Skip to main content

177Lu/90Y Intermediate-Affinity Monoclonal Antibodies Targeting EGFR and HER2/c-neu: Preparation and Preclinical Evaluation

  • Conference paper
  • First Online:
Theranostics, Gallium-68, and Other Radionuclides

Abstract

The epidermal growth factor receptor (EGFR) is a rational target of anticancer therapies due to its overexpression in a variety of malignant epithelial tumors. Nevertheless, this antigen is also present in normal tissues. Consequently, monoclonal antibodies which selectively bind to EGFR-overexpressing tumors will be choice drug candidates for development of radioimmunoconjugates (RIC). Nimotuzumab (h-R3) and trastuzumab are monoclonal antibodies (mAbs) which would preferentially target tissues with EGFR and HER2 overexpression, respectively. In this chapter, we describe preparation and evaluation of the targeting properties of RIC formed by 177Lu/90Y and monoclonal antibodies which selectively target EGFR- and HER2/c-neu-overexpressing tissues. mAbs were labeled with n.c.a. 177Lu/90Y using bifunctional chelating agents. RIC binding properties and toxicity were evaluated in vitro using cell lines with varying antigen expression. In vivo tumor targeting properties of RIC were evaluated in mice bearing colorectal (SNU-C2B) and A431 tumor xenografts. RICs were prepared with specific activities up to 2 GBq/mg without significant loss in biological activity. 90Y-h-R3/trastuzumab increased cell growth inhibition compared with unmodified mAbs or 90YCl3 alone in cell lines with overexpression of the target antigen. 177Lu-h-R3 showed significantly higher uptake in A431 (22.8 ± 3.1% ID/g) than in SNU-C2B (8.8 ± 4.1% ID/g) xenografts at 72 h post injection, indicating strong association between tumor uptake and EGFR expression levels.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Almqvist Y, Steffen AC, Tolmachev V, Divgi CR, Sundin A (2006) In vitro and in vivo characterization of 177Lu-huA33: a radioimmunoconjugate against colorectal cancer. Nucl Med Biol 33(8):991–998

    Article  PubMed  CAS  Google Scholar 

  • Beckford Vera DR, Eigner S, Beran M, Henke KE, Laznickova A, Laznicek M et al (2011) Preclinical evaluation of (177)lu-nimotuzumab: a potential tool for radioimmunotherapy of epidermal growth factor receptor-overexpressing tumors. Cancer Biother Radiopharm 26(3):287–297

    Article  Google Scholar 

  • Beckford Vera DR, Eigner S, Henke KE, Lebeda O, Melichar F, Beran M (2011) Preparation and preclinical evaluation of 177Lu-nimotuzumab targeting epidermal growth factor receptor overexpressing tumors. Nucl Med Biol 39(1):3–13

    Article  Google Scholar 

  • Beckford Vera DR, Xiques Castillo A, Leyva Montaña R, Pérez Malo M, Gonzalez Casanova E, Zamora Barrabi M (2007) New radioimmunoconjugate 90Y-DOTA-h-R3. Synthesis and radiolabeling. Nucleus 41:3–8

    Google Scholar 

  • Blend MJ, Stastny JJ, Swanson SM, Brechbiel MW (2003) Labeling anti-HER2/neu monoclonal antibodies with 111In and 90Y using a bifunctional DTPA chelating agent. Cancer Biother Radiopharm 18(3):355–363

    Article  PubMed  CAS  Google Scholar 

  • Boland WK, Bebb G (2009) Nimotuzumab: a novel anti-EGFR monoclonal antibody that retains anti-EGFR activity while minimizing skin toxicity. Expert Opin Biol Ther 9(9):1199–1206

    Article  PubMed  CAS  Google Scholar 

  • Boswell CA, Brechbiel MW (2007) Development of radioimmunotherapeutic and diagnostic antibodies: an inside-out view. Nucl Med Biol 34(7):757–778

    Article  PubMed  CAS  Google Scholar 

  • Brouwers AH, van Eerd JE, Frielink C, Oosterwijk E, Oyen WJ, Corstens FH et al (2004) Optimization of radioimmunotherapy of renal cell carcinoma: labeling of monoclonal antibody cG250 with 131I, 90Y, 177Lu, or 186Re. J Nucl Med 45(2):327–337

    PubMed  CAS  Google Scholar 

  • Casaco A, Lopez G, Garcia I, Rodriguez JA, Fernandez R, Figueredo J et al (2008) Phase I single-dose study of intracavitary-administered Nimotuzumab labeled with 188 Re in adult recurrent high-grade glioma. Cancer Biol Ther 7(3):333–339

    Article  PubMed  CAS  Google Scholar 

  • Coliva A, Zacchetti A, Luison E, Tomassetti A, Bongarzone I, Seregni E et al (2005) 90Y Labeling of monoclonal antibody MOv18 and preclinical validation for radioimmunotherapy of human ovarian carcinomas. Cancer Immunol Immunother 54(12):1200–1213

    Article  PubMed  CAS  Google Scholar 

  • Costantini DL, Chan C, Cai Z, Vallis KA, Reilly RM (2007) (111)In-labeled trastuzumab (Herceptin) modified with nuclear localization sequences (NLS): an Auger electron-emitting radiotherapeutic agent for HER2/neu-amplified breast cancer. J Nucl Med 48(8):1357–1368

    Article  PubMed  CAS  Google Scholar 

  • DeNardo SJ, DeNardo GL, Yuan A, Richman CM, O’Donnell RT, Lara PN et al (2003) Enhanced therapeutic index of radioimmunotherapy (RIT) in prostate cancer patients: comparison of radiation dosimetry for 1,4,7,10-tetraazacyclododecane-N, N’, N”, N”‘-tetraacetic acid (DOTA)-peptide versus 2IT-DOTA monoclonal antibody linkage for RIT. Clin Cancer Res 9(10 Pt 2):3938S–3944S

    PubMed  CAS  Google Scholar 

  • Eckelman W (2011) Review of new clinical applications of radiometal labeled radiopharmaceuticals. Nucl Med Biol 38(5):613–616

    Article  PubMed  CAS  Google Scholar 

  • Ehrhardt GJ, Ketring AR, Ayers LM (1998) Reactor-produced radionuclides at the University of Missouri Research Reactor. Appl Radiat Isot 49(4):295–297

    Article  PubMed  CAS  Google Scholar 

  • Garrido G, Tikhomirov IA, Rabasa A, Yang E, Gracia E, Iznaga N et al (2011) Bivalent binding by intermediate affinity of nimotuzumab: a contribution to explain antibody clinical profile. Cancer Biol Ther 11(4):373–382

    Article  PubMed  CAS  Google Scholar 

  • Griffiths GL, Govindan SV, Sharkey RM, Fisher DR, Goldenberg DM (2003) 90Y-DOTA-hLL2: an agent for radioimmunotherapy of non-Hodgkin’s lymphoma. J Nucl Med 44(1):77–84

    PubMed  CAS  Google Scholar 

  • Iznaga Escobar N, Morales AM, Duconge J, Torres IC, Fernandez E, Gomez JA (1998) Pharmacokinetics, biodistribution and dosimetry of 99mTc-labeled anti-human epidermal growth factor receptor humanized monoclonal antibody R3 in rats. Nucl Med Biol 25(1):17–23

    Article  PubMed  CAS  Google Scholar 

  • Jasnis MA, Fiszman GL (2011) Molecular Mechanisms of Trastuzumab Resistance in HER2 Overexpressing Breast Cancer. Int J Breast Cancer 2011:11

    Google Scholar 

  • Kamath S, Buolamwini JK (2006) Targeting EGFR and HER-2 receptor tyrosine kinases for cancer drug discovery and development. Med Res Rev 26(5):569–594

    Article  PubMed  CAS  Google Scholar 

  • Knogler K, Grunberg J, Novak-Hofer I, Zimmermann K, Schubiger PA (2006) Evaluation of 177Lu-DOTA-labeled aglycosylated monoclonal anti-L1-CAM antibody chCE7: influence of the number of chelators on the in vitro and in vivo properties. Nucl Med Biol 33(7):883–889

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Hamacher K, Vallabhajosula S, Kothari P, Bastidas D, Bander N et al (2004) Determination of immunoreactive fraction of radiolabeled monoclonal antibodies: what is an appropriate method? Cancer Biother Radiopharm 19(6):706–715

    Article  PubMed  CAS  Google Scholar 

  • Kukis DL, DeNardo SJ, DeNardo GL, O’Donnell RT, Meares CF (1998) Optimized conditions for chelation of yttrium-90-DOTA immunoconjugates. J Nucl Med 39(12):2105–2110

    PubMed  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227(5259):680–685

    Article  PubMed  CAS  Google Scholar 

  • Lee FT, Mountain AJ, Kelly MP, Hall C, Rigopoulos A, Johns TG et al (2005) Enhanced efficacy of radioimmunotherapy with 90Y-CHX-A”-DTPA-hu3S193 by inhibition of epidermal growth factor receptor (EGFR) signaling with EGFR tyrosine kinase inhibitor AG1478. Clin Cancer Res 11(19 Pt 2):7080s–7086s

    Article  PubMed  CAS  Google Scholar 

  • Lee S-Y, Hong Y-D, Felipe PM, Pyun M-S, Choi S-J (2009) Radiolabeling of monoclonal anti-CD105 with 177Lu for potential use in radioimmunotherapy. Appl Radiat Isot 67(7–8):1366–1369

    Article  PubMed  CAS  Google Scholar 

  • Lewis MR, Kao JY, Anderson AL, Shively JE, Raubitschek A (2001) An improved method for conjugating monoclonal antibodies with N-hydroxysulfosuccinimidyl DOTA. Bioconjug Chem 12(2):320–324

    Article  PubMed  CAS  Google Scholar 

  • Li S, Schmitz KR, Jeffrey PD, Wiltzius JJ, Kussie P, Ferguson KM (2005) Structural basis for inhibition of the epidermal growth factor receptor by cetuximab. Cancer Cell 7(4):301–311

    Article  PubMed  CAS  Google Scholar 

  • Liu S (2008) Bifunctional coupling agents for radiolabeling of biomolecules and target-specific delivery of metallic radionuclides. Adv Drug Deliv Rev 60(12):1347–1370

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Edwards DS (2001a) Bifunctional chelators for therapeutic lanthanide radiopharmaceuticals. Bioconjug Chem 12(1):7–34

    Article  PubMed  Google Scholar 

  • Liu S, Edwards DS (2001b) Stabilization of (90)Y-labeled DOTA-biomolecule conjugates using gentisic acid and ascorbic acid. Bioconjug Chem 12(4):554–558

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Pietryka J, Ellars CE, Edwards DS (2002) Comparison of yttrium and indium complexes of DOTA-BA and DOTA-MBA: models for (90)Y- and (111)In-labeled DOTA-biomolecule conjugates. Bioconjug Chem 13(4):902–913

    Article  PubMed  CAS  Google Scholar 

  • Liu S, Ellars CE, Edwards DS (2003) Ascorbic acid: useful as a buffer agent and radiolytic stabilizer for metalloradiopharmaceuticals. Bioconjug Chem 14(5):1052–1056

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Liu Y, Jia B, Zhao H, Jin X, Li F et al (2010) Epidermal growth factor receptor-targeted radioimmunotherapy of human head and neck cancer xenografts using 90Y-labeled fully human antibody panitumumab. Mol Cancer Ther 9(8):2297–2308

    Article  PubMed  CAS  Google Scholar 

  • Mateo C, Moreno E, Amour K, Lombardero J, Harris W, Perez R (1997) Humanization of a mouse monoclonal antibody that blocks the epidermal growth factor receptor: recovery of antagonistic activity. Immunotechnology 3(1):71–81

    Article  PubMed  CAS  Google Scholar 

  • Mausner LF, Srivastava SC (1993) Selection of radionuclides for radioimmunotherapy. Med Phys 20(2 Pt 2):503–509

    Article  PubMed  CAS  Google Scholar 

  • Milenic DE, Garmestani K, Chappell LL, Dadachova E, Yordanov A, Ma D et al (2002) In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl Med Biol 29(4):431–442

    Article  PubMed  CAS  Google Scholar 

  • Mohsin H, Jia F, Sivaguru G, Hudson MJ, Shelton TD, Hoffman TJ et al (2006) Radiolanthanide-labeled monoclonal antibody CC49 for radioimmunotherapy of cancer: biological comparison of DOTA conjugates and 149Pm, 166Ho, and 177Lu. Bioconjug Chem 17(2):485–492

    Article  PubMed  CAS  Google Scholar 

  • Mohsin H, Fitzsimmons J, Shelton T, Hoffman TJ, Cutler CS, Lewis MR et al (2007) Preparation and biological evaluation of 111In-, 177Lu- and 90Y-labeled DOTA analogues conjugated to B72.3. Nucl Med Biol 34(5):493–502

    Article  PubMed  CAS  Google Scholar 

  • Morales AA, Duconge J, Alvarez-Ruiz D, Becquer-Viart ML, Nunez-Gandolff G, Fernandez E et al (2000) Humanized versus murine anti-human epidermal growth factor receptor monoclonal antibodies for immunoscintigraphic studies. Nucl Med Biol 27(2):199–206

    Article  PubMed  CAS  Google Scholar 

  • Morales-Morales A, Duconge J, Caballero-Torres I, Nunez-Gandolff G, Fernandez E, Iznaga-Escobar N (1999) Biodistribution of 99mTc-labeled anti-human epidermal growth factor receptor (EGF-R) humanized monoclonal antibody h-R3 in a xenograft model of human lung adenocarcinoma. Nucl Med Biol 26(3):275–279

    Article  PubMed  CAS  Google Scholar 

  • Motta-Hennessy C, Sharkey RM, Goldenberg DM (1991) Labeling of monoclonal antibody conjugates with 90Y. Int J Rad Appl Instrum A 42(5):421–426

    Article  PubMed  CAS  Google Scholar 

  • Nahta R, Esteva FJ (2006) HER2 therapy: molecular mechanisms of trastuzumab resistance. Breast Cancer Res 8(6):215

    Article  PubMed  Google Scholar 

  • Nayak TK, Brechbiel MW (2009) Radioimmunoimaging with longer-lived positron-emitting radionuclides: potentials and challenges. Bioconjug Chem 20(5):825–841

    Article  PubMed  CAS  Google Scholar 

  • Papi S, Martano L, Garaboldi L, Rossi A, Cremonesi M, Grana CM et al (2010) Radiolabeling optimization and reduced staff radiation exposure for high-dose 90Y-ibritumomab tiuxetan (HD-Zevalin). Nucl Med Biol 37(1):85–93

    Article  PubMed  CAS  Google Scholar 

  • Rasaneh S, Rajabi H (2010) Hossein Babaei M, Johari Daha F. Toxicity of trastuzumab labeled 177Lu on MCF7 and SKBr3 cell lines. Appl Radiat Isot 68(10):1964–1966

    Article  PubMed  CAS  Google Scholar 

  • Reichert JM (2011) Antibody-based therapeutics to watch in 2011. MAbs 3(1):76–99

    Article  PubMed  Google Scholar 

  • Rocha-Lima CM, Soares HP, Raez LE, Singal R (2007) EGFR targeting of solid tumors. Cancer Control 14(3):295–304

    PubMed  Google Scholar 

  • Rojo F, Gracias E, Villena N, Cruz T, Corominas JM, Corradino I et al (2010) Pharmacodynamic trial of nimotuzumab in unresectable squamous cell carcinoma of the head and neck: a SENDO foundation study. Clin Cancer Res 16(8):2474–2482

    Article  PubMed  CAS  Google Scholar 

  • Romond EH, Perez EA, Bryant J, Suman VJ, Geyer CE Jr, Davidson NE et al (2005) Trastuzumab plus adjuvant chemotherapy for operable HER2-positive breast cancer. N Engl J Med 353(16):1673–1684

    Article  PubMed  CAS  Google Scholar 

  • Rudnick SI, Adams GP (2009) Affinity and avidity in antibody-based tumor targeting. Cancer Biother Radiopharm 24(2):155–161

    Article  PubMed  CAS  Google Scholar 

  • Tabrizi M, Tseng C, Roskos L (2006) Elimination mechanisms of therapeutic monoclonal antibodies. Drug Discov Today 11(1–2):81–88

    Article  PubMed  CAS  Google Scholar 

  • Talavera A, Friemann R, Gomez-Puerta S, Martinez-Fleites C, Garrido G, Rabasa A et al (2009) Nimotuzumab, an antitumor antibody that targets the epidermal growth factor receptor, blocks ligand binding while permitting the active receptor conformation. Cancer Res 69(14):5851–5859

    Article  PubMed  CAS  Google Scholar 

  • Vallis KA, Reilly RM, Chen P, Oza A, Hendler A, Cameron R et al (2002) A phase I study of 99mTc-hR3 (DiaCIM), a humanized immunoconjugate directed towards the epidermal growth factor receptor. Nucl Med Commun 23(12):1155–1164

    Article  PubMed  CAS  Google Scholar 

  • Velikyan I, Sundberg AL, Lindhe O, Hoglund AU, Eriksson O, Werner E et al (2005) Preparation and evaluation of (68)Ga-DOTA-hEGF for visualization of EGFR expression in malignant tumors. J Nucl Med 46(11):1881–1888

    PubMed  CAS  Google Scholar 

  • Vogel CL, Cobleigh MA, Tripathy D, Gutheil JC, Harris LN, Fehrenbacher L et al (2002) Efficacy and safety of trastuzumab as a single agent in first-line treatment of HER2-overexpressing metastatic breast cancer. J Clin Oncol 20(3):719–726

    Article  PubMed  CAS  Google Scholar 

  • Xiques CA, Olive KI, Gonzalez EC, Beckford D, Montaña RL, Alvarez AM, Alvarez EO (2009) An adapted purification procedure to improve the quality of 90Y for clinical use. Radiochim Acta 97(97):739–746

    Google Scholar 

  • Zacchetti A, Coliva A, Luison E, Seregni E, Bombardieri E, Giussani A et al (2009) (177)Lu- labeled MOv18 as compared to (131)I- or (90)Y-labeled MOv18 has the better therapeutic effect in eradication of alpha folate receptor-expressing tumor xenografts. Nucl Med Biol 36(7):759–770

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge Isotope Technologies Garching GmbH (ITG), Munich, Germany for providing the 177Lu n.c.a. The authors would like to thank Dr. Normando Iznaga and Dr. Angel Casacó (Center of Molecular Immunology) for their outstanding support in the flow cytometric study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis R. Beckford Vera .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Beckford Vera, D.R., Eigner, S., Eigner Henke, K., Leyva Montaña, R., Melichar, F., Beran, M. (2013). 177Lu/90Y Intermediate-Affinity Monoclonal Antibodies Targeting EGFR and HER2/c-neu: Preparation and Preclinical Evaluation. In: Baum, R., Rösch, F. (eds) Theranostics, Gallium-68, and Other Radionuclides. Recent Results in Cancer Research, vol 194. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-27994-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-27994-2_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-27993-5

  • Online ISBN: 978-3-642-27994-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics