through calcineurin activation. J Neurosci 30:2636–2649

    Article  PubMed  CAS  Google Scholar 

  126. Kuchibhotla KV, Lattarulo CR, Hyman BT, Bacskai BJ (2009) Synchronous hyperactivity and intercellular calcium waves in astrocytes in Alzheimer mice. Science 323:1211–1215

    Article  PubMed  CAS  Google Scholar 

  127. De Strooper B, Saftig P, Craessaerts K, Vanderstichele H, Guhde G, Annaert W, Von Figura K, Van Leuven F (1998) Deficiency of presenilin-1 inhibits the normal cleavage of amyloid precursor protein. Nature 391:387–390

    Article  PubMed  CAS  Google Scholar 

  128. Wolfe MS, Xia W, Ostaszewski BL, Diehl TS, Kimberly WT, Selkoe DJ (1999) Two transmembrane aspartates in presenilin-1 required for presenilin endoproteolysis and gamma-secretase activity. Nature 398:513–517

    Article  PubMed  CAS  Google Scholar 

  129. Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry. Neuron 27:561–572

    Article  PubMed  CAS  Google Scholar 

  130. Herms J, Schneider I, Dewachter I, Caluwaerts N, Kretzschmar H, Van Leuven F (2003) Capacitive calcium entry is directly attenuated by mutant presenilin-1, independent of the expression of the amyloid precursor protein. J Biol Chem 278:2484–2489

    Article  PubMed  CAS  Google Scholar 

  131. Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM (2005) Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 94:1711–1718

    Article  PubMed  CAS  Google Scholar 

  132. Ris L, Dewachter I, Reverse D, Godaux E, Van Leuven F (2003) Capacitative calcium entry induces hippocampal long term potentiation in the absence of presenilin-1. J Biol Chem 278:44393–44399

    Article  PubMed  CAS  Google Scholar 

  133. Takeda T, Asahi M, Yamaguchi O, Hikoso S, Nakayama H, Kusakari Y, Kawai M, Hongo K, Higuchi Y, Kashiwase K, Watanabe T, Taniike M, Nakai A, Nishida K, Kurihara S, Donoviel DB, Bernstein A, Tomita T, Iwatsubo T, Hori M, Otsu K (2005) Presenilin 2 regulates the systolic function of heart by modulating Ca2+ signaling. FASEB J 19:2069–2071

    PubMed  CAS  Google Scholar 

  134. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31:454–463

    Article  PubMed  CAS  Google Scholar 

  135. Leissring MA, Paul BA, Parker I, Cotman CW, LaFerla FM (1999) Alzheimer’s presenilin-1 mutation potentiates inositol 1,4,5-trisphosphate-mediated calcium signaling in Xenopus oocytes. J Neurochem 72:1061–1068

    Article  PubMed  CAS  Google Scholar 

  136. Stutzmann GE, Smith I, Caccamo A, Oddo S, Parker I, Laferla F (2007) Enhanced ryanodine-mediated calcium release in mutant PS1-expressing Alzheimer’s mouse models. Ann N Y Acad Sci 1097:265–277

    Article  PubMed  CAS  Google Scholar 

  137. Chakroborty S, Goussakov I, Miller MB, Stutzmann GE (2009) Deviant ryanodine receptor-mediated calcium release resets synaptic homeostasis in presymptomatic 3xTg-AD mice. J Neurosci 29:9458–9470

    Article  PubMed  CAS  Google Scholar 

  138. Isaacs AM, Senn DB, Yuan M, Shine JP, Yankner BA (2006) Acceleration of amyloid beta-peptide aggregation by physiological concentrations of calcium. J Biol Chem 281:27916–27923

    Article  PubMed  CAS  Google Scholar 

  139. Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, LaFerla FM (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 181:1107–1116

    Article  PubMed  CAS  Google Scholar 

  140. Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C (2009) Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 13:3358–3369

    Article  PubMed  Google Scholar 

  141. Zatti G, Burgo A, Giacomello M, Barbiero L, Ghidoni R, Sinigaglia G, Florean C, Bagnoli S, Binetti G, Sorbi S, Pizzo P, Fasolato C (2006) Presenilin mutations linked to familial Alzheimer’s disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium 39:539–550

    Article  PubMed  CAS  Google Scholar 

  142. Pratt KG, Zhu P, Watari H, Cook DG, Sullivan JM (2011) A novel role for {gamma}-secretase: selective regulation of spontaneous neurotransmitter release from hippocampal neurons. J Neurosci Off J Soc Neurosci 31:899–906

    Article  CAS  Google Scholar 

  143. Rojas G, Cardenas AM, Fernandez-Olivares P, Shimahara T, Segura-Aguilar J, Caviedes R, Caviedes P (2008) Effect of the knockdown of amyloid precursor protein on intracellular calcium increases in a neuronal cell line derived from the cerebral cortex of a trisomy 16 mouse. Exp Neurol 209:234–242

    Article  PubMed  CAS  Google Scholar 

  144. Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A (2008) Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J Neurochem 105:262–271

    Article  PubMed  CAS  Google Scholar 

  145. Leissring MA, Murphy MP, Mead TR, Akbari Y, Sugarman MC, Jannatipour M, Anliker B, Muller U, Saftig P, De Strooper B, Wolfe MS, Golde TE, LaFerla FM (2002) A physiologic signaling role for the gamma -secretase-derived intracellular fragment of APP. Proc Natl Acad Sci USA 99:4697–4702

    Article  PubMed  CAS  Google Scholar 

  146. Stieren E, Werchan WP, El Ayadi A, Li F, Boehning D (2010) FAD mutations in amyloid precursor protein do not directly perturb intracellular calcium homeostasis. PLoS One 5:e11992

    Article  PubMed  CAS  Google Scholar 

  147. Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, Pasquier F, Galimberti D, Scarpini E, Mann D, Lendon C, Campion D, Amouyel P, Davies P, Foskett JK, Campagne F, Marambaud P (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer’s disease risk. Cell 133:1149–1161

    Article  PubMed  CAS  Google Scholar 

  148. Gallego-Sandin S, Alonso MT, Garcia-Sancho J (2011) Calcium homeostasis modulator 1 (CALHM1) reduces the calcium content of the endoplasmic reticulum (ER) and triggers ER stress. Biochem J 437(3):469–475

    Article  PubMed  CAS  Google Scholar 

  149. Goussakov I, Miller MB, Stutzmann GE (2010) NMDA-mediated Ca(2+) influx drives aberrant ryanodine receptor activation in dendrites of young Alzheimer’s disease mice. J Neurosci 30:12128–12137

    Article  PubMed  CAS  Google Scholar 

  150. Impey S, Obrietan K, Storm DR (1999) Making new connections: role of ERK/MAP kinase signaling in neuronal plasticity. Neuron 23:11–14

    Article  PubMed  CAS  Google Scholar 

  151. Malinow R, Schulman H, Tsien RW (1989) Inhibition of postsynaptic PKC or CaMKII blocks induction but not expression of LTP. Science 245:862–866

    Article  PubMed  CAS  Google Scholar 

  152. Zhao D, Watson JB, Xie CW (2004) Amyloid beta prevents activation of calcium/calmodulin-dependent protein kinase II and AMPA receptor phosphorylation during hippocampal long-term potentiation. J Neurophysiol 92:2853–2858

    Article  PubMed  CAS  Google Scholar 

  153. Espana J, Valero J, Minano-Molina AJ, Masgrau R, Martin E, Guardia-Laguarta C, Lleo A, Gimenez-Llort L, Rodriguez-Alvarez J, Saura CA (2010) Beta-amyloid disrupts activity-dependent gene transcription required for memory through the CREB coactivator CRTC1. J Neurosci Off J Soc Neurosci 30:9402–9410

    CAS  Google Scholar 

  154. Uhasz GJ, Barkoczi B, Vass G, Datki Z, Hunya A, Fulop L, Budai D, Penke B, Szegedi V (2010) Fibrillar Abeta (1–42) enhances NMDA receptor sensitivity via the integrin signaling pathway. J Alzheimers Dis 19:1055–1067

    PubMed  Google Scholar 

  155. Nimmrich V, Grimm C, Draguhn A, Barghorn S, Lehmann A, Schoemaker H, Hillen H, Gross G, Ebert U, Bruehl C (2008) Amyloid beta oligomers (a beta(1–42) globulomer) suppress spontaneous synaptic activity by inhibition of P/Q-type calcium currents. J Neurosci Off J Soc Neurosci 28:788–797

    Article  CAS  Google Scholar 

  156. Jang H, Zheng J, Nussinov R (2007) Models of beta-amyloid ion channels in the membrane suggest that channel formation in the bilayer is a dynamic process. Biophys J 93:1938–1949

    Article  PubMed  CAS  Google Scholar 

  157. Aoki C, Lee J, Nedelescu H, Ahmed T, Ho A, Shen J (2009) Increased levels of NMDA receptor NR2A subunits at pre- and postsynaptic sites of the hippocampal CA1: an early response to conditional double knockout of presenilin 1 and 2. J Comp Neurol 517:512–523

    Article  PubMed  CAS  Google Scholar 

  158. Contreras L, Drago I, Zampese E, Pozzan T (2010) Mitochondria: the calcium connection. Biochim Biophys Acta 1797:607–618

    Article  PubMed  CAS  Google Scholar 

  159. Kirichok Y, Krapivinsky G, Clapham DE (2004) The mitochondrial calcium uniporter is a highly selective ion channel. Nature 427:360–364

    Article  PubMed  CAS  Google Scholar 

  160. Jiang D, Zhao L, Clapham DE (2009) Genome-wide RNAi screen identifies Letm1 as a mitochondrial Ca2+/H+ antiporter. Science 326:144–147

    Article  PubMed  CAS  Google Scholar 

  161. Du H, Guo L, Yan S, Sosunov AA, McKhann GM, Yan SS (2010) Early deficits in synaptic mitochondria in an Alzheimer’s disease mouse model. Proc Natl Acad Sci USA 107:18670–18675

    Article  PubMed  CAS  Google Scholar 

  162. Moreira PI, Cardoso SM, Pereira CM, Santos MS, Oliveira CR (2009) Mitochondria as a therapeutic target in Alzheimer’s disease and diabetes. CNS Neurol Disord Drug Targets 8:492–511

    PubMed  CAS  Google Scholar 

  163. Swerdlow RH, Khan SM (2009) The Alzheimer’s disease mitochondrial cascade hypothesis: an update. Exp Neurol 218:308–315

    Article  PubMed  CAS  Google Scholar 

  164. Su B, Wang X, Zheng L, Perry G, Smith MA, Zhu X (2010) Abnormal mitochondrial dynamics and neurodegenerative diseases. Biochim Biophys Acta 1802:135–142

    PubMed  CAS  Google Scholar 

  165. Alberdi E, Sanchez-Gomez MV, Cavaliere F, Perez-Samartin A, Zugaza JL, Trullas R, Domercq M, Matute C (2010) Amyloid beta oligomers induce Ca2+ dysregulation and neuronal death through activation of ionotropic glutamate receptors. Cell Calcium 47:264–272

    Article  PubMed  CAS  Google Scholar 

  166. Giacomello M, Drago I, Pizzo P, Pozzan T (2007) Mitochondrial Ca2+ as a key regulator of cell life and death. Cell Death Differ 14:1267–1274

    Article  PubMed  CAS  Google Scholar 

  167. Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P (2011) Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci USA 108:2777–2782

    Article  PubMed  CAS  Google Scholar 

  168. Bezprozvanny I (2009) Calcium signaling and neurodegenerative diseases. Trends Mol Med 15:89–100

    Article  PubMed  CAS  Google Scholar 

  169. Texido L, Martin-Satue M, Alberdi E, Solsona C, Matute C (2011) Amyloid beta peptide oligomers directly activate NMDA receptors. Cell Calcium 49:184–190

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The work in JP’s laboratory is supported by grants from NIH-NIA (1R21AG031429-01A2), Alzheimer’s Association (IIRG-08-90842), Small Research Pilot Grant from Signature Interdisciplinary Program in Neuroscience at University of South Florida, and startup funds from the Byrd Alzheimer’s Institute and Department of Molecular Medicine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jaya Padmanabhan Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Woods, N.K., Padmanabhan, J. (2012). Neuronal Calcium Signaling and Alzheimer’s Disease. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 740. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2888-2_54

Download citation

Publish with us

Policies and ethics