Skip to main content

The Role of Tumor Microenvironment in Cancer Immunotherapy

  • Chapter
  • First Online:
Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1036))

Abstract

The field of tumor immunology and immunotherapy has undergone a renaissance in the past decade do in large part to a better understanding of the tumor immune microenvironment. After suffering countless successes and setbacks in the twentieth century, immunotherapy has now come to the forefront of cancer research and is recognized as an important tool in the anti-tumor armamentarium. The goal of therapy is to aid the immune system in recognition and destruction of tumor cells by enhancing its ability to react to tumor antigens. This traditionally has been accomplished by induction of adaptive immunity through vaccination or through passive delivery of immunologic effectors as in the case of adoptive cell transfer. The recent discovery of immune “checkpoints” whose purpose is to suppress immune activity and prevent auto-immunity has created a new angle by which reactivity to tumors can be enhanced. Blockers of these checkpoints have yielded impressive clinical results and have recently been approved for use in a wide variety of malignancies. With data showing increasing rates of not only treatment response, but complete remissions, immunotherapy is poised to become an increasingly utilized therapy in the treatment of cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Gravitz L. Cancer immunotherapy. Nature. 2013;504(7480):S1.

    Article  CAS  PubMed  Google Scholar 

  2. Rosenberg SA, Dudley ME, Restifo NP. Cancer immunotherapy. N Engl J Med. 2008;359(10):1072.

    Article  CAS  PubMed  Google Scholar 

  3. Gajewski TF, Woo SR, Zha Y, et al. Cancer immunotherapy strategies based on overcoming barriers within the tumor microenvironment. Curr Opin Immunol. 2013;25(2):268–76.

    Article  CAS  PubMed  Google Scholar 

  4. Seliger B, Maeurer MJ, Ferrone S. Antigen-processing machinery breakdown and tumor growth. Immunol Today. 2000;21(9):455–64.

    Article  CAS  PubMed  Google Scholar 

  5. Whiteside TL, Stanson J, Shurin MR, et al. Antigen-processing machinery in human dendritic cells: up-regulation by maturation and down-regulation by tumor cells. J Immunol. 2004;173(3):1526–34.

    Article  CAS  PubMed  Google Scholar 

  6. Whiteside TL. The tumor microenvironment and its role in promoting tumor growth. Oncogene. 2008;27(45):5904–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Heninger E, Krueger TE, Lang JM. Augmenting antitumor immune responses with epigenetic modifying agents. Front Immunol. 2015;6:29.

    PubMed  PubMed Central  Google Scholar 

  8. Yu J, Ni M, Xu J, et al. Methylation profiling of twenty promoter-CpG islands of genes which may contribute to hepatocellular carcinogenesis. BMC Cancer. 2002;2:29.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Rao M, Chinnasamy N, Hong JA, et al. Inhibition of histone lysine methylation enhances cancer-testis antigen expression in lung cancer cells: implications for adoptive immunotherapy of cancer. Cancer Res. 2011;71(12):4192–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Simova J, Pollakova V, Indrova M, et al. Immunotherapy augments the effect of 5-azacytidine on HPV16-associated tumours with different MHC class I-expression status. Br J Cancer. 2011;105(10):1533–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang LX, Mei ZY, Zhou JH, et al. Low dose decitabine treatment induces CD80 expression in cancer cells and stimulates tumor specific cytotoxic T lymphocyte responses. PLoS One. 2013;8(5):e62924.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. West AC, Smyth MJ, Johnstone RW. The anticancer effects of HDAC inhibitors require the immune system. Oncoimmunology. 2014;3(1):e27414.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Iannello A, Raulet DH. Immune surveillance of unhealthy cells by natural killer cells. Cold Spring Harb Symp Quant Biol. 2013;78:249–57.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Chow MT, Moller A, Smyth MJ. Inflammation and immune surveillance in cancer. Semin Cancer Biol. 2012;22(1):23–32.

    Article  CAS  PubMed  Google Scholar 

  15. Groth A, Kloss S, von Strandmann EP, et al. Mechanisms of tumor and viral immune escape from natural killer cell-mediated surveillance. J Innate Immun. 2011;3(4):344–54.

    Article  CAS  PubMed  Google Scholar 

  16. Melchionda F, McKirdy MK, Medeiros F, et al. Escape from immune surveillance does not result in tolerance to tumor-associated antigens. J Immunother. 2004;27(5):329–38.

    Article  CAS  PubMed  Google Scholar 

  17. Al-Tameemi M, Chaplain M, d’Onofrio A. Evasion of tumours from the control of the immune system: consequences of brief encounters. Biol Direct. 2012;7:31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou W, Machelon V, Coulomb-L’Hermin A, et al. Stromal-derived factor-1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat Med. 2001;7(12):1339–46.

    Article  CAS  PubMed  Google Scholar 

  19. Curiel TJ, Wei S, Dong H, et al. Blockade of B7-H1 improves myeloid dendritic cell-mediated antitumor immunity. Nat Med. 2003;9(5):562–7.

    Article  CAS  PubMed  Google Scholar 

  20. Curiel TJ, Coukos G, Zou L, et al. Specific recruitment of regulatory T cells in ovarian carcinoma fosters immune privilege and predicts reduced survival. Nat Med. 2004;10(9):942–9.

    Article  CAS  PubMed  Google Scholar 

  21. Kryczek I, Zou L, Rodriguez P, et al. B7-H4 expression identifies a novel suppressive macrophage population in human ovarian carcinoma. J Exp Med. 2006;203(4):871–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cui TX, Kryczek I, Zhao L, et al. Myeloid-derived suppressor cells enhance stemness of cancer cells by inducing microRNA101 and suppressing the corepressor CtBP2. Immunity. 2013;39(3):611–21.

    Article  CAS  PubMed  Google Scholar 

  23. Bai XF, Liu J, Li O, et al. Antigenic drift as a mechanism for tumor evasion of destruction by cytolytic T lymphocytes. J Clin Invest. 2003;111(10):1487–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Bubenik J. MHC class I down-regulation: tumour escape from immune surveillance? (review). Int J Oncol. 2004;25(2):487–91.

    CAS  PubMed  Google Scholar 

  25. Topfer K, Kempe S, Muller N, et al. Tumor evasion from T cell surveillance. J Biomed Biotechnol. 2011;2011:918471.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012;12(4):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Singh S, Ross SR, Acena M, et al. Stroma is critical for preventing or permitting immunological destruction of antigenic cancer cells. J Exp Med. 1992;175(1):139–46.

    Article  CAS  PubMed  Google Scholar 

  28. Gajewski TF. Failure at the effector phase: immune barriers at the level of the melanoma tumor microenvironment. Clin Cancer Res. 2007;13(18 Pt 1):5256–61.

    Article  CAS  PubMed  Google Scholar 

  29. Zou W. Immunosuppressive networks in the tumour environment and their therapeutic relevance. Nat Rev Cancer. 2005;5(4):263–74.

    Article  CAS  PubMed  Google Scholar 

  30. Zou W. Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol. 2006;6(4):295–307.

    Article  CAS  PubMed  Google Scholar 

  31. Zou W, Chen L. Inhibitory B7-family molecules in the tumour microenvironment. Nat Rev Immunol. 2008;8(6):467–77.

    Article  CAS  PubMed  Google Scholar 

  32. Zou W, Restifo NP. T(H)17 cells in tumour immunity and immunotherapy. Nat Rev Immunol. 2010;10(4):248–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Parish CR. Cancer immunotherapy: the past, the present and the future. Immunol Cell Biol. 2003;81(2):106–13.

    Article  CAS  PubMed  Google Scholar 

  34. Mellman I, Coukos G, Dranoff G. Cancer immunotherapy comes of age. Nature. 2011;480(7378):480–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Coley WB II. Contribution to the knowledge of sarcoma. Ann Surg. 1891;14(3):199–220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Coley WB. The treatment of malignant tumors by repeated inoculations of erysipelas. With a report of ten original cases. Clin Orthop Relat Res. 1893;1991(262):3–11.

    Google Scholar 

  37. Coley WB. The treatment of inoperable sarcoma by bacterial toxins (the mixed toxins of the Streptococcus erysipelas and the Bacillus prodigiosus). Proc R Soc Med. 1910;3(Surg Sect):1–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  38. American Association for Cancer Research. The 2013 William B. Coley award for distinguished research in basic and tumor immunology. Cancer Immunol Res. 2013;1(6):362–4.

    Article  CAS  Google Scholar 

  39. Rosenberg SA. A new era for cancer immunotherapy based on the genes that encode cancer antigens. Immunity. 1999;10(3):281–7.

    Article  CAS  PubMed  Google Scholar 

  40. Burnet FM, Fenner F. Genetics and immunology. Heredity. 1948;2(Pt. 3):289–324.

    Article  CAS  PubMed  Google Scholar 

  41. Foley EJ. Antigenic properties of methylcholanthrene-induced tumors in mice of the strain of origin. Cancer Res. 1953;13(12):835–7.

    CAS  PubMed  Google Scholar 

  42. Prehn RT, Main JM. Immunity to methylcholanthrene-induced sarcomas. J Natl Cancer Inst. 1957;18(6):769–78.

    CAS  PubMed  Google Scholar 

  43. Burnet M. Cancer; a biological approach. I. The processes of control. Br Med J. 1957;1(5022):779–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Outzen HC, Custer RP, Eaton GJ, et al. Spontaneous and induced tumor incidence in germfree "nude" mice. J Reticuloendothel Soc. 1975;17(1):1–9.

    CAS  PubMed  Google Scholar 

  45. Stutman O. Immunodepression and malignancy. Adv Cancer Res. 1975;22:261–422.

    Article  CAS  PubMed  Google Scholar 

  46. Kim R, Emi M, Tanabe K. Cancer immunoediting from immune surveillance to immune escape. Immunology. 2007;121(1):1–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Herberman RB, Holden HT. Natural cell-mediated immunity. Adv Cancer Res. 1978;27:305–77.

    Article  CAS  PubMed  Google Scholar 

  48. Shankaran V, Ikeda H, Bruce AT, et al. IFNgamma and lymphocytes prevent primary tumour development and shape tumour immunogenicity. Nature. 2001;410(6832):1107–11.

    Article  CAS  PubMed  Google Scholar 

  49. Gerlich WH. Medical virology of hepatitis B: how it began and where we are now. Virol J. 2013;10:239.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Shepard CW, Simard EP, Finelli L, et al. Hepatitis B virus infection: epidemiology and vaccination. Epidemiol Rev. 2006;28:112–25.

    Article  PubMed  Google Scholar 

  51. Gajewski TF, Meng Y, Blank C, et al. Immune resistance orchestrated by the tumor microenvironment. Immunol Rev. 2006;213:131–45.

    Article  CAS  PubMed  Google Scholar 

  52. Zhang T, Somasundaram R, Berencsi K, et al. Migration of cytotoxic T lymphocytes toward melanoma cells in three-dimensional organotypic culture is dependent on CCL2 and CCR4. Eur J Immunol. 2006;36(2):457–67.

    Article  CAS  PubMed  Google Scholar 

  53. Buckanovich RJ, Facciabene A, Kim S, et al. Endothelin B receptor mediates the endothelial barrier to T cell homing to tumors and disables immune therapy. Nat Med. 2008;14(1):28–36.

    Article  CAS  PubMed  Google Scholar 

  54. Turk MJ, Guevara-Patino JA, Rizzuto GA, et al. Concomitant tumor immunity to a poorly immunogenic melanoma is prevented by regulatory T cells. J Exp Med. 2004;200(6):771–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Liyanage UK, Moore TT, Joo HG, et al. Prevalence of regulatory T cells is increased in peripheral blood and tumor microenvironment of patients with pancreas or breast adenocarcinoma. J Immunol. 2002;169(5):2756–61.

    Article  CAS  PubMed  Google Scholar 

  56. Viguier M, Lemaitre F, Verola O, et al. Foxp3 expressing CD4+CD25(high) regulatory T cells are overrepresented in human metastatic melanoma lymph nodes and inhibit the function of infiltrating T cells. J Immunol. 2004;173(2):1444–53.

    Article  CAS  PubMed  Google Scholar 

  57. Casares N, Arribillaga L, Sarobe P, et al. CD4+/CD25+ regulatory cells inhibit activation of tumor-primed CD4+ T cells with IFN-gamma-dependent antiangiogenic activity, as well as long-lasting tumor immunity elicited by peptide vaccination. J Immunol. 2003;171(11):5931–9.

    Article  CAS  PubMed  Google Scholar 

  58. Antony PA, Piccirillo CA, Akpinarli A, et al. CD8+ T cell immunity against a tumor/self-antigen is augmented by CD4+ T helper cells and hindered by naturally occurring T regulatory cells. J Immunol. 2005;174(5):2591–601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Viehl CT, Moore TT, Liyanage UK, et al. Depletion of CD4+CD25+ regulatory T cells promotes a tumor-specific immune response in pancreas cancer-bearing mice. Ann Surg Oncol. 2006;13(9):1252–8.

    Article  PubMed  Google Scholar 

  60. Wang RF, Rosenberg SA. Human tumor antigens for cancer vaccine development. Immunol Rev. 1999;170:85–100.

    Article  CAS  PubMed  Google Scholar 

  61. Chan AD, Morton DL. Active immunotherapy with allogeneic tumor cell vaccines: present status. Semin Oncol. 1998;25(6):611–22.

    CAS  PubMed  Google Scholar 

  62. Rosenberg SA. Cancer vaccines based on the identification of genes encoding cancer regression antigens. Immunol Today. 1997;18(4):175–82.

    Article  CAS  PubMed  Google Scholar 

  63. Rosenberg SA, Yang JC, Schwartzentruber DJ, et al. Immunologic and therapeutic evaluation of a synthetic peptide vaccine for the treatment of patients with metastatic melanoma. Nat Med. 1998;4(3):321–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Maeurer MJ, Storkus WJ, Kirkwood JM, et al. New treatment options for patients with melanoma: review of melanoma-derived T-cell epitope-based peptide vaccines. Melanoma Res. 1996;6(1):11–24.

    Article  CAS  PubMed  Google Scholar 

  65. Berinstein NL. Carcinoembryonic antigen as a target for therapeutic anticancer vaccines: a review. J Clin Oncol. 2002;20(8):2197–207.

    Article  CAS  PubMed  Google Scholar 

  66. Wang F, Bade E, Kuniyoshi C, et al. Phase I trial of a MART-1 peptide vaccine with incomplete Freund’s adjuvant for resected high-risk melanoma. Clin Cancer Res. 1999;5(10):2756–65.

    CAS  PubMed  Google Scholar 

  67. Schwartzentruber DJ, Lawson DH, Richards JM, et al. gp100 peptide vaccine and interleukin-2 in patients with advanced melanoma. N Engl J Med. 2011;364(22):2119–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eggermont AM. Immunotherapy: vaccine trials in melanoma—time for reflection. Nat Rev Clin Oncol. 2009;6(5):256–8.

    Article  CAS  PubMed  Google Scholar 

  69. Rosenberg SA, Sherry RM, Morton KE, et al. Tumor progression can occur despite the induction of very high levels of self/tumor antigen-specific CD8+ T cells in patients with melanoma. J Immunol. 2005;175(9):6169–76.

    Article  CAS  PubMed  Google Scholar 

  70. Phan GQ, Touloukian CE, Yang JC, et al. Immunization of patients with metastatic melanoma using both class I- and class II-restricted peptides from melanoma-associated antigens. J Immunother. 2003;26(4):349–56.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Liu MA. DNA vaccines: a review. J Intern Med. 2003;253(4):402–10.

    Article  CAS  PubMed  Google Scholar 

  72. Kutzler MA, Weiner DB. Developing DNA vaccines that call to dendritic cells. J Clin Invest. 2004;114(9):1241–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Lu S, Wang S, Grimes-Serrano JM. Current progress of DNA vaccine studies in humans. Expert Rev Vaccines. 2008;7(2):175–91.

    Article  CAS  PubMed  Google Scholar 

  74. Palucka K, Banchereau J. Cancer immunotherapy via dendritic cells. Nat Rev Cancer. 2012;12(4):265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Kantoff PW, Higano CS, Shore ND, et al. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010;363(5):411–22.

    Article  CAS  PubMed  Google Scholar 

  76. Engell-Noerregaard L, Hansen TH, Andersen MH, et al. Review of clinical studies on dendritic cell-based vaccination of patients with malignant melanoma: assessment of correlation between clinical response and vaccine parameters. Cancer Immunol Immunother. 2009;58(1):1–14.

    Article  CAS  PubMed  Google Scholar 

  77. Banchereau J, Palucka AK. Dendritic cells as therapeutic vaccines against cancer. Nat Rev Immunol. 2005;5(4):296–306.

    Article  CAS  PubMed  Google Scholar 

  78. Bodey B, Bodey B Jr, Siegel SE, et al. Failure of cancer vaccines: the significant limitations of this approach to immunotherapy. Anticancer Res. 2000;20(4):2665–76.

    CAS  PubMed  Google Scholar 

  79. Lai CL, Yuen MF. Prevention of hepatitis B virus-related hepatocellular carcinoma with antiviral therapy. Hepatology. 2013;57(1):399–408.

    Article  CAS  PubMed  Google Scholar 

  80. Paavonen J, Naud P, Salmeron J, et al. Efficacy of human papillomavirus (HPV)-16/18 AS04-adjuvanted vaccine against cervical infection and precancer caused by oncogenic HPV types (PATRICIA): final analysis of a double-blind, randomised study in young women. Lancet. 2009;374(9686):301–14.

    Article  CAS  PubMed  Google Scholar 

  81. Welte K, Wang CY, Mertelsmann R, et al. Purification of human interleukin 2 to apparent homogeneity and its molecular heterogeneity. J Exp Med. 1982;156(2):454–64.

    Article  CAS  PubMed  Google Scholar 

  82. Donohue JH, Rosenstein M, Chang AE, et al. The systemic administration of purified interleukin 2 enhances the ability of sensitized murine lymphocytes to cure a disseminated syngeneic lymphoma. J Immunol. 1984;132(4):2123–8.

    CAS  PubMed  Google Scholar 

  83. Cheever MA, Greenberg PD, Fefer A, et al. Augmentation of the anti-tumor therapeutic efficacy of long-term cultured T lymphocytes by in vivo administration of purified interleukin 2. J Exp Med. 1982;155(4):968–80.

    Article  CAS  PubMed  Google Scholar 

  84. Rosenberg SA, Mule JJ, Spiess PJ, et al. Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med. 1985;161(5):1169–88.

    Article  CAS  PubMed  Google Scholar 

  85. Lotze MT, Rosenberg SA. Results of clinical trials with the administration of interleukin 2 and adoptive immunotherapy with activated cells in patients with cancer. Immunobiology. 1986;172(3–5):420–37.

    Article  CAS  PubMed  Google Scholar 

  86. Gaffen SL, Liu KD. Overview of interleukin-2 function, production and clinical applications. Cytokine. 2004;28(3):109–23.

    Article  CAS  PubMed  Google Scholar 

  87. Phan GQ, Attia P, Steinberg SM, et al. Factors associated with response to high-dose interleukin-2 in patients with metastatic melanoma. J Clin Oncol. 2001;19(15):3477–82.

    Article  CAS  PubMed  Google Scholar 

  88. Antony PA, Restifo NP. CD4+CD25+ T regulatory cells, immunotherapy of cancer, and interleukin-2. J Immunother. 2005;28(2):120–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Plotkin S. History of vaccination. Proc Natl Acad Sci U S A. 2014;111(34):12283–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Fraser G, Smith CA, Imrie K, et al. Alemtuzumab in chronic lymphocytic leukemia. Curr Oncol. 2007;14(3):96–109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Hortobagyi GN. Trastuzumab in the treatment of breast cancer. N Engl J Med. 2005;353(16):1734–6.

    Article  CAS  PubMed  Google Scholar 

  92. Slamon D, Eiermann W, Robert N, et al. Adjuvant trastuzumab in HER2-positive breast cancer. N Engl J Med. 2011;365(14):1273–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Witzig TE. Yttrium-90-ibritumomab tiuxetan radioimmunotherapy: a new treatment approach for B-cell non-Hodgkin’s lymphoma. Drugs Today (Barc). 2004;40(2):111–9.

    Article  CAS  Google Scholar 

  94. Amiri-Kordestani L, Blumenthal GM, Xu QC, et al. FDA approval: ado-trastuzumab emtansine for the treatment of patients with HER2-positive metastatic breast cancer. Clin Cancer Res. 2014;20(17):4436–41.

    Article  CAS  PubMed  Google Scholar 

  95. Rosenberg SA, Restifo NP, Yang JC, et al. Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer. 2008;8(4):299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Kalos M, June CH. Adoptive T cell transfer for cancer immunotherapy in the era of synthetic biology. Immunity. 2013;39(1):49–60.

    Article  CAS  PubMed  Google Scholar 

  97. Mitchison NA. Adoptive transfer of immune reactions by cells. J Cell Physiol Suppl. 1957;50(Suppl 1):247–64.

    Article  CAS  PubMed  Google Scholar 

  98. Mazumder A, Rosenberg SA. Successful immunotherapy of natural killer-resistant established pulmonary melanoma metastases by the intravenous adoptive transfer of syngeneic lymphocytes activated in vitro by interleukin 2. J Exp Med. 1984;159(2):495–507.

    Article  CAS  PubMed  Google Scholar 

  99. Murray D, Hreno A, Dutton J, et al. Prognosis in colon cancer: a pathologic reassessment. Arch Surg. 1975;110(8):908–13.

    Article  CAS  PubMed  Google Scholar 

  100. Sato E, Olson SH, Ahn J, et al. Intraepithelial CD8+ tumor-infiltrating lymphocytes and a high CD8+/regulatory T cell ratio are associated with favorable prognosis in ovarian cancer. Proc Natl Acad Sci U S A. 2005;102(51):18538–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Naito Y, Saito K, Shiiba K, et al. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res. 1998;58(16):3491–4.

    CAS  PubMed  Google Scholar 

  102. Rosenberg SA, Spiess P, Lafreniere R. A new approach to the adoptive immunotherapy of cancer with tumor-infiltrating lymphocytes. Science. 1986;233(4770):1318–21.

    Article  CAS  PubMed  Google Scholar 

  103. Dudley ME, Wunderlich JR, Shelton TE, et al. Generation of tumor-infiltrating lymphocyte cultures for use in adoptive transfer therapy for melanoma patients. J Immunother. 2003;26(4):332–42.

    Article  PubMed  PubMed Central  Google Scholar 

  104. North RJ. Cyclophosphamide-facilitated adoptive immunotherapy of an established tumor depends on elimination of tumor-induced suppressor T cells. J Exp Med. 1982;155(4):1063–74.

    Article  CAS  PubMed  Google Scholar 

  105. Rosenberg SA, Packard BS, Aebersold PM, et al. Use of tumor-infiltrating lymphocytes and interleukin-2 in the immunotherapy of patients with metastatic melanoma. A preliminary report. N Engl J Med. 1988;319(25):1676–80.

    Article  CAS  PubMed  Google Scholar 

  106. Dudley ME, Yang JC, Sherry R, et al. Adoptive cell therapy for patients with metastatic melanoma: evaluation of intensive myeloablative chemoradiation preparative regimens. J Clin Oncol. 2008;26(32):5233–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Tseng J, Citrin DE, Waldman M, et al. Thrombotic microangiopathy in metastatic melanoma patients treated with adoptive cell therapy and total body irradiation. Cancer. 2014;120(9):1426–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Zhou J, Shen X, Huang J, et al. Telomere length of transferred lymphocytes correlates with in vivo persistence and tumor regression in melanoma patients receiving cell transfer therapy. J Immunol. 2005;175(10):7046–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Tran KQ, Zhou J, Durflinger KH, et al. Minimally cultured tumor-infiltrating lymphocytes display optimal characteristics for adoptive cell therapy. J Immunother. 2008;31(8):742–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Itzhaki O, Hovav E, Ziporen Y, et al. Establishment and large-scale expansion of minimally cultured "young" tumor infiltrating lymphocytes for adoptive transfer therapy. J Immunother. 2011;34(2):212–20.

    Article  PubMed  Google Scholar 

  111. Dudley ME, Gross CA, Langhan MM, et al. CD8+ enriched "young" tumor infiltrating lymphocytes can mediate regression of metastatic melanoma. Clin Cancer Res. 2010;16(24):6122–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Tran E, Turcotte S, Gros A, et al. Cancer immunotherapy based on mutation-specific CD4+ T cells in a patient with epithelial cancer. Science. 2014;344(6184):641–5.

    Article  CAS  PubMed  Google Scholar 

  113. Rossig C, Brenner MK. Genetic modification of T lymphocytes for adoptive immunotherapy. Mol Ther. 2004;10(1):5–18.

    Article  CAS  PubMed  Google Scholar 

  114. Morgan RA, Dudley ME, Wunderlich JR, et al. Cancer regression in patients after transfer of genetically engineered lymphocytes. Science. 2006;314(5796):126–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Frankel TL, Burns WR, Peng PD, et al. Both CD4 and CD8 T cells mediate equally effective in vivo tumor treatment when engineered with a highly avid TCR targeting tyrosinase. J Immunol. 2010;184(11):5988–98.

    Article  CAS  PubMed  Google Scholar 

  116. Johnson LA, Morgan RA, Dudley ME, et al. Gene therapy with human and mouse T-cell receptors mediates cancer regression and targets normal tissues expressing cognate antigen. Blood. 2009;114(3):535–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Seaman BJ, Guardiani EA, Brewer CC, et al. Audiovestibular dysfunction associated with adoptive cell immunotherapy for melanoma. Otolaryngol Head Neck Surg. 2012;147(4):744–9.

    Article  PubMed  Google Scholar 

  118. Robbins PF, Morgan RA, Feldman SA, et al. Tumor regression in patients with metastatic synovial cell sarcoma and melanoma using genetically engineered lymphocytes reactive with NY-ESO-1. J Clin Oncol. 2011;29(7):917–24.

    Article  PubMed  PubMed Central  Google Scholar 

  119. Morgan RA, Chinnasamy N, Abate-Daga D, et al. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013;36(2):133–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ellis JM, Henson V, Slack R, et al. Frequencies of HLA-A2 alleles in five U.S. population groups. Predominance of A*02011 and identification of HLA-A*0231. Hum Immunol. 2000;61(3):334–40.

    Article  CAS  PubMed  Google Scholar 

  121. Sadelain M, Brentjens R, Riviere I. The promise and potential pitfalls of chimeric antigen receptors. Curr Opin Immunol. 2009;21(2):215–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kochenderfer JN, Feldman SA, Zhao Y, et al. Construction and preclinical evaluation of an anti-CD19 chimeric antigen receptor. J Immunother. 2009;32(7):689–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Kochenderfer JN, Dudley ME, Kassim SH, et al. Chemotherapy-refractory diffuse large B-cell lymphoma and indolent B-cell malignancies can be effectively treated with autologous T cells expressing an anti-CD19 chimeric antigen receptor. J Clin Oncol. 2015;33(6):540–9.

    Article  CAS  PubMed  Google Scholar 

  124. Brentjens RJ, Davila ML, Riviere I, et al. CD19-targeted T cells rapidly induce molecular remissions in adults with chemotherapy-refractory acute lymphoblastic leukemia. Sci Transl Med. 2013;5(177):177ra38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Grupp SA, Kalos M, Barrett D, et al. Chimeric antigen receptor-modified T cells for acute lymphoid leukemia. N Engl J Med. 2013;368(16):1509–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Morgan RA, Yang JC, Kitano M, et al. Case report of a serious adverse event following the administration of T cells transduced with a chimeric antigen receptor recognizing ERBB2. Mol Ther. 2010;18(4):843–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Marigo I, Dolcetti L, Serafini P, et al. Tumor-induced tolerance and immune suppression by myeloid derived suppressor cells. Immunol Rev. 2008;222:162–79.

    Article  CAS  PubMed  Google Scholar 

  128. Shevach EM. Mechanisms of foxp3+ T regulatory cell-mediated suppression. Immunity. 2009;30(5):636–45.

    Article  CAS  PubMed  Google Scholar 

  129. Devaud C, John LB, Westwood JA, et al. Immune modulation of the tumor microenvironment for enhancing cancer immunotherapy. Oncoimmunology. 2013;2(8):e25961.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Veltman JD, Lambers ME, van Nimwegen M, et al. COX-2 inhibition improves immunotherapy and is associated with decreased numbers of myeloid-derived suppressor cells in mesothelioma. Celecoxib influences MDSC function. BMC Cancer. 2010;10:464.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  131. Buhtoiarov IN, Sondel PM, Wigginton JM, et al. Anti-tumour synergy of cytotoxic chemotherapy and anti-CD40 plus CpG-ODN immunotherapy through repolarization of tumour-associated macrophages. Immunology. 2011;132(2):226–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Serafini P, Meckel K, Kelso M, et al. Phosphodiesterase-5 inhibition augments endogenous antitumor immunity by reducing myeloid-derived suppressor cell function. J Exp Med. 2006;203(12):2691–702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gately MK, Renzetti LM, Magram J, et al. The interleukin-12/interleukin-12-receptor system: role in normal and pathologic immune responses. Annu Rev Immunol. 1998;16:495–521.

    Article  CAS  PubMed  Google Scholar 

  134. Blake SJ, Ching AL, Kenna TJ, et al. Blockade of PD-1/PD-L1 promotes adoptive T-cell immunotherapy in a tolerogenic environment. PLoS One. 2015;10(3):e0119483.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Mahvi DA, Meyers JV, Tatar AJ, et al. Ctla-4 blockade plus adoptive T-cell transfer promotes optimal melanoma immunity in mice. J Immunother. 2015;38(2):54–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Chambers CA, Kuhns MS, Egen JG, et al. CTLA-4-mediated inhibition in regulation of T cell responses: mechanisms and manipulation in tumor immunotherapy. Annu Rev Immunol. 2001;19:565–94.

    Article  CAS  PubMed  Google Scholar 

  137. Keir ME, Butte MJ, Freeman GJ, et al. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677–704.

    Article  CAS  PubMed  Google Scholar 

  138. Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996;271(5256):1734–6.

    Article  CAS  PubMed  Google Scholar 

  139. Hodi FS, O’Day SJ, McDermott DF, et al. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010;363(8):711–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Wolchok JD, Kluger H, Callahan MK, et al. Nivolumab plus ipilimumab in advanced melanoma. N Engl J Med. 2013;369(2):122–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Topalian SL, Hodi FS, Brahmer JR, et al. Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med. 2012;366(26):2443–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Barbee MS, Ogunniyi A, Horvat TZ, et al. Current status and future directions of the immune checkpoint inhibitors ipilimumab, pembrolizumab, and nivolumab in oncology. Ann Pharmacother. 2015;49(8):907–37.

    Article  CAS  PubMed  Google Scholar 

  143. Panni RZ, Linehan DC, DeNardo DG. Targeting tumor-infiltrating macrophages to combat cancer. Immunotherapy. 2013;5(10):1075–87.

    Article  CAS  PubMed  Google Scholar 

  144. Gabrilovich DI, Nagaraj S. Myeloid-derived suppressor cells as regulators of the immune system. Nat Rev Immunol. 2009;9(3):162–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Zou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Frankel, T., Lanfranca, M.P., Zou, W. (2017). The Role of Tumor Microenvironment in Cancer Immunotherapy. In: Kalinski, P. (eds) Tumor Immune Microenvironment in Cancer Progression and Cancer Therapy. Advances in Experimental Medicine and Biology, vol 1036. Springer, Cham. https://doi.org/10.1007/978-3-319-67577-0_4

Download citation

Publish with us

Policies and ethics