Skip to main content

Magnetic Resonance Imaging of the Brain

  • Chapter
Clinical MR Imaging

Abstract

Magnetic resonance imaging (MRI) examinations of the brain can be performed with several coil types, depending on the design of the MRI unit and the information required. Traditionally, MRI examinations of the brain are performed with quadrature (i.e., circularly polarized) head coils. These volume coils are closely shaped around the head of the patient and usually present a so-called “bird-cage” configuration. Many coils are split in half, for easier patient access and positioning. Recently, phased-array head coils have become the standard of practice for state-of-the-art high-resolution MRI of the brain. Phased-array head coils contain multiple small coil elements, which are arranged in an integrated design which surrounds the head (e.g., 8-, 12- or even 32-channel head coils). Data from the individual coils are integrated by special software to compensate for the nonuniform distribution of the signal-to-noise ratio (SNR) between the peripheral and central parts of the brain. The major advantage of a multichannel, phased-array head coil is that it allows the application of parallel acquisition techniques (PAT), which can be used to speed up MRI. The concept is to reduce the number of phase-encoding steps by switching a field gradient for each phase-encoding step. Skipping, for example, every second phase-encoding line accelerates the acquisition speed by a factor of two. This is called the acceleration or PAT factor. The trade-off for this increased imaging speed is a decrease in SNR. Image reconstruction with PAT techniques is more complicated, and several algorithms have been described, depending on whether image reconstruction takes place before (SMASH, GRAPPA (generalized autocalibrating partially parallel acquisition)) or after (SENSE) Fourier transform of the image data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  • Armed Forces Institute of Pathology (1994) Tumors of the central nervous system. Armed Forces Institute of Pathology, Washington DC

    Google Scholar 

  • Atlas SW (1996) Magnetic resonance imaging of the brain and spine. Lippincott-Raven, Philadelphia

    Google Scholar 

  • Atlas SW (2002) Magnetic resonance imaging of the brain and spine, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Barkovich JA (2000) Pediatric neuroimaging, 3rd edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Barkovich JA (2005) Pediatric neuroimaging, 4th edn. Lippincott Williams & Wilkins, Philadelphia

    Google Scholar 

  • Byrd SE, Darling CF, Wilczynski MA (1993) White matter of the brain: maturation and myelination magnetic resonance in infants and children. Neuroimaging Clin North Am 3: 247–266

    Google Scholar 

  • Castillo M (1997) Prethrombolysis brain imaging: trends and controversies. AJNR Am J Neuroradiol 18:1830–1833

    CAS  PubMed  Google Scholar 

  • Castillo M (guest ed) (1998) New techniques in MR neuroimaging. Magnetic resonance imaging clinics of North America 1998, vol 6. Saunders, Philadelphia

    Google Scholar 

  • Castillo M (1998) New techniques in MR neuroimaging. In: Magnetic resonance imaging clinics of North America, vol 6. Saunders, Philadelphia

    Google Scholar 

  • Fazekas F, Ropele S, Enzinger C, Gorani F, Seewann A, Petrovic K, Schmidt R (2005) MTI of white matter hyperintensities. Brain 128:2926–2932

    Article  PubMed  Google Scholar 

  • Finelli DA, Hurst GC, Gullapalli RP (1998) T1-W three dimensional magnetisation transfer MR of the brain: improved lesion contrast enhancement. AJNR Am J Neuroradiol 19: 59–64

    CAS  PubMed  Google Scholar 

  • Forsting M, Wanke I (2008) Intracranial vascular malformations and aneurysms, from diagnostic work-up to endovascular therapy (2nd revised edition). Springer, New York

    Book  Google Scholar 

  • Gillard JH, Waldman AD, Barker PB (2005) Clinical MR neuroimaging. Cambridge University Press, New York

    Google Scholar 

  • Gilman S (1998) Imaging the brain (first of two parts). N Engl J Med 338:812–820

    Article  CAS  PubMed  Google Scholar 

  • Gilman S (1998) Imaging the brain (second of two parts). N Engl J Med 338:889–896

    Article  CAS  PubMed  Google Scholar 

  • Hergan K, Schaefer PW, Sorensen AG, Gonzalez RG, Huisman TA (2002) Diffusion-weighted MRI in diffuse axonal injury of the brain. Eur Radiol 12:2536–2541

    CAS  PubMed  Google Scholar 

  • Hartmann M, Jansen O, Heiland S, Sommer C, Münkel K, Sartor K (2001) Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol 22:1738–1742

    CAS  PubMed  Google Scholar 

  • Hoang TA, Hasso AN (1994) Intracranial vascular malformations. Neuroimaging Clin North Am 4:823–847

    CAS  Google Scholar 

  • Jack CR (1995) Magnetic resonance imaging: neuroimaging and anatomy. Neuroimaging Clin North Am 5:597–622

    Google Scholar 

  • Lacerda S, Law M (2009) Magnetic resonance perfusion and permeability imaging in brain tumors. Neuroimaging Clin N Am 19:527–557

    Article  PubMed  Google Scholar 

  • Law M (2009) Advanced imaging techniques in brain tumors. Cancer Imaging 9(special issue A):S4–S9

    Article  PubMed  Google Scholar 

  • Law M, Young RJ, Babb JS, Peccerelli N, Chheang S, Gruber ML, Miller DC, Golfinos JG, Zagzag D, Johnson G (2008) Gliomas: predicting time to progression or survival with cerebral blood volume measurements at dynamic susceptibility-weighted contrast-enhanced perfusion MR imaging. Radiology 247:490–498

    Article  PubMed  Google Scholar 

  • Lee SH, Rao KCVG, Zimmerman RA (1992) Cranial MRI and CT, 3rd edn. McGraw-Hill, New York

    Google Scholar 

  • Lee SH, Rao KCVG, Zimmerman RA (2004) Cranial MRI and CT, 4th edn. McGraw-Hil, New York

    Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD, Cavenee WK (eds) (2007) WHO classification of tumours of the central nervous system. IARC, Lyon

    Google Scholar 

  • Louis DN, Ohgaki H, Wiestler OD et al (2007) The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 114:97–109

    Article  PubMed  Google Scholar 

  • Lufkin RB (1998) The MRI manual, 2nd edn. Mosby-Year Book, St Louis

    Google Scholar 

  • McDonald WI, Compston A, Edan G et al (2001) Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 50:121–127

    Article  CAS  PubMed  Google Scholar 

  • Osborn AG (1994) Diagnostic neuroradiology. Mosby-Year Book, St Louis

    Google Scholar 

  • Osborn AG (2004) Diagnostic imaging – brain. Amirsys, Salt Lake City

    Google Scholar 

  • Parizel PM, Van Goethem JW, Özsarlak Ö, Maes M, Philips CD (2005) New developments in the neuroradiological diagnosis of craniocerebral trauma. Eur Radiol 15:569–581

    Article  CAS  PubMed  Google Scholar 

  • Pierallini A, Caramia F, Falcone C, Tinelli E, Paonessa A, Ciddio AB, Fiorelli M, Bianco F, Natalizi S, Ferrante L, Bozzao L (2006) Pituitary macroadenomas: preoperative evaluation of consistency with diffusion-weighted MR imaging – initial experience. Radiology 239:223–231

    Article  PubMed  Google Scholar 

  • Polman CH, Reingold SC, Edan G (2005) Diagnostic criteria for multiple sclerosis: 2005 revisions to the “McDonald Criteria”. Ann Neurol 58:840–846

    Article  PubMed  Google Scholar 

  • Provenzale JM, Mukundan S, Barboriak DP (2006) Diffusion-weighted and perfusion MR imaging for brain tumor characterization and assessment of treatment response. Radiology 239:632–649

    Article  PubMed  Google Scholar 

  • Sahraian MA, Radue E-W (2007) MRI atlas of MS lesions. Springer, Berlin

    Google Scholar 

  • Simon JH, Li D, Traboulsee A, Coyle PK, Arnold DL, Barkhof F, Frank JA, Grossman R, Paty DW, Radue EW, Wolinsky JS (2006) Standardized MR imaging protocol for multiple sclerosis: Consortium of MS Centers consensus guidelines. AJNR Am J Neuroradiol 27:455–461

    CAS  PubMed  Google Scholar 

  • Sorensen AG, Reimer P (2000) Cerebral MR perfusion imaging: principles and current applications. Thieme, Stuttgart

    Google Scholar 

  • van der Knaap MS, Valk J (1995) Magnetic resonance of myelin; myelination and myelin disorders. Springer, Berlin

    Google Scholar 

  • van der Knaap MS, Valk J (2005) Magnetic resonance of myelin; myelination and myelin disorders, 3rd edn. Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Parizel, P.M. et al. (2010). Magnetic Resonance Imaging of the Brain. In: Reimer, P., Parizel, P.M., Meaney, J.F.M., Stichnoth, F.A. (eds) Clinical MR Imaging. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74504-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74504-4_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74501-3

  • Online ISBN: 978-3-540-74504-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics