Skip to main content

Part of the book series: Current Topics in Microbiology and Immunology ((CT MICROBIOLOGY,volume 282))

Abstract

Neutrophils are terminally differentiated cells that play a vital role in host defense. It has recently become evident that phospholipid regulation plays an import role in many neutrophil functions. We review the regulation of neutrophil functions such as chemotaxis, superoxide production, and phagocytosis by phosphatidylinositol-3,4,5-trisphosphate (PIP3), which is generated in neutrophils by PI3Kγ. Several lines of evidence are presented demonstrating the importance of this kinase in regulating chemotaxis, in particular the directionality of chemotactic migration. Evidence suggesting that this kinase is important for phagocytosis, especially during engulfment and the internalization of large particles, is also reviewed. Finally, it is suggested that PI3K is important for superoxide production and neutrophil priming. The common link between these seemingly diverse functions is that PI3Kγ, via its phospholipid products, appears to be providing spatial-temporal cues for the binding of actin-organizing proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bourne H, Weiner O (2002) Cell polarity: A chemical compass. Nature 419:21

    Article  PubMed  CAS  Google Scholar 

  • Bravo J, Karathanassis D, Pacold C, Pacold M, Ellson C, Anderson K, Butler P, Lavenir I, Perisic O, Hawkins P, Stephens L, Williams R (2001). The crystal structure of the PX domain from p40(phox) bound to phosphatidylinositol 3-phosphate. Mol. Cell. 8:829–839

    Article  PubMed  CAS  Google Scholar 

  • Bruyninckx W, Comerford K, Lawrence D, Colgan SP (2001). Phosphoinositide 3-kinase modulation of beta(3)-integrin represents an endogenous “braking” mechanism during neutrophil transmatrix migration. Blood 97:3251–3258

    Article  PubMed  CAS  Google Scholar 

  • Cadwallader K, Condliffe A, McGregor A, Walker T, White J, Stephens L, Chilvers E (2002). Regulation of phosphatidylinositol 3-kinase activity and phosphatidylinositol 3,4,5-trisphosphate accumulation by neutrophil priming agents. J. Immunol. 169:3336–3344

    PubMed  CAS  Google Scholar 

  • Condliffe A, Hawkins P, Stephens L, Haslett C, Chilvers E (1998). Priming of human neutrophil superoxide generation by tumor necrosis factor-alpha is signaled by enhanced phosphatidylinositol 3,4,5-trisphosphate but not inositol 1,4,5-trisphosphate accumulation. PEBS Lett. 439:147–151

    CAS  Google Scholar 

  • Corvera S (2001). Phosphatidylinositol 3-kinase and the contro l of endosome dynamics: new players defined by structural motifs. Traffic 2:859–866

    Article  PubMed  CAS  Google Scholar 

  • Dekker, L Segal A (2000) Perspectives: signal transduction. Signals to move cells. Science 287:982–985

    Article  PubMed  CAS  Google Scholar 

  • Dharmawardhane S, Brownson D, Lennartz M, Bokoch G (1999) Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils. J. Leukoc. Biol. 3:521–527

    Google Scholar 

  • Detmers P, Thieblemont N, Vasselon T, Pironkova R, Miller D, Wright S (1996) Potential role of membrane internalization and vesicle fusion in adhesion of neutrophils in response to lipopolysaccharide and TNF. J. Immunol. 157:5589–5596

    PubMed  CAS  Google Scholar 

  • Ellson C, Anderson K, Morgan G, Chilvers E, Lipp P, Stephens L, Hawkins P (2001a) Phosphatidylinositol 3-phosphate is generated in phagosomal membranes. Curr. Biol. 11:201–213

    Article  Google Scholar 

  • Ellson C, Gobert-Gosse S, Anderson K, Davidson K, Erdjument-Bromage P, Tempst P, Thuring J, Cooper M, Lim Z, Holmes A, (2001b). PtdIns(3)P regulates the neutrophil oxidase complex by binding to the PX domain of p40phox. Nature Cell Biol 3:679–692

    Article  PubMed  CAS  Google Scholar 

  • Fruman D, Meyers R, Cantey L (1998). Phosphoinositide kinases. Annu. Rev. Biochem. 67:481–507

    Article  PubMed  CAS  Google Scholar 

  • Fruman D, Cantley L (2002). Phosphoinositide 3-kinase in immunological systems. Sem. Immunol. 14:7–18

    Article  CAS  Google Scholar 

  • Funamoto S, Meili R, Lee S, Parry L, Firtel R (2002). Spatial and temporal regulation of 3-phosphoinositides by PI3-kinase and PTEN mediates chemotaxis. Cell 109:611–623

