Skip to main content

DWI at 3 T: Advantages, Disadvantages, Pitfalls, and Advanced Clinical Applications

  • Chapter
  • First Online:
Diffusion MRI Outside the Brain

Abstract

Improvements in SNR due to use of 3T magnets are a potential advantage for DWI, although the parallel increase of artifact is difficult to eliminate. This chapter gathers the effect of the magnetic field strength in the DWI acquisition. Advanced clinical applications of DWI in body studies are clearly benefit for the use of high-field strength magnets. Clinical examples of DTI in prostate, heart, muscle or kidney, DWI neurography, or IVIM model are presented. Radiologist should be aware of this potential source of error when reading DWI sequences. In this sense, different pitfalls on DWI are introduced, such as T2 shine-through and dark-through, the effect of metal implants and iron overload, restriction of normal structures, nonmalignant lesions with apparent restriction of free water movement, and the appearance of low-grade tumor on DWI.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Further Reading

  • Balbi V, Budzik JF, Duhamel A et al (2011) Tractography of lumbar nerve roots: initial results. Eur Radiol 21(6):1153–1159

    Article  PubMed  Google Scholar 

  • Bernstein MA, Huston J III, Ward HA (2006) Imaging artifacts at 3.0 T. J Magn Reson Imaging 24(4):735–746

    Article  PubMed  Google Scholar 

  • Chandarana H, Lee VS, Hecht E et al (2011) Comparison of biexponential and monoexponential model of diffusion weighted imaging in evaluation of renal lesions: preliminary experience. Invest Radiol 46(5):285–291

    Google Scholar 

  • Deux JF, Malzy P, Paragios N et al (2008) Assessment of calf muscle contraction by diffusion tensor imaging. Eur Radiol 18(10):2303–2310

    Article  PubMed  CAS  Google Scholar 

  • Eguchi Y, Ohtori S, Yamashita M et al (2011) Diffusion weighted magnetic resonance imaging of symptomatic nerve root of patients with lumbar disk herniation. Neuroradiology 53(9):633–641

    Google Scholar 

  • Feuerlein S, Pauls S, Juchems MS et al (2009) Pitfalls in abdominal diffusion-weighted imaging: how predictive is restricted water diffusion for malignancy. Am J Roentgenol 193(4):1070–1076

    Article  Google Scholar 

  • Filler AG, Haynes J, Jordan SE et al (2005) Sciatica of nondisc origin and piriformis syndrome: diagnosis by magnetic resonance neurography and interventional magnetic resonance imaging with outcome study of resulting treatment. J Neurosurg Spine 2:99–115

    Article  PubMed  Google Scholar 

  • Fitts RH, McDonald KS, Schluter JM (1991) The determinants of skeletal muscle force and power: their adaptability with changes in activity pattern. J Biomech 24(Suppl 1):111–122

    Article  PubMed  Google Scholar 

  • Galban CJ, Maderwald S, Uffmann K et al (2005) A diffusion tensor imaging analysis of gender differences in water diffusivity within human skeletal muscle. NMR Biomed 18(8):489–498

    Article  PubMed  Google Scholar 

  • Gibbs P, Pickles MD, Turnbull LW (2006) Diffusion imaging of the prostate at 3.0 tesla. Invest Radiol 41(2):185–188

    Article  PubMed  Google Scholar 

  • Grünberg K, Grenacher L, Klauß M (2011) Diffusion-weighted imaging of the pancreas. Radiologe 51(3):186–194

    Article  PubMed  Google Scholar 

  • Gurses B, Tasdelen N, Yencilek F et al (2011) Diagnostic utility of DTI in prostate cancer. Eur J Radiol 79(2):172–176

    Google Scholar 

  • Hiwatashi A, Kinoshita T, Moritani T et al (2003) Hypointensity on diffusion-weighted MRI of the brain related to T2 shortening and susceptibility effects. Am J Roentgenol 181(6):1705–1709

    Article  Google Scholar 

  • Holl N, Echaniz-Laguna A, Bierry G et al (2008) Diffusion-weighted MRI of denervated muscle: a clinical and experimental study. Skeletal Radiol 37(12):1111–1117

    Article  PubMed  Google Scholar 

  • Kakuda T, Fukuda H, Tanitame K et al (2011) Diffusion tensor imaging of peripheral nerve in patients with chronic inflammatory demyelinating polyradiculoneuropathy: a feasibility study. Neuroradiology. Feb 12 [Epub ahead of print]

    Google Scholar 

  • Kan JH, Heemskerk AM, Ding Z et al (2009) DTI-based muscle fiber tracking of the quadriceps mechanism in lateral patellar dislocation. J Magn Reson Imaging 29(3):663–670

    Article  PubMed  Google Scholar 

  • Khalil C, Budzik JF, Kermarrec E et al (2010) Tractography of peripheral nerves and skeletal muscles. Eur J Radiol 76(3):391–397

    Article  PubMed  CAS  Google Scholar 

  • Kim CK, Park BK, Han JJ et al (2007) Diffusion-weighted imaging of the prostate at 3 T for differentiation of malignant and benign tissue in transition and peripheral zones: preliminary results. J Comput Assist Tomogr 31:449–454

    Article  PubMed  CAS  Google Scholar 

  • Klauss M, Lemke A, Grünberg K et al (2011) Intravoxel incoherent motion MRI for the differentiation between mass forming chronic pancreatitis and pancreatic carcinoma. Invest Radiol 46(1):57–63

    Article  PubMed  Google Scholar 

  • Kuhl CK, Textor J, Gieseke J et al (2005) Acute and subacute ischemic stroke at high-field-strength (3.0-T) diffusion-weighted MR imaging: intraindividual comparative study. Radiology 234:509–516

    Article  PubMed  Google Scholar 

  • Kwee TC, Takahara T, Ochiai R et al (2008) Diffusion-weighted whole-body imaging with background body signal suppression (DWIBS): features and potential applications in oncology. Eur Radiol 18:1937–1952

    Article  PubMed  Google Scholar 

  • Lewin JS, Duerk JL, Jain VR et al (1996) Needle localization in MR-guided biopsy and aspiration: effects of field strength, sequence design, and magnetic field orientation. Am J Roentgenol 166(6):1337–1345

    Article  CAS  Google Scholar 

  • Lewis AM, Layzer R, Engstrom JW et al (2006) Magnetic resonance neurography in extraspinal sciatica. Arch Neurol 63(10):1469–1472

    Article  PubMed  Google Scholar 

  • Luna A, Sánchez-Gonzalez J, Caro P (2011) Diffusion-weighted imaging of the chest. Magn Reson Imaging Clin N Am 19(1):69–94

    Article  PubMed  Google Scholar 

  • Manenti G, Carlani M, Mancino S et al (2007) Diffusion tensor magnetic resonance imaging of prostate cancer. Invest Radiol 42(6):412–419

    Article  PubMed  Google Scholar 

  • McVeigh PZ, Syed AM, Milosevic M et al (2008) Diffusion-weighted MRI in cervical cancer. Eur Radiol 18:1058–1064

    Article  PubMed  Google Scholar 

  • Merkle EM, Dale BM (2006) Abdominal MRI at 3.0 T: the basics revisited. Am J Roentgenol 186(6):1524–1532

    Article  Google Scholar 

  • Morisaki S, Kawai Y, Umeda M et al (2011) In vivo assessment of peripheral nerve regeneration by diffusion tensor imaging. J Magn Reson Imaging 33(3):535–542

    Google Scholar 

  • Murtz P, Krautmacher C, Traber F et al (2007) Diffusion-weighted whole-body MR imaging with background body signal suppression: a feasibility study at 3.0 Tesla. Eur Radiol 17:3031–3037

    Article  PubMed  Google Scholar 

  • Notohamiprodjo M, Dietrich O, Horger W et al (2010) Diffusion tensor imaging (DTI) of the kidney at 3 tesla-feasibility, ­protocol evaluation and comparison to 1.5 tesla. Investig Radiol 45(5):245–254

    Article  Google Scholar 

  • Okamoto Y, Kunimatsu A, Miki S, Shindo M, Niitsu M, Minami M (2008) Fractional anisotropy values of calf muscles in normative state after exercise: preliminary results. Magn Reson Med Sci 7(3):157–162

    Article  PubMed  Google Scholar 

  • Petchprapa CN, Rosenberg ZS, Sconfienza LM et al (2010) MR imaging of entrapment neuropathies of the lower extremity. Part 1. The pelvis and hip. Radiographics 30(4):983–1000

    Article  PubMed  Google Scholar 

  • Qayyum A (2009) Diffusion-weighted imaging in the abdomen and pelvis: concepts and applications. Radiographics 29(6):1797–1810

    Article  PubMed  Google Scholar 

  • Reischauer C, Wilm BJ, Froehlich JM et al (2010) High-resolution diffusion tensor imaging of prostate cancer using a reduced FOV technique. Eur J Radiol. Jul 15 [Epub ahead of print]

    Google Scholar 

  • Schenck JF (1996) The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys 23(6):815–850

    Article  PubMed  CAS  Google Scholar 

  • Takahara T, Hendrikse J, Yamashita T et al (2008) Diffusion-weighted MR neurography of the brachial plexus: feasibility study. Radiology 249(2):653–660

    Article  PubMed  Google Scholar 

  • Takahara T, Hendrikse J, Kwee TC et al (2010) Diffusion-weighted MR neurography of the sacral plexus with unidirectional motion probing gradients. Eur Radiol 20(5):1221–1226

    Article  PubMed  Google Scholar 

  • Takahara T, Kwee TC, Hendrikse J et al (2011) Subtraction of unidirectionally encoded images for suppression of heavily isotropic objects (SUSHI) for selective visualization of peripheral nerves. Neuroradiology 53(2):109–116

    Article  PubMed  Google Scholar 

  • Tamai K, Koyama T, Saga T et al (2007) Diffusion-weighted MR imaging of uterine endometrial cancer. J Magn Reson Imaging 26(3):682–687

    Article  PubMed  Google Scholar 

  • Vargas MI, Viallon M, Nguyen D et al (2010) New approaches in imaging of the brachial plexus. Eur J Radiol 74(2):403–410

    Article  PubMed  CAS  Google Scholar 

  • Wang J, Yu T, Bai R et al (2010) The value of the apparent diffusion coefficient in differentiating stage IA endometrial carcinoma from normal endometrium and benign diseases of the endometrium: initial study at 3-T magnetic resonance scanner. J Comput Assist Tomogr 34(3):332–337

    Article  PubMed  Google Scholar 

  • Whittaker CS, Coady A, Culver L et al (2009) Diffusion-weighted MR imaging of female pelvic tumors: a pictorial review. Radiographics 29(3):759–774

    Article  PubMed  Google Scholar 

  • Zandieh S, Berna R, Steinbach S et al (2011) The optimal B value in diffusion-weighted magnetic resonance neurography of the brachial plexus. Internet J Radiol 13(1)

    Google Scholar 

  • Zaraiskaya T, Kumbhare D, Noseworthy MD (2006) Diffusion tensor imaging in evaluation of human skeletal muscle injury. J Magn Reson Imaging 24(2):402–408

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Sánchez-González .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sánchez-González, J., Luna, A. (2012). DWI at 3 T: Advantages, Disadvantages, Pitfalls, and Advanced Clinical Applications. In: Diffusion MRI Outside the Brain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-21052-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-21052-5_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-21051-8

  • Online ISBN: 978-3-642-21052-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics