Skip to main content

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

The traditional view of lactate as a harmful waste product of anaerobic glycolysis needs to be challenged in the face of new evidence. It is important to differentiate between lactate as a biomarker on one hand and lactate as a metabolic substrate on the other. Here we will review metabolic, protective and potential therapeutic properties of this fascinating molecule.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Levraut J, Ciebiera JP, Chave S et al (1998) Mild hyperlactatemia in stable septic patients is due to impaired lactate clearance rather than overproduction. Am J Respir Crit Care Med 156:1–6

    Google Scholar 

  2. Chioléro RL, Revelly JP, Leverve X et al (2000) Effects of cardiogenic shock on lactate and glucose metabolism after heart surgery. Crit Care Med 28:3784–3791

    Article  PubMed  Google Scholar 

  3. Bakker J, Coffernils M, Leon M, Gris P, Vincent JL (1991) Blood lactate levels are superior to oxygen-derived variables in predicting outcome in human septic shock. Chest 99:956–962

    Article  PubMed  CAS  Google Scholar 

  4. Nichol AD, Egi M, Pettila V et al (2010) Relative hyperlactatemia and hospital mortality in critically ill patients: a retrospective multi-centre study. Crit Care 14:R25

    Article  PubMed  Google Scholar 

  5. Vespa P, Bergneider M, Hattori N et al (2005) Metabolic crisis without brain ischemia is common after traumatic brain injury: a combined microdialysis and positron emission tomography study. J Cereb Blood Flow Metab 25:763–774

    Article  PubMed  CAS  Google Scholar 

  6. Leverve XM (2005) Lactate in the intensive care unit: pyromaniac, sentinel or fireman? Crit Care 9:622–623

    Article  PubMed  Google Scholar 

  7. Hill AV, Long CNH, Lupton H (1924) Muscular exercise, lactic acid, and the supply and utilization of oxygen. Proc R Soc Lond B Biol Sci 16:84–137

    Article  Google Scholar 

  8. Philp A, Macdonald AL, Watt PW (2005) Lactate – a signal coordinating cell and systemic function. J Exp Biol 208:4561–4575

    Article  PubMed  CAS  Google Scholar 

  9. Robergs RA, Ghiasvand F, Parker D (2004) Biochemistry of exercise-induced metabolic acidosis. Am J Physiol Regul Integr Comp Physiol 287:R502–R516

    Article  PubMed  CAS  Google Scholar 

  10. Leverve X, Mustafa I, Péronnet F (1998) Pivotal role of lactate in aerobic metabolism. In: Vincent JL (ed) Yearbook of Intensive Care and Emergency Medicine. Springer-Verlag, Heidelberg, pp 588–596

    Google Scholar 

  11. Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587:5591–5600

    Article  PubMed  CAS  Google Scholar 

  12. Pösö AR (2002) Monocarboxylate transporters and lactate metabolism in equine athletes: A review. Acta Vet Scand 43:63–74

    Article  PubMed  Google Scholar 

  13. Bangsbo J, Gollnick PD, Graham TE et al (1990) Anaerobic energy production and O2 deficit-debt relationship during exhaustive exercise in humans. J Physiol 422:539–559

    PubMed  CAS  Google Scholar 

  14. Brooks GA (1986) Lactate production under fully aerobic conditions: the lactate shuttle during rest and exercise. Fed Proc 45:2924–2929

    PubMed  CAS  Google Scholar 

  15. Dutka TA, Lamb GD (2000) Effect of lactate on depolarization-induced Ca2+ release in mechanically skinned skeletal muscle fibres. Am J Physiol Cell Physiol 278:C517–C525

    PubMed  CAS  Google Scholar 

  16. Brooks GA, Brown MA, Butz CE, Sicurello JP, Dubouchaud H (1999) Cardiac and skeletal muscle mitochondria have a monocarboxylate transporter MCT1. J Appl Physiol 87:1713–1718

    PubMed  CAS  Google Scholar 

  17. Van Hall G, Stroemstad M, Rasmussen P et al (2009) Blood lactate is an important energy source for the human brain. J Cereb Blood Flow Metab 29:1121–1129

    Article  PubMed  Google Scholar 

  18. Connes P, Bouix D, Py G et al (2004) Does exercise-induced hypoxemia modify lactate influx into erythrocytes and hemorheological parameters in athletes? J Appl Physiol 97:1053–1058

    Article  PubMed  CAS  Google Scholar 

  19. Miller BF, Fattor JA, Jacobs KA et al (2002) Lactate and glucose interactions during rest and exercise in men: effect of exogenous lactate infusion. J Physiol 544:963–975

    Article  PubMed  CAS  Google Scholar 

  20. Ide K, Schmalbruch IR, Quistorf B, Horn A, Secher N (2000) Lactate, glucose and O2 uptake in human brain during recovery from maximal exercise. J Physiol 522:159–164

    Article  PubMed  CAS  Google Scholar 

  21. Fattor JA, Miller BF, Jacobs KA, Brooks GA (2005) Catecholamine response is attenuated during moderate-intensity exercise in response to the “lactate clamp”. Am J Physiol Endocrinol Metab 288:E143–E147

    Article  PubMed  CAS  Google Scholar 

  22. Roef MJ, de Meer K, Kalhan SC, Straver H, Berger R, Reijngoud DJ (2003) Gluconeogenesis in humans with induced hyperlactatemia during low-intensity exercise. Am J Physiol Endocrinol Metab 284:E1162–E1171

    PubMed  CAS  Google Scholar 

  23. Miller BF, Fattor JA, Jacobs KA et al (2002) Metabolic and cardiorespiratory responses to “the lactate clamp”. Am J Physiol Endocrinol Metab 283:E889–E898

    PubMed  CAS  Google Scholar 

  24. Fishbein WN (1986) Lactate transporter defect: a new disease of muscle. Science 234:1254–1256

    Article  PubMed  CAS  Google Scholar 

  25. Hashimoto T, Hussien R, Oommen S, Gohil K, Brooks GA (2007) Lactate sensitive transcription factor network in L6 myocytes: activation of MCT1 expression and mitochondrial biogenesis. FASEB J 21:2602–2612

    Article  PubMed  CAS  Google Scholar 

  26. Groussard C, Morel I, Chevanne M, Monnier M, Cillard J, Delamarche A (2000) Free radical scavenging and antioxidant effects of lactate ion: an in vitro study. J Appl Physiol 89:169–175

    PubMed  CAS  Google Scholar 

  27. Mjos OD (1971) Effect of free fatty acids on myocardial function and oxygen consumption in intact dogs. J Clin Invest 50:1386–1389

    Article  PubMed  CAS  Google Scholar 

  28. Borst P, Loos JA, Christ EJ, Slater EC (1962) Uncoupling activity of long-chain fatty acids. Biochim Biophys Acta 62:509–518

    Article  PubMed  CAS  Google Scholar 

  29. Hutter JF, Schweickhardt C, Piper HM, Spieckermann PG (1984) Inhibition of fatty acid oxidation and decrease of oxygen consumption of working rat heart by 4-bromocrotonic acid. J Mol Cell Cardiol 16:105–108

    Article  PubMed  CAS  Google Scholar 

  30. Lopaschuk GD, Ussher JR, Folmes CD, Jaswal JS, Stanley WC (2010) Myocardial fatty acid metabolism in health and disease. Physiol Rev 90:207–258

    Article  PubMed  CAS  Google Scholar 

  31. Bergman BC, Tsvetkova T, Lowes B, Wolfel EE (2009) Myocardial glucose and lactate metabolism during rest and atrial pacing in humans. J Physiol 587:2087–2099

    Article  PubMed  CAS  Google Scholar 

  32. Kline JA, Thornton LR, Lopaschuk GD, Barbee RW, Watts JA (2000) Lactate improves cardiac efficiency after hemorrhagic shock. Shock 14:215–221

    Article  PubMed  CAS  Google Scholar 

  33. Stanley WC (1991) Myocardial lactate metabolism during exercise. Med Sci Sports Exerc 23:920–904

    PubMed  CAS  Google Scholar 

  34. Gertz EW, Wisneski JA, Stanley WC, Neese RA (1988) Myocardial substrate utilization during exercise in humans. Dual carbon-labelled carbohydrate isotope experiments. J Clin Invest 82:2017–2025

    Article  PubMed  CAS  Google Scholar 

  35. Young LH, Renfu Y, Russell R et al (1997) Low-flow ischemia leads to translocation of canine heart GLUT-4 and GLUT-1 glucose transporters to the sarcolemma in vivo. Circulation 95:415–422

    Article  PubMed  CAS  Google Scholar 

  36. Johannsson E, Lunde PK, Heddle C et al (2001) Upregulation of the cardiac monocarboxylate transporter MCT1 in a rat model of congestive heart failure. Circulation 104:729–734

    Article  PubMed  CAS  Google Scholar 

  37. Barthelmes D, Jakob SM, Laitinen S, Rahikainen A, Ahonen H, Takala J (2010) Effect of site of lactate infusion on regional lactate exchange in pigs. Br J Anaesth 105:627–634

    Article  PubMed  CAS  Google Scholar 

  38. Boumezbeur F, Petersen KF, Cline GW et al (2010) The contribution of blood lactate to brain energy metabolism in humans measured by dynamic 13C nuclear magnetic resonance spectroscopy. J Neurosci 30:13983–13991

    Article  PubMed  CAS  Google Scholar 

  39. Maran A, Cranston I, Lomas J, Macdonald I, Amiel SA (1994) Protection by lactate of cerebral function during hypoglycaemia. Lancet 343:16–20

    Article  PubMed  CAS  Google Scholar 

  40. Schurr A (2002) Lactate, glucose and energy metabolism in the ischemic brain. Int J Mol Med 10:131–136

    PubMed  CAS  Google Scholar 

  41. Quistorff B, Secher NH, Van Lieshout JJ (2008) Lactate fuels the human brain during exercise. FASEB J 22:3443–3439

    Article  PubMed  CAS  Google Scholar 

  42. Smith D, Pernet A, Hallett WA, Bingham E, Marsden PK, Amiel SA (2003) Lactate: a preferred fuel for human brain metabolism in vivo. J Cereb Blood Flow Metab 23:658–664

    Article  PubMed  CAS  Google Scholar 

  43. Berthet C, Lei H, Thevenet J, Gruetter R, Magistretti PJ, Hirt L (2009) Neuroprotective role of lactate after cerebral ischemia. J Cereb Blood Flow Metab 29:1780–1789

    Article  PubMed  CAS  Google Scholar 

  44. Holloway R, Zhou Z, Harvey HB et al (2007) Effect of lactate therapy upon cognitive deficits after traumatic brain injury in the rat. Acta Neurochir (Wien) 149:919–927

    Article  CAS  Google Scholar 

  45. Magistretti PJ (2006) Neuron-glia metabolic coupling and plasticity. J Exp Biol 209:2304–2311

    Article  PubMed  CAS  Google Scholar 

  46. Genc S, Kurnaz IA, Ozilgen M (2011) Astrocyte – neuron lactate shuttle may boost more ATP supply to the neuron under hypoxic conditions – in silico study supported by in vitro expression data. BMC Syst Biol 5:162

    Article  PubMed  CAS  Google Scholar 

  47. Rice AC, Zsoldos R, Chen T et al (2002) Lactate administration attenuates cognitive deficits following traumatic brain injury. Brain Res 928:156–159

    Article  PubMed  CAS  Google Scholar 

  48. Ichai C, Armando G, Orban JC et al (2009) Sodium lactate versus mannitol in the treatment of intracranial hypertensive episodes in severe traumatic brain-injured patients. Intensive Care Med 35:471–479

    Article  PubMed  CAS  Google Scholar 

  49. Herrero-Mendez A, Almeida A, Fernandez E, Maestre C, Moncada S, Bolanos JP (2009) The bioenergetic and antioxidant status of neurons is controlled by continuous degradation of key glycolytic enzyme by APC/C-Cdh1. Nat Cell Biol 11:747–752

    Article  PubMed  CAS  Google Scholar 

  50. Ben-Yoseph O, Camp DM, Robinson TE, Ross BD (1995) Dynamic measurements of cerebral pentose phosphate pathway activity in vivo using [1,6-13C2,6,6-2H2]glucose and microdialysis. J Neurochem 64:1336–1342

    Article  PubMed  CAS  Google Scholar 

  51. Dusick JR, Glenn TC, Paul Lee WN et al (2007) Increased pentose phosphate pathway flux after clinical traumatic brain injury: a [1,2-13C2]glucose labeling study in humans. J Cereb Blood Flow Metab 27:1593–1602

    Article  PubMed  CAS  Google Scholar 

  52. Zhou L, Stanley WC, Saidel GM, Yu X, Cabrera ME (2005) Regulation of lactate production at the onset of ischaemia is independent of mitochondrial NADH/NAD+: insights from in silico studies. J Physiol 569:925–937

    Article  PubMed  CAS  Google Scholar 

  53. Watts JA, Kline JA, Thornton LR, Grattan RM, Brar SS (2004) Metabolic dysfunction and depletion of mitochondria in hearts of septic rats. J Mol Cell Cardiol 36:141–150

    Article  PubMed  CAS  Google Scholar 

  54. Watanabe E, Muenzer JT, Hawkins WG et al (2009) Sepsis induces extensive autophagic vacuolization in hepatocytes: a clinical and laboratory-based study. Lab Invest 89:549–561

    Article  PubMed  Google Scholar 

  55. Newsholme EA, Crabtree B, Ardawi MS (1985) The role of high rates of glycolysis and glutamine utilization in rapidly dividing cells. Biosci Rep 5:393–400

    Article  PubMed  CAS  Google Scholar 

  56. Ahmed N, Williams JF, Weidemann MJ (1993) Glycolytic, glutaminolytic and pentose-phosphate pathways in promyelocytic HL60 and DMSO-differentiated HL60 cells. Biochem Mol Biol Int 29:1055–1067

    PubMed  CAS  Google Scholar 

  57. Bauer DE, Harris MH, Plas DR et al (2004) Cytokine stimulation of aerobic glycolysis in hematopoietic cells exceeds proliferative demand. FASEB J 18:1303–1305

    PubMed  CAS  Google Scholar 

  58. Levy B, Desebbe O, Montemont C, Gibot S (2008) Increased aerobic glycolysis through beta-2 stimulation is a common mechanism involved in lactate formation during shock states. Shock 4:417–421

    Article  Google Scholar 

  59. Joseph SE, Heaton N, Potter D, Pernet A, Umpleby MA, Amiel SA (2000) Renal glucose production compensates for the liver during the anhepatic phase of liver transplantation. Diabetes 49:450–456

    Article  PubMed  CAS  Google Scholar 

  60. Chioléro R, Tappy L, Gillet M et al (1999) Effect of major hepatectomy on glucose and lactate metabolism. Ann Surg 229:505–513

    Article  PubMed  Google Scholar 

  61. Mustafa I, Leverve XM (2002) Metabolic and hemodynamic effects of hypertonic solutions: sodium-lactate versus sodium chloride infusion in postoperative patients. Shock 18:306–310

    Article  PubMed  Google Scholar 

  62. Leverve XM, Boon C, Hakim T, Anwar M, Siregar E, Mustafa I (2008) Half-molar sodium-lactate solution has a beneficial effect in patients after coronary artery bypass grafting. Intensive Care Med 34:1796–1803

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

We dedicate this chapter to the memory of our friend Professor Xavier M Leverve.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Nalos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nalos, M., McLean, A.S., Huang, S. (2013). Revisiting Lactate in Critical Illness. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2013. Annual Update in Intensive Care and Emergency Medicine. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-35109-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-35109-9_34

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-35108-2

  • Online ISBN: 978-3-642-35109-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics