Skip to main content

Neuroendocrine Alterations in the Fragile X Mouse

  • Chapter
  • First Online:
Modeling Fragile X Syndrome

Part of the book series: Results and Problems in Cell Differentiation ((RESULTS,volume 54))

Abstract

The expression of GABAA receptors in the fragile X mouse brain is significantly downregulated. We additionally found that the expression of somatostatin and voltage-sensitive calcium channels (VSCCs) is also reduced. GABAA and the VSCCs, through a synergistic interaction, perform a critical role in mediating activity-dependent developmental processes. In the developing brain, GABA is excitatory and its actions are mediated through GABAA receptors. Subsequent to GABA-mediated depolarization, the VSCCs are activated and intracellular calcium is increased, which mediates gene transcription and other cellular events. GABAergic excitation mediated through GABAA receptors and the subsequent activation of the VSCCs are critically important for the establishment of neuronal connectivity within immature neuronal networks. Data from our laboratories suggest that there is a dysregulation of axonal pathfinding during development in the fragile X mouse brain and that this is likely due to a dysregulation of the synergistic interactions of GABA and VSCC. Thus, we hypothesize that the altered expression of these critical channels in the early stages of brain development leads to altered activity-dependent gene expression that may potentially lead to the developmental delay characteristic of the fragile X syndrome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arimura A, Fishback JB (1981) Somatostatin: regulation of secretion. Neuroendocrinology 33:246–256

    Article  PubMed  CAS  Google Scholar 

  • Augustine GJ, Santamaria F, Tanaka K (2003) Local calcium signaling in neurons. Neuron 40:331–346

    Article  PubMed  CAS  Google Scholar 

  • Babb TL, Pretorius JK, Kupfer WR, Crandall PH (1989) Glutamate decarboxylase-immunoreactive neurons are preserved in human epileptic hippocampus. J Neurosci 9:2562–2574

    PubMed  CAS  Google Scholar 

  • Bakker CE, Verheij C, Willemsen R, Vanderhelm R, Oerlemans F, Vermey M, Bygrave A, Hoogeveen AT, Oostra BA, Reyniers E, Deboulle K, Dhooge R, Cras P, Vanvelzen D, Nagels G, Martin JJ, Dedeyn PP, Darby JK, Willems PJ (1994) Fmr1 knockout mice: a model to study fragile X mental retardation. Cell 78:23–33

    Google Scholar 

  • Barbin G, Pollard H, Gaiarsa JL, Ben-Ari Y (1993) Involvement of GABAA receptors in the outgrowth of cultured hippocampal neurons. Neurosci Lett 152:150–154

    Article  PubMed  CAS  Google Scholar 

  • Bartfai T, Iverfeldt K, Fisone G, Serfozo P (1988) Regulation of the release of coexisting neurotransmitters. Annu Rev Pharmacol Toxicol 28:285–310

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    Article  PubMed  CAS  Google Scholar 

  • Behar TN, Li YX, Tran HT, Ma W, Dunlap V, Scott C, Barker JL (1996) GABA stimulates chemotaxis and chemokinesis of embryonic cortical neurons via calcium-dependent mechanisms. J Neurosci 16:1808–1818

    PubMed  CAS  Google Scholar 

  • Behar TN, Schaffner AE, Scott CA, O’Connell C, Barker JL (1998) Differential response of cortical plate and ventricular zone cells to GABA as a migration stimulus. J Neurosci 18:6378–6387

    PubMed  CAS  Google Scholar 

  • Ben-Ari Y, Cherubini E, Corradetti R, Gaiarsa JL (1989) Giant synaptic potentials in immature rat CA3 hippocampal neurones. J Physiol 416:303–325

    PubMed  CAS  Google Scholar 

  • Benarroch EE (2010) Neural control of the bladder: recent advances and neurologic implications. Neurology 75:1839–1846

    Article  PubMed  Google Scholar 

  • Bergmann I, Nitsch R, Frotscher M (1991) Area-specific morphological and neurochemical maturation of non-pyramidal neurons in the rat hippocampus as revealed by parvalbumin immuno-cytochemistry. Anat Embryol (Berl) 184:403–409

    Article  CAS  Google Scholar 

  • Bloodgood BL, Sabatini BL (2007) Ca(2+) signaling in dendritic spines. Curr Opin Neurobiol 17:345–351

    Article  PubMed  CAS  Google Scholar 

  • Bodenant C, Leroux P, Gonzalez BJ, Vaudry H (1991) Transient expression of somatostatin receptors in the rat visual system during development. Neuroscience 41:595–606

    Article  PubMed  CAS  Google Scholar 

  • Cao YQ (2006) Voltage-gated calcium channels and pain. Pain 126:5–9

    Article  PubMed  CAS  Google Scholar 

  • Chen L, Toth M (2001) Fragile X mice develop sensory hyperreactivity to auditory stimuli. Neuroscience 103:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Cherubini E, Rovira C, Gaiarsa JL, Corradetti R, Ben Ari Y (1990) GABA mediated excitation in immature rat CA3 hippocampal neurons. Int J Dev Neurosci 8:481–490

    Article  PubMed  CAS  Google Scholar 

  • Christie MJ, Williams JT, North RA (1989) Electrical coupling synchronizes subthreshold activity in locus coeruleus neurons in vitro from neonatal rats. J Neurosci 9:3584–3589

    PubMed  CAS  Google Scholar 

  • Deutch C, Spencer S, Robbins R, Cicchetti D, Spencer D (1991) Interictal spikes and hippocampal somatostatin levels in temporal lobe epilepsy. Epilepsia 32:174–178

    Article  PubMed  CAS  Google Scholar 

  • D’Hulst C, Heulens I, Brouwer JR, Willemsen R, De Geest N, Reeve SP, De Deyn PP, Hassan BA, Kooy RF (2009) Expression of the GABAergic system in animal models for fragile X syndrome and fragile X associated tremor/ataxia syndrome (FXTAS). Brain Res 1253:176–183

    Article  PubMed  Google Scholar 

  • Durand GM, Kovalchuk Y, Konnerth A (1996) Long-term potentiation and functional synapse induction in developing hippocampus. Nature 381:71–75

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Ding XH, Scalia J, Trenkner E, Brown WT, Dobkin C (2005) Decreased GABA(A) receptor expression in the seizure-prone fragile X mouse. Neurosci Lett 377:141–146

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Boukarrou L, L’Amoreaux W (2009) Taurine supplementation and pancreatic remodeling. Adv Exp Med Biol 643:353–358

    Article  PubMed  CAS  Google Scholar 

  • El Idrissi A, Yan X, Sidime F, L’Amoreaux W (2010) Neuro-endocrine basis for altered plasma glucose homeostasis in the Fragile X mouse. J Biomed Sci 17:S8

    Article  PubMed  Google Scholar 

  • Erlander MG, Tillakaratne NJ, Feldblum S, Patel N, Tobin AJ (1991) Two genes encode distinct glutamate decarboxylases. Neuron 7:91–100

    Article  PubMed  CAS  Google Scholar 

  • Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ (1996) Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–1187

    Article  PubMed  CAS  Google Scholar 

  • Fodor M, Oudejans CB, Delemarre-van de Waal HA (2001) Absence of androgen receptor in the growth hormone releasing hormone-containing neurones in the rat mediobasal hypothalamus. J Neuroendocrinol 13:724–727

    Article  PubMed  CAS  Google Scholar 

  • Ganguly K, Schinder AF, Wong ST, Poo M (2001) GABA itself promotes the developmental switch of neuronal GABAergic responses from excitation to inhibition. Cell 105:521–532

    Article  PubMed  CAS  Google Scholar 

  • Hagerman RJ (2002) Physical and behavioral phenotype. In: Hagerman RJ, Hagerman PJ (eds) Fragile X syndrome: diagnosis, treatment and research. Johns Hopkins University Press, Baltimore, MD, pp 3–109

    Google Scholar 

  • Hansen L, Hartmann B, Bisgaard T, Mineo H, Jorgensen PN, Holst JJ (2000) Somatostatin restrains the secretion of glucagon-like peptide-1 and −2 from isolated perfused porcine ileum. Am J Physiol Endocrinol Metab 278:E1010–E1018

    PubMed  CAS  Google Scholar 

  • Hassan HA, Enright WJ, Tucker HA, Merkel RA (2001) Estrogen and androgen elicit growth hormone release via dissimilar patterns of hypothalamic neuropeptide secretion. Steroids 66:71–80

    Article  PubMed  CAS  Google Scholar 

  • Herbison AE (1994) Somatostatin-immunoreactive neurones in the hypothalamic ventromedial nucleus possess oestrogen receptors in the male and female rat. J Neuroendocrinol 6:323–328

    Article  PubMed  CAS  Google Scholar 

  • Herbison AE (1995) Sexually dimorphic expression of androgen receptor immunoreactivity by somatostatin neurones in rat hypothalamic periventricular nucleus and bed nucleus of the stria terminalis. J Neuroendocrinol 7:543–553

    Article  PubMed  CAS  Google Scholar 

  • Herbison AE, Theodosis DT (1993) Absence of estrogen receptor immunoreactivity in somatostatin (SRIF) neurons of the periventricular nucleus but sexually dimorphic colocalization of estrogen receptor and SRIF immunoreactivities in neurons of the bed nucleus of the stria terminalis. Endocrinology 132:1707–1714

    Article  PubMed  CAS  Google Scholar 

  • Hill DJ, Petrik J, Arany E (1998) Growth factors and the regulation of fetal growth. Diabetes Care 21(Suppl 2):B60–B69

    PubMed  Google Scholar 

  • Hokfelt T (1991) Neuropeptides in perspective: the last ten years. Neuron 7:867–879

    Article  PubMed  CAS  Google Scholar 

  • Hosokawa Y, Sciancalepore M, Stratta F, Martina M, Cherubini E (1994) Developmental changes in spontaneous GABAA-mediated synaptic events in rat hippocampal CA3 neurons. Eur J Neurosci 6:805–813

    Article  PubMed  CAS  Google Scholar 

  • Ikeda Y, Nishiyama N, Saito H, Katsuki H (1997) GABAA receptor stimulation promotes survival of embryonic rat striatal neurons in culture. Brain Res Dev Brain Res 98:253–258

    Article  PubMed  CAS  Google Scholar 

  • Ishibashi H, Akaike N (1995) Somatostatin modulates high-voltage-activated Ca2+ channels in freshly dissociated rat hippocampal neurons. J Neurophysiol 74:1028–1036

    PubMed  CAS  Google Scholar 

  • Jiang M, Swann JW (1997) Expression of calretinin in diverse neuronal populations during development of rat hippocampus. Neuroscience 81:1137–1154

    Article  PubMed  CAS  Google Scholar 

  • Kamegai J, Tamura H, Shimizu T, Ishii S, Sugihara H, Wakabayashi I (2001) Estrogen receptor (ER)alpha, but not ERbeta, gene is expressed in growth hormone-releasing hormone neurons of the male rat hypothalamus. Endocrinology 142:538–543

    Article  PubMed  CAS  Google Scholar 

  • Kang BN, Jeong KS, Park SJ, Kim SJ, Kim TH, Kim HJ, Ryu SY (2001) Regulation of apoptosis by somatostatin and substance P in peritoneal macrophages. Regul Pept 101:43–49

    Article  PubMed  CAS  Google Scholar 

  • Kanno T, Rorsman P, Gopel SO (2002) Glucose-dependent regulation of rhythmic action potential firing in pancreatic beta-cells by K(ATP)-channel modulation. J Physiol 545:501–507

    Article  PubMed  CAS  Google Scholar 

  • Katz DM, He H, White M (1992) Transient expression of somatostatin peptide is a widespread feature of developing sensory and sympathetic neurons in the embryonic rat. J Neurobiol 23:855–870

    Article  PubMed  CAS  Google Scholar 

  • Krantic S, Goddard I, Saveanu A, Giannetti N, Fombonne J, Cardoso A, Jaquet P, Enjalbert A (2004) Novel modalities of somatostatin actions. Eur J Endocrinol 151:643–655

    Article  PubMed  CAS  Google Scholar 

  • Kung AW, Michon J, Tai KS, Chan FL (1996) The effect of somatostatin versus corticosteroid in the treatment of Graves’ ophthalmopathy. Thyroid 6:381–384

    Article  PubMed  CAS  Google Scholar 

  • Kungel M, Friauf E (1995) Somatostatin and leu-enkephalin in the rat auditory brainstem during fetal and postnatal development. Anat Embryol (Berl) 191:425–443

    Article  CAS  Google Scholar 

  • Kuwahara S, Kesuma Sari D, Tsukamoto Y, Tanaka S, Sasaki F (2004a) Age-related changes in growth hormone (GH)-releasing hormone and somatostatin neurons in the hypothalamus and in GH cells in the anterior pituitary of female mice. Brain Res 1025:113–122

    Article  PubMed  CAS  Google Scholar 

  • Kuwahara S, Sari DK, Tsukamoto Y, Tanaka S, Sasaki F (2004b) Age-related changes in growth hormone (GH) cells in the pituitary gland of male mice are mediated by GH-releasing hormone but not by somatostatin in the hypothalamus. Brain Res 998:164–173

    Article  PubMed  CAS  Google Scholar 

  • Laming PR, Cosby SL, O’Neill JK (1989) Seizures in the Mongolian gerbil are related to a deficiency in cerebral glutamine synthetase. Comp Biochem Physiol C 94:399–404

    Article  PubMed  CAS  Google Scholar 

  • LoTurco JJ, Owens DF, Heath MJ, Davis MB, Kriegstein AR (1995) GABA and glutamate depolarize cortical progenitor cells and inhibit DNA synthesis. Neuron 15:1287–1298

    Article  PubMed  CAS  Google Scholar 

  • Ma W, Behar T, Maric D, Maric I, Barker JL (1992) Neuroepithelial cells in the rat spinal cord express glutamate decarboxylase immunoreactivity in vivo and in vitro. J Comp Neurol 325:257–270

    Article  PubMed  CAS  Google Scholar 

  • Manfridi A, Forloni GL, Vezzani A, Fodritto F, De Simoni MG (1991) Functional and histological consequences of quinolinic and kainic acid-induced seizures on hippocampal somatostatin neurons. Neuroscience 41:127–135

    Article  PubMed  CAS  Google Scholar 

  • Meredith RM, Holmgren CD, Weidum M, Burnashev N, Mansvelder HD (2007) Increased threshold for spike-timing-dependent plasticity is caused by unreliable calcium signaling in mice lacking fragile X gene FMR1. Neuron 54:627–638

    Article  PubMed  CAS  Google Scholar 

  • Miller RJ (2001) Rocking and rolling with Ca2+ channels. Trends Neurosci 24:445–449

    Article  PubMed  CAS  Google Scholar 

  • Monno A, Rizzi M, Samanin R, Vezzani A (1993) Anti-somatostatin antibody enhances the rate of hippocampal kindling in rats. Brain Res 602:148–152

    Article  PubMed  CAS  Google Scholar 

  • Mooney R, Penn AA, Gallego R, Shatz CJ (1996) Thalamic relay of spontaneous retinal activity prior to vision. Neuron 17:863–874

    Article  PubMed  CAS  Google Scholar 

  • Moore SD, Madamba SG, Joels M, Siggins GR (1988) Somatostatin augments the M-current in hippocampal neurons. Science 239:278–280

    Article  PubMed  CAS  Google Scholar 

  • Musumeci SA, Bosco P, Calabrese G, Bakker C, De Sarro GB, Elia M, Ferri R, Oostra BA (2000) Audiogenic seizures susceptibility in transgenic mice with fragile X syndrome. Epilepsia 41:19–23

    Article  PubMed  CAS  Google Scholar 

  • Naus CC, Morrison JH, Bloom FE (1988) Development of somatostatin-containing neurons and fibers in the rat hippocampus. Brain Res 468:113–121

    PubMed  CAS  Google Scholar 

  • Nishimura T, Schwarzer C, Furtinger S, Imai H, Kato N, Sperk G (2001) Changes in the GABA-ergic system induced by trimethyltin application in the rat. Brain Res Mol Brain Res 97:1–6

    Article  PubMed  CAS  Google Scholar 

  • Obata K (1997) Excitatory and trophic action of GABA and related substances in newborn mice and organotypic cerebellar culture. Dev Neurosci 19:117–119

    Article  PubMed  CAS  Google Scholar 

  • Oliva AA Jr, Jiang M, Lam T, Smith KL, Swann JW (2000) Novel hippocampal interneuronal subtypes identified using transgenic mice that express green fluorescent protein in GABAergic interneurons. J Neurosci 20:3354–3368

    PubMed  CAS  Google Scholar 

  • Perez J, Vezzani A, Civenni G, Tutka P, Rizzi M, Schupbach E, Hoyer D (1995) Functional effects of D-Phe-c[Cys-Tyr-D-Trp-Lys-Val-Cys]-Trp-NH2 and differential changes in somatostatin receptor messenger RNAs, binding sites and somatostatin release in kainic acid-treated rats. Neuroscience 65:1087–1097

    Article  PubMed  CAS  Google Scholar 

  • Petrik J, Arany E, McDonald TJ, Hill DJ (1998) Apoptosis in the pancreatic islet cells of the neonatal rat is associated with a reduced expression of insulin-like growth factor II that may act as a survival factor. Endocrinology 139:2994–3004

    Article  PubMed  CAS  Google Scholar 

  • Qin M, Kang J, Smith CB (2002) Increased rates of cerebral glucose metabolism in a mouse model of fragile X mental retardation. Proc Natl Acad Sc i USA 99:15758–15763

    Google Scholar 

  • Rabinovitch A, Quigley C, Russell T, Patel Y, Mintz DH (1982) Insulin and multiplication stimulating activity (an insulin-like growth factor) stimulate islet (beta-cell replication in neonatal rat pancreatic monolayer cultures. Diabetes 31:160–164

    Article  PubMed  CAS  Google Scholar 

  • Rafaeloff R, Barlow SW, Rosenberg L, Vinik AI (1993) IGF-II but not IGF-I is involved in islet neogenesis in adult pancreas. Diabetes 42:137A

    Google Scholar 

  • Ribak CE, Byun MY, Ruiz GT, Reiffenstein RJ (1988) Increased levels of amino acid neurotransmitters in the inferior colliculus of the genetically epilepsy-prone rat. Epilepsy Res 2:9–13

    Article  PubMed  CAS  Google Scholar 

  • Ribak CE, Lauterborn JC, Navetta MS, Gall CM (1993) The inferior colliculus of GEPRs contains greater numbers of cells that express glutamate decarboxylase (GAD67) mRNA. Epilepsy Res 14:105–113

    Article  PubMed  CAS  Google Scholar 

  • Scaglia L, Cahill CJ, Finegood DT, Bonner-Weir S (1997) Apoptosis participates in the remodeling of the endocrine pancreas in the neonatal rat. Endocrinology 138:1736–1741

    Article  PubMed  CAS  Google Scholar 

  • Schwarzer C, Williamson JM, Lothman EW, Vezzani A, Sperk G (1995) Somatostatin, neuropeptide Y, neurokinin B and cholecystokinin immunoreactivity in two chronic models of temporal lobe epilepsy. Neuroscience 69:831–845

    Article  PubMed  CAS  Google Scholar 

  • Simonian SX, Murray HE, Gillies GE, Herbison AE (1998) Estrogen-dependent ontogeny of sex differences in somatostatin neurons of the hypothalamic periventricular nucleus. Endocrinology 139:1420–1428

    Article  PubMed  CAS  Google Scholar 

  • Spoerri PE (1988) Neurotrophic effects of GABA in cultures of embryonic chick brain and retina. Synapse 2:11–22

    Article  PubMed  CAS  Google Scholar 

  • Steriade M (1999) Coherent oscillations and short-term plasticity in corticothalamic networks. Trends Neurosci 22:337–345

    Article  PubMed  CAS  Google Scholar 

  • Strata F, Sciancalepore M, Cherubini E (1995) Cyclic AMP-dependent modulation of giant depolarizing potentials by metabotropic glutamate receptors in the rat hippocampus. J Physiol 489(Pt 1):115–125

    PubMed  CAS  Google Scholar 

  • Strata F, Atzori M, Molnar M, Ugolini G, Tempia F, Cherubini E (1997) A pacemaker current in dye-coupled hilar interneurons contributes to the generation of giant GABAergic potentials in developing hippocampus. J Neurosci 17:1435–1446

    PubMed  CAS  Google Scholar 

  • Strowski MZ, Blake AD (2008) Function and expression of somatostatin receptors of the endocrine pancreas. Mol Cell Endocrinol 286:169–179

    Article  PubMed  CAS  Google Scholar 

  • Sun QQ, Huguenard JR, Prince DA (2002) Somatostatin inhibits thalamic network oscillations in vitro: actions on the gabaergic neurons of the reticular nucleus. J Neurosci 22:5374–5386

    PubMed  CAS  Google Scholar 

  • Szabo G, Kartarova Z, Hoertnagl B, Somogyi R, Sperk G (2000) Differential regulation of adult and embryonic glutamate decarboxylases in rat dentate granule cells after kainate-induced limbic seizures. Neuroscience 100:287–295

    Article  PubMed  CAS  Google Scholar 

  • Takatsuki K, Shiosaka S, Sakanaka M, Inagaki S, Senba E, Takagi H, Tohyama M (1981) Somatostatin in the auditory system of the rat. Brain Res 213:211–216

    Article  PubMed  CAS  Google Scholar 

  • Takatsuki K, Sakanaka M, Shiosaka S, Inagaki S, Takagi H, Senba E, Hara Y, Kawai Y, Minagawa H, Iida H, Tohyama M (1982) Pathways and terminal fields of the cochlearofugal somatostatin tracts of very young rats. Brain Res 255:613–626

    PubMed  CAS  Google Scholar 

  • Thermos K (2008) Novel signals mediating the functions of somatostatin: the emerging role of NO/cGMP. Mol Cell Endocrinol 286:49–57

    Article  PubMed  CAS  Google Scholar 

  • Van Eden CG, Mrzljak L, Voorn P, Uylings HB (1989) Prenatal development of GABA-ergic neurons in the neocortex of the rat. J Comp Neurol 289:213–227

    Article  PubMed  Google Scholar 

  • Vasilaki A, Papadaki T, Notas G, Kolios G, Mastrodimou N, Hoyer D, Tsilimbaris M, Kouroumalis E, Pallikaris I, Thermos K (2004) Effect of somatostatin on nitric oxide production in human retinal pigment epithelium cell cultures. Invest Ophthalmol Vis Sci 45:1499–1506

    Article  PubMed  Google Scholar 

  • Vezzani A, Hoyer D (1999) Brain somatostatin: a candidate inhibitory role in seizures and epileptogenesis. Eur J Neurosci 11:3767–3776

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A, Ruiz R, Monno A, Rizzi M, Lindefors N, Samanin R, Brodin E (1993) Extracellular somatostatin measured by microdialysis in the hippocampus of freely moving rats: evidence for neuronal release. J Neurochem 60:671–677

    Article  PubMed  CAS  Google Scholar 

  • Vezzani A, Rizzi M, Conti M, Samanin R (2000) Modulatory role of neuropeptides in seizures induced in rats by stimulation of glutamate receptors. J Nutr 130:1046S–1048S

    PubMed  CAS  Google Scholar 

  • Werner H, Koch Y, Baldino F Jr, Gozes I (1988) Steroid regulation of somatostatin mRNA in the rat hypothalamus. J Biol Chem 263:7666–7671

    PubMed  CAS  Google Scholar 

  • Willis M, Kaufmann WA, Wietzorrek G, Hutter-Paier B, Moosmang S, Humpel C, Hofmann F, Windisch M, Knaus HG, Marksteiner J (2010) L-type calcium channel CaV 1.2 in transgenic mice overexpressing human AbetaPP751 with the London (V717I) and Swedish (K670M/N671L) mutations. J Alzheimers Dis 20:1167–1180

    PubMed  CAS  Google Scholar 

  • Wisniewski KE, Segan SM, Miezejeski CM, Sersen EA, Rudelli RD (1991) The Fra(X) syndrome: neurological, electrophysiological, and neuropathological abnormalities. Am J Med Genet 38:476–480

    Article  PubMed  CAS  Google Scholar 

  • Wong RO, Meister M, Shatz CJ (1993) Transient period of correlated bursting activity during development of the mammalian retina. Neuron 11:923–938

    Article  PubMed  CAS  Google Scholar 

  • Xiang G, Pan L, Xing W, Zhang L, Huang L, Yu J, Zhang R, Wu J, Cheng J, Zhou Y (2007) Identification of activity-dependent gene expression profiles reveals specific subsets of genes induced by different routes of Ca(2+) entry in cultured rat cortical neurons. J Cell Physiol 212:126–136

    Article  PubMed  CAS  Google Scholar 

  • Xie XM, Smart TG (1991) A physiological role for endogenous zinc in rat hippocampal synaptic neurotransmission. Nature 349:521–524

    Article  PubMed  CAS  Google Scholar 

  • Yan QJ, Asafo-Adjei PK, Arnold HM, Brown RE, Bauchwitz RP (2004) A phenotypic and molecular characterization of the fmr1-tm1Cgr fragile X mouse. Genes Brain Behav 3:337–359

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Nelson DA, Rubin WW, Katz LC (1995) Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14:7–17

    Article  PubMed  CAS  Google Scholar 

  • Zeitler P, Argente J, Chowen-Breed JA, Clifton DK, Steiner RA (1990) Growth hormone-releasing hormone messenger ribonucleic acid in the hypothalamus of the adult male rat is increased by testosterone. Endocrinology 127:1362–1368

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Support for this project was provided by FRAXA research foundation and PSC-CUNY to AEI. The authors wish to thank Francoise Sidime and Lorenz Neuwirth for their assistance with the glucose tolerance test, and the staff of the College of Staten Island’s vivarium.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdeslem El Idrissi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Idrissi, A.E., Yan, X., L’Amoreaux, W., Brown, W.T., Dobkin, C. (2012). Neuroendocrine Alterations in the Fragile X Mouse. In: Denman, R. (eds) Modeling Fragile X Syndrome. Results and Problems in Cell Differentiation, vol 54. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21649-7_11

Download citation

Publish with us

Policies and ethics