Skip to main content

Gut Microbiota and Bone Health

  • Chapter
  • First Online:
Understanding the Gut-Bone Signaling Axis

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1033))

Abstract

The past decade has seen an explosion of research in the area of how the bacteria that inhabit the human body impact health and disease. One of the more surprising concepts to emerge from this work is the ability of the intestinal microbiota to impact virtually all systems in the body. Recently, the role of gut bacteria in bone health and disease has received more significant attention. In this chapter, we review what has been learned about how the gut microbiome impacts bone health and discuss possible mechanisms of how the gut-bone axis may be connected. We also discuss the use of therapeutic microbes in the modulation of bone health. Finally, we propose an emerging field of the gut-brain-bone axis, in which the gut drives bone physiology via regulation of key hormones that are originally synthesized in the brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Riggs BL, Melton Iii LJ, Robb RA, Camp JJ, Atkinson EJ, Peterson JM, et al. Population-based study of age and sex differences in bone volumetric density, size, geometry, and structure at different skeletal sites. J Bone Miner Res. 2004;19(12):1945–54.

    Article  PubMed  Google Scholar 

  2. Martin GHKQR. Activated T lymphocytes support osteoclast formation in vitro. Biochem Biophys Res Commun. 1999;265:144–50.

    Article  PubMed  Google Scholar 

  3. Pappalardo A, Thompson K. Activated γδ T cells inhibit osteoclast differentiation and resorptive activity in vitro. Clin Exp Immunol. 2013;174(2):281–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Nakashima T, Takayanagi H. Osteoimmunology: crosstalk between the immune and bone systems. J Clin Immunol. 2009;29(5):555–67.

    Article  PubMed  Google Scholar 

  5. Asagiri M, Takayanagi H. The molecular understanding of osteoclast differentiation. Bone. 2007;40(2):251–64.

    Article  CAS  PubMed  Google Scholar 

  6. Kimble RB, Srivastava S, Ross FP, Matayoshi A, Pacifici R. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1and tumor necrosis factor- mediated stimulation of macrophage colony-stimulating factor production. J Biol Chem. 1996;271(46):28890–7.

    Article  CAS  PubMed  Google Scholar 

  7. Feng X. Regulatory roles and molecular signaling of TNF family members in osteoclasts. Gene. 2005;350(1):1–13.

    Article  CAS  PubMed  Google Scholar 

  8. Srivastava S, Weitzmann MN, Cenci S, Ross FP, Adler S, Pacifici R. Estrogen decreases TNF gene expression by blocking JNK activity and the resulting production of c-Jun and JunD. J Clin Invest. 1999;104(4):503–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Weitzmann MN. The role of inflammatory cytokines, the RANKL/OPG axis, and the immunoskeletal interface in physiological bone turnover and osteoporosis. Scientifica (Cairo). 2013;2013:125705.

    Google Scholar 

  10. Most W, Van der Wee-Pals L, Ederveen A, Papapoulos S, Löwik C. Ovariectomy and orchidectomy induce a transient increase in the osteoclastogenic potential of bone marrow cells in the mouse. Bone. 1997;20(1):27–30.

    Article  CAS  PubMed  Google Scholar 

  11. Bellido T, Jilka RL, Boyce BF, Girasole G, Broxmeyer H, Dalrymple SA, et al. Regulation of interleukin-6, osteoclastogenesis, and bone mass by androgens: the role of the androgen receptor. J Clin Invest. 1995;95(6):2886–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Karieb S, Fox SW. Suppression of T cell-induced osteoclast formation. Biochem Biophys Res Commun. Elsevier Inc. 2013;436(4):619–24.

    Article  CAS  PubMed  Google Scholar 

  13. Salamanna F, Maglio M, Borsari V, Giavaresi G, Aldini NN, Fini M. Peripheral blood mononuclear cells spontaneous osteoclastogenesis: mechanisms driving the process and clinical relevance in skeletal disease. J Cell Physiol. 2016;231(3):521–30.

    Article  CAS  PubMed  Google Scholar 

  14. D’Amelio P, Sassi F. Osteoimmunology: from mice to humans. Bonekey Rep. 2016;5:802.

    PubMed  PubMed Central  Google Scholar 

  15. Helander HF, Fändriks L. Surface area of the digestive tract – revisited. Scand J Gastroenterol. 2014;49(6):681–9.

    Article  PubMed  Google Scholar 

  16. Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut. 2009;58(8):1091–103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT, et al. Intestinal microbiota metabolism of l-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. Nature Publishing Group. 2013;19:576–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Korpela K, Salonen A, Virta LJ, Kekkonen RA, Forslund K, Bork P, et al. Intestinal microbiome is related to lifetime antibiotic use in Finnish pre-school children. Nat Commun. 2016;7:10410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Carmeliet G, Dermauw V, Bouillon R. Vitamin D signaling in calcium and bone homeostasis: a delicate balance. Best Pract Res Clin Endocrinol Metab. Elsevier Ltd. 2015;29(4):621–31.

    Article  CAS  PubMed  Google Scholar 

  20. Sharan K, Yadav VK. Hypothalamic control of bone metabolism. Best Pract Res Clin Endocrinol Metab. Elsevier Ltd. 2014;28(5):713–23.

    Article  CAS  PubMed  Google Scholar 

  21. Gibson GR, Scott KP, Rastall RA, Tuohy KM, Hotchkiss A, Dubert-Ferrandon A, et al. Dietary prebiotics: current status and new definition. Food Sci Technol Bull Funct Foods. 2010;7(1):1–19.

    Article  Google Scholar 

  22. Weaver CM, Martin BR, Nakatsu CH, Armstrong AP, Clavijo A, Mccabe LD, et al. Galactooligosaccharides improve mineral absorption and bone properties in growing rats through gut fermentation. J Agric Food Chem (ACS Publ). 2011;59:6501–10.

    Article  CAS  Google Scholar 

  23. Whisner CM, Martin BR, Nakatsu CH, Story JA, MacDonald-Clarke CJ, McCabe LD, et al. Soluble corn fiber increases calcium absorption associated with shifts in the gut microbiome: a randomized dose-response trial in free-living pubertal females. J Nutr. 2016;146(7):1298–306.

    Article  CAS  PubMed  Google Scholar 

  24. Zafar TA, Weaver CM, Zhao YD, Martin BR, Wastney ME. Nondigestible oligosaccharides increase calcium absorption and suppress bone resorption in ovariectomized rats. J Nutr. 2004;134(2):399–402.

    CAS  PubMed  Google Scholar 

  25. McCabe L, Britton RA, Parameswaran N. Prebiotic and probiotic regulation of bone health: role of the intestine and its microbiome. Curr Osteoporos Rep. 2015;13(6):363–71.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Morelli L, Capurso L. FAO/WHO guidelines on probiotics. J Clin Gastroenterol. 2012;46:S1–2.

    Article  PubMed  Google Scholar 

  27. Kimoto-Nira H, Suzuki C, Kobayashi M, Sasaki K, Kurisaki J-I, Mizumachi K. Anti-ageing effect of a lactococcal strain: analysis using senescence-accelerated mice. Br J Nutr. 2007;98(6):1178–86.

    Article  CAS  PubMed  Google Scholar 

  28. Narva M, Collin M, Lamberg-Allardt C, Kärkkäinen M, Poussa T, Vapaatalo H, et al. Effects of long-term intervention with lactobacillus helveticus-fermented milk on bone mineral density and bone mineral content in growing rats. Ann Nutr Metab. 2004;48(4):228–34.

    Article  CAS  PubMed  Google Scholar 

  29. Narva M, Rissanen J, Halleen J, Vapaatalo H, Väänänen K, Korpela R. Effects of bioactive peptide, Valyl-Prolyl-Proline (VPP), and Lactobacillus helveticus fermented milk containing VPP on bone loss in ovariectomized rats. Ann Nutr Metab. 2007;51(1):65–74.

    Article  CAS  PubMed  Google Scholar 

  30. Narva M, Nevala R, Poussa T, Korpela R. The effect of Lactobacillus helveticus fermented milk on acute changes in calcium metabolism in postmenopausal women. Eur J Nutr. 2004;43(2):61–8.

    Article  CAS  PubMed  Google Scholar 

  31. McCabe LR, Irwin R, Schaefer L, Britton RA. Probiotic use decreases intestinal inflammation and increases bone density in healthy male but not female mice. J Cell Physiol. 2013;228(8):1793–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Britton RA, Irwin R, Quach D, Schaefer L, Zhang J, Lee T, et al. Probiotic L. reuteri treatment prevents bone loss in a menopausal ovariectomized mouse model. J Cell Physiol. Wiley-Liss Inc. 2014;229(11):1822–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Collins FL, Irwin R, Bierhalter H, Schepper J, Britton RA, Parameswaran N, et al. Lactobacillus reuteri 6475 increases bone density in intact females only under an inflammatory setting. PLoS One. 2016;11(4):e0153180.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Jones SE, Whitehead K, Saulnier D, Thomas CM, Versalovic J, Britton RA. Cyclopropane fatty acid synthase mutants of probiotic human-derived lactobacillus reuteri are defective in TNF inhibition. Gut Microbes. 2011;2(2):69–79.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thomas CM, Hong T, van Pijkeren JP, Hemarajata P, Trinh DV, Hu W, et al. Histamine derived from probiotic lactobacillus reuteri suppresses tnf via modulation of pka and erk signaling. PLoS One. 2012;7(2):e31951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ohlsson C, Sjögren K. Effects of the gut microbiota on bone mass. Trends Endocrinol Metab. 2015;26(2):69–74.

    Article  CAS  PubMed  Google Scholar 

  37. Pacifici R. Estrogen deficiency, T cells and bone loss. Cell Immunol. 2008;252(1–2):68–80.

    Article  CAS  PubMed  Google Scholar 

  38. Pacifici R. Role of T cells in ovariectomy induced bone loss-revisited. J Bone Miner Res. 2012;27(2):231–9.

    Article  PubMed  Google Scholar 

  39. Manolagas SC. From estrogen-centric to aging and oxidative stress: a revised perspective of the pathogenesis of osteoporosis. Endocr Rev. 2010;31(3):266–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Khosravi A, Yáñez A, Price JG, Chow A, Merad M, Goodridge HS, et al. Gut microbiota promote hematopoiesis to control bacterial infection. Cell Host Microbe [Internet]. 2014;15(3):374–81. Available from: http://www.ncbi.nlm.nih.gov/pubmed/24629343

    Article  CAS  Google Scholar 

  41. Sjögren K, Engdahl C, Henning P, Lerner UH, Tremaroli V, Lagerquist MK, et al. The gut microbiota regulates bone mass in mice. J Bone Miner Res. 2012;27(6):1357–67.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Cho I, Yamanishi S, Cox L, Methé BA, Zavadil J, Li K, et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature. 2012;488(7413):621–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I, et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell. 2014;158(4):705–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Williams S, Wakisaka A, Zeng QQ, Barnes J, Martin G, Wechter WJ, et al. Minocycline prevents the decrease in bone mineral density and trabecular bone in ovariectomized aged rats. Bone. 1996;19(6):637–44.

    Article  CAS  PubMed  Google Scholar 

  45. Schwarzer M, Makki K, Storelli G, Machuca-gayet I, Hudcovic T, Heddi A, et al. Lactobacillus plantarum strain maintains growth of infant mice during chronic undernutrition. Science. 2016;351(6275):854–7.

    Article  CAS  PubMed  Google Scholar 

  46. Li J-Y, Chassaing B, Tyagi AM, Vaccaro C, Luo T, Adams J, et al. Sex steroid deficiency-associated bone loss is microbiota dependent and prevented by probiotics. J Clin Invest. 2016;126(6):2049–63.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ericsson AC, Davis JW, Spollen W, Bivens N, Givan S, Hagan CE, et al. Effects of vendor and genetic background on the composition of the fecal microbiota of inbred mice. PLoS One. 2015;10(2):1–19.

    Article  Google Scholar 

  48. Weitzmann MN, Pacifici R. Estrogen regulation of immune cell bone interactions. Ann N Y Acad Sci. 2006;1068(1):256–74.

    Article  CAS  PubMed  Google Scholar 

  49. Hirayama T, Danks L, Sabokbar A, Athanasou NA. Osteoclast formation and activity in the pathogenesis of osteoporosis in rheumatoid arthritis. Rheumatology (Oxford). 2002;41(11):1232–9.

    Article  CAS  Google Scholar 

  50. Dimitrov V, White JH. Vitamin D signaling in intestinal innate immunity and homeostasis. Mol Cell Endocrinol. Elsevier Ireland Ltd. 2017;3:68–78.

    Google Scholar 

  51. Adachi T, Kakuta S, Aihara Y, Kamiya T, Watanabe Y, Osakabe N, et al. Visualization of probiotic-mediated Ca(2+) signaling in intestinal epithelial cells in vivo. Front Immunol. 2016;7:601.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zofková I, Matucha P. New insights into the physiology of bone regulation: the role of neurohormones. Physiol Res. 2014;63(4):421–7.

    PubMed  Google Scholar 

  53. Forsythe P, Kunze WA. Voices from within: gut microbes and the CNS. Cell Mol Life Sci. 2013;70(1):55–69.

    Article  CAS  PubMed  Google Scholar 

  54. Hyland NP, Cryan JF. Microbe-host interactions: influence of the gut microbiota on the enteric nervous system. Dev Biol. 2016;417(2):182–7.

    Google Scholar 

  55. Das UN. Obesity: genes, brain, gut, and environment. Nutrition. Elsevier Ltd. 2010;26(5):459–73.

    Article  CAS  PubMed  Google Scholar 

  56. Cluny NL, Reimer RA, Sharkey KA. Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis. Brain Behav Immun. Elsevier Inc. 2012;26(5):691–8.

    Article  CAS  PubMed  Google Scholar 

  57. Han C, Rice MW, Cai D. Neuroinflammatory and autonomic mechanisms in diabetes and hypertension. Am J Physiol Endocrinol Metab. 2016;311(1):E32–41.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Mooney-Leber SM, Brummelte S. Neonatal pain and reduced maternal care: early-life stressors interacting to impact brain and behavioral development. Neurosci IBRO. 2017;342:21–36.

    Article  CAS  Google Scholar 

  59. Cavadas C, Aveleira CA, Souza GFP, Velloso LA. The pathophysiology of defective proteostasis in the hypothalamus – from obesity to ageing. Nat Rev Endocrinol. Nature Publishing Group. 2016;12(12):723–33.

    Article  CAS  PubMed  Google Scholar 

  60. Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, et al. Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One. 2009;4(12):e8415.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, et al. Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res. 2006;21(10):1600–7.

    Article  CAS  PubMed  Google Scholar 

  62. Steppan CM, Crawford DT, Chidsey-Frink KL, Ke H, Swick AG. Leptin is a potent stimulator of bone growth in ob/ob mice. Regul Pept. 2000;92(1–3):73–8.

    Article  CAS  PubMed  Google Scholar 

  63. Hage MP, El-Hajj Fuleihan G. Bone and mineral metabolism in patients undergoing Roux-en-Y gastric bypass. Osteoporos Int. 2014;25(2):423–39.

    Article  CAS  PubMed  Google Scholar 

  64. Quiros-Gonzalez I, Yadav VK. Central genes, pathways and modules that regulate bone mass. Arch Biochem Biophys. Elsevier Inc. 2014;561:130–9.

    Article  CAS  PubMed  Google Scholar 

  65. Schéle E, Grahnemo L, Anesten F, Halleń A, Bäckhed F, Jansson JO. The gut microbiota reduces leptin sensitivity and the expression of the obesity-suppressing neuropeptides proglucagon (Gcg) and brain-derived neurotrophic factor (Bdnf) in the central nervous system. Endocrinology. 2013;154(10):3643–51.

    Article  PubMed  Google Scholar 

  66. Sun H, Nie X, Wang N, Cang Z, Zhu C, Zhao L, et al. Modulation of microbiota-gut-brain axis by berberine resulting in improved metabolic status in high-fat diet-fed rats. Obes Facts. 2016;9:365–78.

    Article  CAS  PubMed  Google Scholar 

  67. Federico A, Dallio M, Tolone S, Gravina AG, Patrone V, Romano M, et al. Gastrointestinal hormones, intestinal microbiota and metabolic homeostasis in obese patients: effect of bariatric surgery. In Vivo. 2016;30(3):321–30.

    CAS  PubMed  Google Scholar 

  68. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, et al. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci U S A. 2011;108(38):16050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Poutahidis T, Kearney SM, Levkovich T, Qi P, Varian BJ, Lakritz JR, et al. Microbial symbionts accelerate wound healing via the neuropeptide hormone oxytocin. PLoS One. 2013;8(10):e78898.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Poutahidis T, Springer A, Levkovich T, Qi P, Varian BJ, Lakritz JR, et al. Probiotic microbes sustain youthful serum testosterone levels and testicular size in aging mice. PLoS One. 2014;9(1):e84877.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Ferrini M, Wang C, Swerdloff RS, Sinha Hikim AP, Rajfer J, Gonzalez-Cadavid NF. Aging-related increased expression of inducible nitric oxide synthase and cytotoxicity markers in rat hypothalamic regions associated with male reproductive function. Neuroendocrinology. 2001;74(1):1–11.

    Article  CAS  PubMed  Google Scholar 

  72. Buffington SA, Di Prisco GV, Auchtung TA, Ajami NJ, Petrosino JF, Costa-Mattioli M. Microbial reconstitution reverses maternal diet-induced social and synaptic deficits in offspring. Cell. Elsevier Inc. 2016;165(7):1762–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Beranger GE, Pisani DF, Castel J, Djedaini M, Battaglia S, Amiaud J, et al. Oxytocin reverses ovariectomy-induced osteopenia and body fat gain. Endocrinology. 2014;155(4):1340–52.

    Article  PubMed  Google Scholar 

  74. Breuil V, Panaia-Ferrari P, Fontas E, Roux C, Kolta S, Eastell R, et al. Oxytocin, a new determinant of bone mineral density in post-menopausal women: analysis of the OPUS cohort. J Clin Endocrinol Metab. 2014;99(4):634–41.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert A. Britton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Quach, D., Britton, R.A. (2017). Gut Microbiota and Bone Health. In: McCabe, L., Parameswaran, N. (eds) Understanding the Gut-Bone Signaling Axis. Advances in Experimental Medicine and Biology, vol 1033. Springer, Cham. https://doi.org/10.1007/978-3-319-66653-2_4

Download citation

Publish with us

Policies and ethics