    Article  PubMed  CAS  Google Scholar 

  • Funamoto S, Milan K, Meili R, Firtel R (2001). Role of phosphatidylinositol 3′ kinase and a downstream pleckstrin homology domain-containing protein in controlling chemotaxis in Dictyostelium. J. Cell Biol. 153:795–810

    Article  PubMed  CAS  Google Scholar 

  • Gerszten R, Friedrich E, Matsui T, Hung R, Li L, Force T, Rosenzweig A (2001). Role of phosphoinositide 3-kinase in monocyte recruitment under flow conditions. J Biol Chem. 276:26846–26851

    Article  PubMed  CAS  Google Scholar 

  • Hannigan M, Zhan L, Ai Y, Wu D, Huang C (2002). Neutrophils lacking phosphoinositide 3-kinase gamma show loss of directionality during N-formyl-met-leu-phe-induced chemotaxis. Proc. Natl. Acad. Sci USA 99:3603–3608

    Article  PubMed  CAS  Google Scholar 

  • Hiroaki H, Ago T, Ito T, Sumimoto H, Kohda D (2001). Solution structure of the PX domain, a target of the SH3 domain. 287:733–738

    Google Scholar 

  • Hirsh E, Katanaev V, Garlanda C, Azzonilo O, Pirola L, Silengo L, Sozzani S, Mantovani A, Altruda F, Wymann M (2000). Central role for G protein-coupled phosphoinositide 3-kinase gamma in inflammation. Science 287:1049–1053

    Article  Google Scholar 

  • Iijima M, Huang Y, Deverotes P (2002). Temporal and spatial regulation of chemotaxis. Dev. Cell. 3:469–478

    Article  PubMed  CAS  Google Scholar 

  • Kanai F, Liu H, Field S, Akbary H, Matsuo T, Brown G, Cantley L, Yaffe M (2001). The PX domains of p47phox and p40phox bind to lipid products of PI(3)K. Nature Cell Biol. 3:675–678

    Article  PubMed  CAS  Google Scholar 

  • Karathanssis D, Stabelin R, Bravo J, Perisic O, Pcold C, Cho W, Williams R (2002). Binding of the PX domain of p47(phox) to phosphatidylinositol 3,4-bisphosphate and phosphatidic acid is masked by an intramolecular interaction. EMBO J. 21:5057–5068

    Article  Google Scholar 

  • Krugman S, Anderson K, Ridley S, Risso N, McGregor A, Coadwell J, Davidson K, Eguinoa H, Ellson D, Lipp P (2002). Identification of ARAP3, a novel PI3K effector regulating both Arf and Rho GTPases, by selective capture on phosphoinositide affinity matrices. Mol. Cell 9:95–113

    Article  Google Scholar 

  • Krystal G (2000). Lipid phosphatases in the immune system. Semin Immunol 12:397–403

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Hang H, Xie W, Zuchuan Z, Smrka A, Wu D (2000). Roles for PLC-β2 and β3 and P13Kγ in chemoattractant-mediated signal transduction. Science 287:1046–1049

    Article  PubMed  CAS  Google Scholar 

  • Majeed M, Caveggion E, Lowell C, Berton G (2001). Role of Src kinases and Syk in Fcgamma receptor-mediated phagocytosis and phago-lysosome fusion. J. Leuk. Biol. 70:801–811

    CAS  Google Scholar 

  • Ninomiya N, Hazeki K, Fukui Y, Seya T, Okada T, Hazeki O, Vi M (1994). Involvement of phosphatidylinositol 3-kinase in Fe gamma receptor signaling. J. Biol. Chem. 269:22732–22737

    PubMed  CAS  Google Scholar 

  • Noack D, Rae J, Cross A, Ellis B, Newburger P, Curnutte J, Heyworth P (2001). Autosomal recessive chronic granulomatous disease caused by defects in NCF-1, the gene encoding phagocyte p47-phox: mutations not arising in the NCF-1 pseudogenes. Blood 97:305–311

    Article  PubMed  CAS  Google Scholar 

  • Perskvist N, Roberg K, Kulyte A, Stendahl O (1996). Rab5a GTPase regulates fusion between pathogen-containing phagosomes and cytoplasmic organeiles in human neutrophils. J. Immunol. 157:5589–5596

    Google Scholar 

  • Rappel W, Thomas P, Levine H, Loomis W (2002). Establishing direction during chemotaxis in eukaryotic cells. Biophys. J. 83:1361–1367

    Article  PubMed  CAS  Google Scholar 

  • Rickert P, Weiner O, Wang F, Bourne H, Servant G (2000). Leukocytes navigate by compass: roles of P13K gamma and its lipid products. Trends Cell Biol. 10:466–473

    Article  PubMed  CAS  Google Scholar 

  • Roos D, Law S (2001). Hematologically important mutations: Leukocyte adhesion deficiency. Blood Cells Mol. Dis. 27:1000–1004

    Article  PubMed  CAS  Google Scholar 

  • Rupper A, Grove B, Cardelli J (2001). Rab7 regulates phagosome maturation in Dictyostelium. J. Cell Sci, 114:2449–2460

    PubMed  CAS  Google Scholar 

  • Sasaki T, Irie-Sasaki J, Jones R, Oliveira-dos-Santos A, Stanford W, Bolon B, Wakeham A, Itie A, Bouchard D, Kozieradzki I, Joza N, Mak T, Ohashi P, Suzuki A, Penniger J (2000) Function of PI3Kγ in thymocyte development, T cell activation, and neutrophil migration. Science 287:1040–1046

    Article  PubMed  CAS  Google Scholar 

  • Sato T, Overduin M, Emr S (2001). Location, location, location: Membrane targeting directed by PX domains. Science 294:1881–1885

    Article  PubMed  CAS  Google Scholar 

  • Servant G, Weiner O, Herzmark P, Palla T, Sedat J. Bourne H (2000). Dynamics of a chemoattractant receptor in living neutrophils during chemotaxis. Science 287:1037–1040

    Article  PubMed  CAS  Google Scholar 

  • Song X, Xu W, Zhang A, Huang G, Liang X, Virasius J, Czech M, Zhou G (2001). Phox homology domains specifically bind phosphatidylinositol phosphates. Biochemistry 40:8940–8944

    Article  PubMed  CAS  Google Scholar 

  • Stephens L, Ellson C, Hawkins P (2002). Roles of PI3Ks in leukocyte chemotaxis and phagocytosis. Curr. Opin. Cell Biol. 14:203–214

    Article  PubMed  CAS  Google Scholar 

  • Vieira O, Botelho R, Rameh L, Brachmann S, Matsuo T, Davidson H, Schreiber A, Backer J, Cantiey L, Grinstein S (2001). Distinct roles of class I and class III phosphatidylinositol 3-kinase in phagosome formation and maturation. J. Cell Biol. 155:19–13

    Article  PubMed  CAS  Google Scholar 

  • Vignais P (2002). The superoxide-generating NADPH oxidase: Structural aspects and activation mechanism. Cell Mol. Life Sci. 59:1428–1459

    Article  PubMed  CAS  Google Scholar 

  • Weiner O, Neilson P, Prestwich G, Kirschner M, Cantley L, Bourne H (2002). A PtdInsP(3)-and Rho GTPase-mediated positive feedback loop regulates neutrophil polarity. Nat. Cell Biol. 4:509–513

    Article  PubMed  CAS  Google Scholar 

  • Wu D, Huang C, Hang H (2000). Roles of phospholipid signaling in chemoattractant-induced responses. J. Cell Sci. 113:2935–2940

    PubMed  CAS  Google Scholar 

  • Wymann M, Pirola L (1998). Structure and function of phosphoinositide 3-kinases. Biochem. Biophys. Acta 1436:127–150

    Article  PubMed  CAS  Google Scholar 

  • Yaffe M (2002). The p47phox domain: two heads are better than one! Structure 10:1288–1290

    Article  PubMed  CAS  Google Scholar 

  • Yasui K, Komiyama A (2001). Roles of phosphatidylinositol 3-kinase and phospholipase D in temporal activation of superoxide production in FMLP-stimulated human neutrophils. Cell Biochem. Funct. 19:43–50

    Article  PubMed  CAS  Google Scholar 

  • Zhou K, Pandol S, Bokoch G, Traynor-Kaplan A (1998). Disruption of Dictyostelium PI3K genes reduces [32P]phosphatidylinositol 3,4 bisphosphate and [32P]phosphatidylinositol trisphosphate levels, alters F-actin distribution and impairs pinocytosis. J Cell Sci 111:283–294

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hannigan, M.O., Huang, C.K., Wu, D.Q. (2004). Roles of PI3K in Neutrophil Function. In: Stenmark, H. (eds) Phosphoinositides in Subcellular Targeting and Enzyme Activation. Current Topics in Microbiology and Immunology, vol 282. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-18805-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-18805-3_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-62299-1

  • Online ISBN: 978-3-642-18805-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics