Skip to main content

Non-Invasively Estimated ICP Pulse Amplitude Strongly Correlates with Outcome After TBI

  • Chapter
  • First Online:
Intracranial Pressure and Brain Monitoring XIV

Abstract

Introduction: An existing monitoring database of brain signal recordings in patients with head injury has been re-evaluated with regard to the accuracy of estimation of non-invasive ICP (nICP) and its components, with a particular interest in the implications for outcome after head injury.

Methods: Middle cerebral artery blood flow velocity (FV), ICP and arterial blood pressure (ABP) were recorded. Non-invasive ICP (nICP) was calculated using a mathematical model. Other signals analysed included components of ICP (n” indicates non-invasive): ICP pulse amplitude (Amp, nAmp), amplitude of the respiratory component (Resp, nResp), amplitude of slow vasogenic waves of ICP (Slow, nSlow) and index of compensatory reserve (RAP, nRAP). Mean values of analysed signals were compared against each other and between patients who died and survived.

Results: The correlation between ICP and nICP was moderately strong, R = 0.51 (95% prediction interval [PI] 17 mm Hg). The components of nICP and ICP were also moderately correlated with each other: the strongest correlation was observed for Resp vs. nResp (r = 0.66), while weaker for Amp vs. nAmp (r = 0.41). Non-invasive pulse amplitude of ICP showed the strongest association with outcome, with the ­difference between those who survived and those who died reaching a significance level of p < 0.000001.

Discussion: When compared between patients who died and who survived mean nAmp showed the greatest difference, suggesting its potential to predict mortality after TBI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Avezaat CJ, van Eijndhoven JH, Wyper DJ (1979) Cerebrospinal fluid pulse pressure and intracranial volume-pressure relationships. J Neurol Neurosurg Psychiatry 42:687–700

    Article  PubMed  CAS  Google Scholar 

  2. Balestreri M, Czosnyka M, Steiner LA, Schmidt E, Smielewski P, Matta B, Pickard JD (2004) Intracranial hypertension: What additional information can be derived from ICP waveform after head injury? Acta Neurochir (Wien) 146:131–141

    Article  CAS  Google Scholar 

  3. Czosnyka M, Guazzo E, Whitehouse M, Smielewski P, Czosnyka Z, Kirkpatrick P, Piechnik S, Pickard JD (1996) Significance of intracranial pressure waveform analysis after head injury. Acta Neurochir (Wien) 138:531–541, discussion 541–532

    Article  CAS  Google Scholar 

  4. Czosnyka M, Smielewski P, Kirkpatrick P, Laing RJ, Menon D, Pickard JD (1997) Continuous assessment of the cerebral vasomotor reactivity in head injury. Neurosurgery 41:11–17, discussion 17–19

    Article  PubMed  CAS  Google Scholar 

  5. Czosnyka M, Smielewski P, Timofeev I, Lavinio A, Guazzo E, Hutchinson P, Pickard JD (2007) Intracranial pressure: more than a number. Neurosurg Focus 22:E10

    PubMed  Google Scholar 

  6. Geeraerts T, Duranteau J, Benhamou D (2008) Ocular sonography in patients with raised intracranial pressure: the papilloedema revisited. Crit Care 12:150

    Article  PubMed  Google Scholar 

  7. Jonas JB, Pfeil K, Chatzikonstantinou A, Rensch F (2008) Ophthalmodynamometric measurement of central retinal vein pressure as surrogate of intracranial pressure in idiopathic intracranial hypertension. Graefes Arch Clin Exp Ophthalmol 246:1059–1060

    Article  PubMed  Google Scholar 

  8. Kim DJ, Czosnyka Z, Keong N, Radolovich DK, Smielewski P, Sutcliffe MP, Pickard JD, Czosnyka M (2009) Index of cerebrospinal compensatory reserve in hydrocephalus. Neurosurgery 64:494–501, discussion 501–492

    Article  PubMed  Google Scholar 

  9. Lundberg N (1960) Continuous recording and control of ventricular fluid pressure in neurosurgical practice. Acta Psychiatr Scand Suppl 36:1–193

    PubMed  CAS  Google Scholar 

  10. Ragauskas A, Daubaris G, Dziugys A, Azelis V, Gedrimas V (2005) Innovative non-invasive method for absolute intracranial pressure measurement without calibration. Acta Neurochir Suppl 95:357–361

    Article  PubMed  CAS  Google Scholar 

  11. Reid A, Marchbanks RJ, Bateman DE, Martin AM, Brightwell AP, Pickard JD (1989) Mean intracranial pressure monitoring by a non-invasive audiological technique: a pilot study. J Neurol Neurosurg Psychiatry 52:610–612

    Article  PubMed  CAS  Google Scholar 

  12. Schmidt B, Klingelhofer J, Schwarze JJ, Sander D, Wittich I (1997) Noninvasive prediction of intracranial pressure curves using transcranial Doppler ultrasonography and blood pressure curves. Stroke 28:2465–2472

    Article  PubMed  CAS  Google Scholar 

  13. Schmidt B, Czosnyka M, Raabe A, Yahya H, Schwarze JJ, Sackerer D, Sander D, Klingelhofer J (2003) Adaptive noninvasive assessment of intracranial pressure and cerebral autoregulation. Stroke 34:84–89

    Article  PubMed  Google Scholar 

  14. Shimbles S, Dodd C, Banister K, Mendelow AD, Chambers IR (2005) Clinical comparison of tympanic membrane displacement with invasive intracranial pressure measurements. Physiol Meas 26:1085–1092

    Article  PubMed  CAS  Google Scholar 

  15. Voulgaris SG, Partheni M, Kaliora H, Haftouras N, Pessach IS, Polyzoidis KS (2005) Early cerebral monitoring using the transcranial Doppler pulsatility index in patients with severe brain trauma. Med Sci Monit 11:CR49–CR52

    PubMed  Google Scholar 

  16. Xu P, Kasprowicz M, Bergsneider M, Hu X (2010) Improved noninvasive intracranial pressure assessment with nonlinear kernel regression. IEEE Trans Inf Technol Biomed 14:971–978

    Article  PubMed  Google Scholar 

Download references

Conflict of interest

KPB was sponsored by the Graduate Travel and Research Fund of St. Catharine’s College, University of Cambridge, UK and the Clifford and Mary Corbridge Trust. ICM+  software is licensed by the University of Cambridge, Cambridge Enterprise Ltd. PS and MC have a financial interest in a part of its licensing fee. Non-invasive ICP Plugin is protected by patent DE 19600983. BS and MC have a financial interest in part of its licensing fee.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karol P. Budohoski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag/Wien

About this chapter

Cite this chapter

Budohoski, K.P. et al. (2012). Non-Invasively Estimated ICP Pulse Amplitude Strongly Correlates with Outcome After TBI. In: Schuhmann, M., Czosnyka, M. (eds) Intracranial Pressure and Brain Monitoring XIV. Acta Neurochirurgica Supplementum, vol 114. Springer, Vienna. https://doi.org/10.1007/978-3-7091-0956-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-7091-0956-4_22

  • Published:

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-7091-0955-7

  • Online ISBN: 978-3-7091-0956-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics