Skip to main content

Patellar Tracking in Computer-Assisted Surgery

  • Chapter
  • First Online:
Knee Surgery using Computer Assisted Surgery and Robotics

Abstract

It is well known that the human knee is a complex structure that joins the thigh with the shank and, because of the presence of three bones that articulate within this anatomical plexus, it consists of two joints, the lemoral (TFJ) and the patello-femoral joint (PFJ), the latter being the smaller of the two. Regardless of its size and sesamoid development, the patella plays two crucial roles within the knee: the transmission of tensile forces generated by all heads of the quadriceps to the patellar tendon and the tibia, and the increase of the lever arm of the extensor muscles during TFJ flexion-extension, i.e. ultimately the increase of the efficacy of the whole extensor mechanism of the knee [18, 25, 50, 53, 55]. The motion of the patella relative to the distal femur is generally called either PFJ kinematics or patellar tracking, and the important biomechanical functions cited above are successfully achieved only when this motion occurs correctly [18, 50, 53]. Patellar tracking is a full six-degree-of-freedom motion, i.e. the patellar bone is not constrained in its motion. This motion can be described as translation and rotation along and about, respectively, predefined axes [15, 18, 26, 60]. Among all kinematics variables, only a few are generally considered of clinical importance, and these are PFJ flexion, rotation and tilt, these being assessed on the knee sagittal, coronal and transverse plane, respectively, and patella translation along the medio-lateral axis of the distal femur. All references, both on the patella and the femur, have variable definitions [60].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed AM, Duncan NA, Tanzer M (1999) In vitro measurement of the tracking pattern of the human patella. J Biomech Eng 121:222–228

    Article  PubMed  CAS  Google Scholar 

  2. Ahmed AM, Shih HN, Hyder A, Chan KH (1988) The effect of the quadriceps tension characteristics on the patellar tracking pattern. Trans Orthop Res Soc 13:280

    Google Scholar 

  3. Amis AA, Oguz C, Bull AM, Senavongse W, Dejour D (2008) The effect of trochleoplasty on patellar stability and kinematics: a biomechanical study in vitro. J Bone Joint Surg Br 90:864–869

    Article  PubMed  CAS  Google Scholar 

  4. Amis AA, Senavongse W, Bull AM (2006) Patellofemoral kinematics during knee flexion-extension: an in vitro study. J Orthop Res 24:2201–2211

    Article  PubMed  Google Scholar 

  5. Anagnostakos K, Lorbach O, Kohn D (2011) Patella baja after unicompartmental knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(8):1456–1462

    Article  PubMed  Google Scholar 

  6. Anglin C, Brimacombe JM, Hodgson AJ, Masri BA, Greidanus NV, Tonetti J, Wilson DR (2008) Determinants of patellar tracking in total knee arthroplasty. Clin Biomech (Bristol, Avon) 23:900–910

    Article  CAS  Google Scholar 

  7. Anglin C, Fu C, Hodgson AJ, Helmy N, Greidanus NV, Masri BA (2009) Finding and defining the ideal patellar resection plane in total knee arthroplasty. J Biomech 42:2307–2312

    Article  PubMed  CAS  Google Scholar 

  8. Anglin C, Ho KC, Briard JL, de Lambilly C, Plaskos C, Nodwell E, Stindel E (2008) In vivo patellar kinematics during total knee arthroplasty. Comput Aided Surg 13:377–391

    Article  PubMed  Google Scholar 

  9. Archibeck MJ, Camarata D, Trauger J, Allman J, White RE Jr (2003) Indications for lateral retinacular release in total knee replacement. Clin Orthop Relat Res 414:157–161

    Article  PubMed  Google Scholar 

  10. Asano T, Akagi M, Koike K, Nakamura T (2003) In vivo three-dimensional patellar tracking on the femur. Clin Orthop Relat Res 413:222–232

    Article  PubMed  Google Scholar 

  11. Ateshian GA, Hung CT (2005) Patellofemoral joint biomechanics and tissue engineering. Clin Orthop Relat Res 436:81–90

    Google Scholar 

  12. Baldini A, Anderson JA, Zampetti P, Pavlov H, Sculco TP (2006) A new patellofemoral scoring system for total knee arthroplasty. Clin Orthop Relat Res 452:150–154

    Article  PubMed  Google Scholar 

  13. Banks SA, Hodge WA (2004) Implant design affects knee arthroplasty kinematics during stair-stepping. Clin Orthop Relat Res 426:187–193

    Article  PubMed  Google Scholar 

  14. Banks SA, Markovich GD, Hodge WA (1997) The mechanics of knee replacements during gait. In vivo fluoroscopic analysis of two designs. Am J Knee Surg 10:261–267

    PubMed  CAS  Google Scholar 

  15. Belvedere C, Catani F, Ensini A, Moctezuma de la Barrera JL, Leardini A (2007) Patellar tracking during total knee arthroplasty: an in vitro feasibility study. Knee Surg Sports Traumatol Arthrosc 15:985–993

    Article  PubMed  CAS  Google Scholar 

  16. Belvedere C, Ensini A, Moctezuma de la Barrera JL, Feliciangeli A, Leardini A, Catani F (2011) Patellar tracking assessment in surgical navigation for total knee replacement: initial experience in patient. In: 11th Annual meeting of computer assisted orthopaedic surgery – international proceedings, CAOS, London

    Google Scholar 

  17. Belvedere C, Ensini A, Leardini A, Bianchi L, Catani F, Giannini S (2007) Alignment of resection planes in total knee replacement obtained with the conventional technique, as assessed by a modern computer-based navigation system. Int J Med Robot 3:117–124

    Article  PubMed  CAS  Google Scholar 

  18. Belvedere C, Leardini A, Ensini A, Bianchi L, Catani F, Giannini S (2009) Three-dimensional patellar motion at the natural knee during passive flexion/extension. An in vitro study. J Orthop Res 27:1426–1431

    Article  PubMed  Google Scholar 

  19. Belvedere C, Leardini A, Ensini A, Feliciangeli A, Catani F, Giannini S (2008) Preliminary patello-femoral joint navigation in computer assisted total knee arthroplasty. An in-vitro study. In; 8th Annual meeting of computer assisted orthopaedic surgery – international proceedings, CAOS, Hong Kong, pp 205–208

    Google Scholar 

  20. Besier TF, Gold GE, Beaupre GS, Delp SL (2005) A modeling framework to estimate patellofemoral joint cartilage stress in vivo. Med Sci Sports Exerc 37:1924–1930

    Article  PubMed  Google Scholar 

  21. Biedert RM, Netzer P, Gal I, Sigg A, Tscholl PM (2011) The lateral condyle index: a new index for assessing the length of the lateral articular trochlea as predisposing factor for patellar instability. Int Orthop 35:1327–1331

    Article  PubMed  Google Scholar 

  22. Bollier M, Fulkerson JP (2011) The role of trochlear dysplasia in patellofemoral instability. J Am Acad Orthop Surg 19:8–16

    PubMed  Google Scholar 

  23. Brossmann J, Muhle C, Schroder C, Melchert UH, Bull CC, Spielmann RP, Heller M (1993) Patellar tracking patterns during active and passive knee extension: evaluation with motion-triggered cine MR imaging. Radiology 187:205–212

    PubMed  CAS  Google Scholar 

  24. Brunet ME, Brinker MR, Cook SD, Christakis P, Fong B, Patron L, O’Connor DP (2003) Patellar tracking during simulated quadriceps contraction. Clin Orthop Relat Res 414:266–275

    Article  PubMed  Google Scholar 

  25. Buff HU, Jones LC, Hungerford DS (1988) Experimental determination of forces transmitted through the patello-femoral joint. J Biomech 21:17–23

    Article  PubMed  CAS  Google Scholar 

  26. Bull AM, Katchburian MV, Shih YF, Amis AA (2002) Standardisation of the description of patellofemoral motion and comparison between different techniques. Knee Surg Sports Traumatol Arthrosc 10:184–193

    Article  PubMed  CAS  Google Scholar 

  27. Callaghan JJ, O’rourke MR, Saleh KJ (2004) Why knees fail: lessons learned. J Arthroplasty 19:31–34

    Article  PubMed  Google Scholar 

  28. Cappozzo A, Catani F, Croce UD, Leardini A (1995) Position and orientation in space of bones during movement: anatomical frame definition and determination. Clin Biomech (Bristol, Avon) 10:171–178

    Article  Google Scholar 

  29. Catani F, Belvedere C, Ensini A, Feliciangeli A, Giannini S, Leardini A (2011) In-vivo knee kinematics in rotationally unconstrained total knee arthroplasty. J Orthop Res 29:1484–1490

    Article  PubMed  Google Scholar 

  30. Catani F, Ensini A, Belvedere C, Feliciangeli A, Benedetti MG, Leardini A, Giannini S (2009) In vivo kinematics and kinetics of a bi-cruciate substituting total knee arthroplasty: a combined fluoroscopic and gait analysis study. J Orthop Res 27:1569–1575

    Article  PubMed  Google Scholar 

  31. Chew JT, Stewart NJ, Hanssen AD, Luo ZP, Rand JA, An KN (1997) Differences in patellar tracking and knee kinematics among three different total knee designs. Clin Orthop Relat Res 345:87–98

    Article  PubMed  Google Scholar 

  32. Cho WS, Woo JH, Park HY, Youm YS, Kim BK (2011) Should the ‘no thumb technique’ be the golden standard for evaluating patellar tracking in total knee arthroplasty? Knee 18:177–179

    Article  PubMed  Google Scholar 

  33. Clemens U, Miehlke RK (2005) Advanced navigation planning including soft tissue management. Orthopedics 28:s1259–s1262

    PubMed  Google Scholar 

  34. Colvin AC, West RV (2008) Patellar instability. J Bone Joint Surg Am 90:2751–2762

    Article  PubMed  Google Scholar 

  35. Eisenhart-Rothe R, Vogl T, Englmeier KH, Graichen H (2007) A new in vivo technique for determination of femoro-tibial and femoro-patellar 3D kinematics in total knee arthroplasty. J Biomech 40:3079–3088

    Article  Google Scholar 

  36. Eisenhuth SA, Saleh KJ, Cui Q, Clark CR, Brown TE (2006) Patellofemoral instability after total knee arthroplasty. Clin Orthop Relat Res 446:149–160

    Article  PubMed  Google Scholar 

  37. Elias DA, White LM (2004) Imaging of patellofemoral disorders. Clin Radiol 59:543–557

    Article  PubMed  CAS  Google Scholar 

  38. Ensini A, Catani F, Biasca N, Belvedere C, Giannini S, Leardini A (2011) Joint line is well restored when navigation surgery is performed for total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 20(3):495–502

    Article  PubMed  Google Scholar 

  39. Ensini A, Catani F, Leardini A, Romagnoli M, Giannini S (2007) Alignments and clinical results in conventional and navigated total knee arthroplasty. Clin Orthop Relat Res 457:156–162

    PubMed  CAS  Google Scholar 

  40. Fu CK, Wai J, Lee E, Hutchison C, Myden C, Batuyong E, Anglin C (2012) Computer-assisted patellar resection system: development and insights. J Orthop Res 30:535–540

    Article  PubMed  Google Scholar 

  41. Fu C, Wai J, Lee E, Myden C, Batuyong E, Hutchison CR, Anglin C (2012) Computer-assisted patellar resection for total knee arthroplasty. Comput Aided Surg 17:21–28

    Article  PubMed  CAS  Google Scholar 

  42. Fulkerson JP (2002) Diagnosis and treatment of patients with patellofemoral pain. Am J Sports Med 30:447–456

    PubMed  Google Scholar 

  43. Fulkerson JP, Shea KP (1990) Disorders of patellofemoral alignment. J Bone Joint Surg Am 72:1424–1429

    PubMed  CAS  Google Scholar 

  44. Gill HS, O’Connor JJ (1996) Biarticulating two-dimensional computer model of the human patellofemoral joint. Clin Biomech (Bristol, Avon) 11:81–89

    Article  Google Scholar 

  45. Goh JC, Lee PY, Bose K (1995) A cadaver study of the function of the oblique part of vastus medialis. J Bone Joint Surg Br 77:225–231

    PubMed  CAS  Google Scholar 

  46. Gonzales AG (1976) On the insanity defense. J Fla Med Assoc 63:436–437

    PubMed  CAS  Google Scholar 

  47. Grelsamer RP (2000) Patellar malalignment. J Bone Joint Surg Am 82-A:1639–1650

    PubMed  CAS  Google Scholar 

  48. Grelsamer RP (2005) Patellar nomenclature: the Tower of Babel revisited. Clin Orthop Relat Res 436:60–65

    Article  PubMed  Google Scholar 

  49. Grelsamer RP, Dejour D, Gould J (2008) The pathophysiology of patellofemoral arthritis. Orthop Clin North Am 39(3):269–274, v

    Article  PubMed  Google Scholar 

  50. Grelsamer RP, Weinstein CH (2001) Applied biomechanics of the patella. Clin Orthop Relat Res 389:9–14

    Article  PubMed  Google Scholar 

  51. Grood ES, Suntay WJ (1983) A joint coordinate system for the clinical description of three-dimensional motions: application to the knee. J Biomech Eng 105:136–144

    Article  PubMed  CAS  Google Scholar 

  52. Harwin SF (1998) Patellofemoral complications in symmetrical total knee arthroplasty. J Arthroplasty 13:753–762

    Article  PubMed  CAS  Google Scholar 

  53. Heegaard J, Leyvraz PF, Curnier A, Rakotomanana L, Huiskes R (1995) The biomechanics of the human patella during passive knee flexion. J Biomech 28:1265–1279

    Article  PubMed  CAS  Google Scholar 

  54. Hefzy MS, Jackson WT, Saddemi SR, Hsieh YF (1992) Effects of tibial rotations on patellar tracking and patello-femoral contact areas. J Biomed Eng 14:329–343

    Article  PubMed  CAS  Google Scholar 

  55. Hehne HJ (1990) Biomechanics of the patellofemoral joint and its clinical relevance. Clin Orthop Relat Res 258:73–85

    PubMed  Google Scholar 

  56. Heinert G, Kendoff D, Preiss S, Gehrke T, Sussmann P (2011) Patellofemoral kinematics in mobile-bearing and fixed-bearing posterior stabilised total knee replacements: a cadaveric study. Knee Surg Sports Traumatol Arthrosc 19:967–972

    Article  PubMed  CAS  Google Scholar 

  57. Hsu RW (2006) The management of the patella in total knee arthroplasty. Chang Gung Med J 29:448–457

    PubMed  Google Scholar 

  58. Hsu HC, Luo ZP, Rand JA, An KN (1997) Influence of lateral release on patellar tracking and patellofemoral contact characteristics after total knee arthroplasty. J Arthroplasty 12:74–83

    Article  PubMed  CAS  Google Scholar 

  59. Jones CA, Beaupre LA, Johnston DW, Suarez-Almazor ME (2007) Total joint arthroplasties: current concepts of patient outcomes after surgery. Rheum Dis Clin North Am 33:71–86

    Article  PubMed  Google Scholar 

  60. Katchburian MV, Bull AM, Shih YF, Heatley FW, Amis AA (2003) Measurement of patellar tracking: assessment and analysis of the literature. Clin Orthop Relat Res 412:241–259

    Article  PubMed  Google Scholar 

  61. Kelly MA (2001) Patellofemoral complications following total knee arthroplasty. Instr Course Lect 50:403–407

    PubMed  CAS  Google Scholar 

  62. Koh TJ, Grabiner MD, De Swart RJ (1992) In vivo tracking of the human patella. J Biomech 25:637–643

    Article  PubMed  CAS  Google Scholar 

  63. Koyonos L, Stulberg SD, Moen TC, Bart G, Granieri M (2009) Sources of error in total knee arthroplasty. Orthopedics 32:317

    Article  PubMed  Google Scholar 

  64. Krackow KA, Phillips MJ, Bayers-Thering M, Serpe L, Mihalko WM (2003) Computer-assisted total knee arthroplasty: navigation in TKA. Orthopedics 26:1017–1023

    PubMed  Google Scholar 

  65. Lafortune MA, Cavanagh PR, Sommer HJ III, Kalenak A (1992) Three-dimensional kinematics of the human knee during walking. J Biomech 25:347–357

    Article  PubMed  CAS  Google Scholar 

  66. Laprade J, Lee R (2005) Real-time measurement of patellofemoral kinematics in asymptomatic subjects. Knee 12:63–72

    Article  PubMed  Google Scholar 

  67. Laskin RS, Beksac B (2006) Computer-assisted navigation in TKA: where we are and where we are going. Clin Orthop Relat Res 452:127–131

    Article  PubMed  Google Scholar 

  68. Mason JB, Fehring TK, Estok R, Banel D, Fahrbach K (2007) Meta-analysis of alignment outcomes in computer-assisted total knee arthroplasty surgery. J Arthroplasty 22:1097–1106

    Article  PubMed  Google Scholar 

  69. McPherson EJ (2006) Patellar tracking in primary total knee arthroplasty. Instr Course Lect 55:439–448

    PubMed  Google Scholar 

  70. Monk AP, Doll HA, Gibbons CL, Ostlere S, Beard DJ, Gill HS, Murray DW (2011) The patho-anatomy of patellofemoral subluxation. J Bone Joint Surg Br 93:1341–1347

    Article  PubMed  CAS  Google Scholar 

  71. Moro-oka TA, Hamai S, Miura H, Shimoto T, Higaki H, Fregly BJ, Iwamoto Y, Banks SA (2008) Dynamic activity dependence of in vivo normal knee kinematics. J Orthop Res 26:428–434

    Article  PubMed  Google Scholar 

  72. Moro-oka TA, Muenchinger M, Canciani JP, Banks SA (2007) Comparing in vivo kinematics of anterior cruciate-retaining and posterior cruciate-retaining total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 15:93–99

    Article  PubMed  Google Scholar 

  73. Noble PC, Conditt MA, Cook KF, Mathis KB (2006) The John Insall Award: patient expectations affect satisfaction with total knee arthroplasty. Clin Orthop Relat Res 452:35–43

    Article  PubMed  Google Scholar 

  74. Noble PC, Gordon MJ, Weiss JM, Reddix RN, Conditt MA, Mathis KB (2005) Does total knee replacement restore normal knee function? Clin Orthop Relat Res 431:157–165

    Article  PubMed  Google Scholar 

  75. Pagnano MW, Trousdale RT (2000) Asymmetric patella resurfacing in total knee arthroplasty. Am J Knee Surg 13:228–233

    PubMed  CAS  Google Scholar 

  76. Parker DA, Dunbar MJ, Rorabeck CH (2003) Extensor mechanism failure associated with total knee arthroplasty: prevention and management. J Am Acad Orthop Surg 11:238–247

    PubMed  Google Scholar 

  77. Post WR (2005) Patellofemoral pain: results of nonoperative treatment. Clin Orthop Relat Res 436:55–59

    Article  PubMed  Google Scholar 

  78. Powers CM, Chen YJ, Scher I, Lee TQ (2006) The influence of patellofemoral joint contact geometry on the modeling of three dimensional patellofemoral joint forces. J Biomech 39:2783–2791

    Article  PubMed  Google Scholar 

  79. Powers CM, Shellock FG, Pfaff M (1998) Quantification of patellar tracking using kinematic MRI. J Magn Reson Imaging 8:724–732

    Article  PubMed  CAS  Google Scholar 

  80. Ritter MA, Pierce MJ, Zhou H, Meding JB, Faris PM, Keating EM (1999) Patellar complications (total knee arthroplasty). Effect of lateral release and thickness. Clin Orthop Relat Res 367:149–157

    Article  PubMed  Google Scholar 

  81. Sakai N, Luo ZP, Rand JA, An KN (1996) Quadriceps forces and patellar motion in the anatomical model of the patellofemoral joint. Knee 3:1–7

    Article  Google Scholar 

  82. Sakai N, Luo ZP, Rand JA, An KN (2000) The influence of weakness in the vastus medialis oblique muscle on the patellofemoral joint: an in vitro biomechanical study. Clin Biomech (Bristol, Avon) 15:335–339

    Article  CAS  Google Scholar 

  83. Sasaki H, Kubo S, Matsumoto T, Muratsu H, Matsushita T, Ishida K, Takayama K, Oka S, Kurosaka M, Kuroda R (2011) The influence of patella height on intra-operative soft tissue balance in posterior-stabilized total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc. [Epub ahead of print]. doi:10.1007/s00167-011-1797-1

  84. Scuderi GR, Insall JN, Scott NW (1994) Patellofemoral pain after total knee arthroplasty. J Am Acad Orthop Surg 2:239–246

    PubMed  Google Scholar 

  85. Seil R, Pape D (2011) Causes of failure and etiology of painful primary total knee arthroplasty. Knee Surg Sports Traumatol Arthrosc 19:1418–1432

    Article  PubMed  Google Scholar 

  86. Shabshin N, Schweitzer ME, Morrison WB, Parker L (2004) MRI criteria for patella alta and baja. Skeletal Radiol 33:445–450

    Article  PubMed  Google Scholar 

  87. Sharkey PF, Hozack WJ, Rothman RH, Shastri S, Jacoby SM (2002) Insall Award paper. Why are total knee arthroplasties failing today? Clin Orthop Relat Res 404:7–13

    Article  PubMed  Google Scholar 

  88. Sheehan FT, Derasari A, Fine KM, Brindle TJ, Alter KE (2010) Q-angle and J-sign: indicative of maltracking subgroups in patellofemoral pain. Clin Orthop Relat Res 468:266–275

    Article  PubMed  Google Scholar 

  89. Siston RA, Giori NJ, Goodman SB, Delp SL (2007) Surgical navigation for total knee arthroplasty: a perspective. J Biomech 40:728–735

    Article  PubMed  Google Scholar 

  90. Sparmann M, Wolke B, Czupalla H, Banzer D, Zink A (2003) Positioning of total knee arthroplasty with and without navigation support. A prospective, randomised study. J Bone Joint Surg Br 85:830–835

    PubMed  CAS  Google Scholar 

  91. Stiehl JB (2007) Computer navigation in primary total knee arthroplasty. J Knee Surg 20:158–164

    PubMed  Google Scholar 

  92. Strachan RK, Merican AM, Devadasan B, Maheshwari R, Amis AA (2009) A technique of staged lateral release to correct patellar tracking in total knee arthroplasty. J Arthroplasty 24:735–742

    Article  PubMed  Google Scholar 

  93. Stulberg SD (2003) How accurate is current TKR instrumentation? Clin Orthop Relat Res 416:177–184

    Article  PubMed  Google Scholar 

  94. Tang TS, MacIntyre NJ, Gill HS, Fellows RA, Hill NA, Wilson DR, Ellis RE (2004) Accurate assessment of patellar tracking using fiducial and intensity-based fluoroscopic techniques. Med Image Anal 8:343–351

    Article  PubMed  CAS  Google Scholar 

  95. Theiss SM, Kitziger KJ, Lotke PS, Lotke PA (1996) Component design affecting patellofemoral complications after total knee arthroplasty. Clin Orthop Relat Res 326:183–187

    Article  PubMed  Google Scholar 

  96. Tria AJ Jr (2006) The evolving role of navigation in minimally invasive total knee arthroplasty. Am J Orthop (Belle Mead NJ) 35:18–22

    Google Scholar 

  97. Utting MR, Davies G, Newman JH (2005) Is anterior knee pain a predisposing factor to patellofemoral osteoarthritis? Knee 12:362–365

    Article  PubMed  CAS  Google Scholar 

  98. Van Kampen A, Huiskes R (1990) The three-dimensional tracking pattern of the human patella. J Orthop Res 8:372–382

    Article  PubMed  Google Scholar 

  99. Waters TS, Bentley G (2003) Patellar resurfacing in total knee arthroplasty. A prospective, randomized study. J Bone Joint Surg Am 85-A:212–217

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Belvedere Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 ESSKA

About this chapter

Cite this chapter

Belvedere, C., Ensini, A., Leardini, A., Feliciangeli, A., Giannini, S. (2013). Patellar Tracking in Computer-Assisted Surgery. In: Catani, F., Zaffagnini, S. (eds) Knee Surgery using Computer Assisted Surgery and Robotics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-31430-8_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-31430-8_18

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-31429-2

  • Online ISBN: 978-3-642-31430-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics