Skip to main content

Immune Reconstitution After Hematopoietic Stem Cell Transplantation

  • Chapter
  • First Online:
Hematopoietic Stem Cell Transplantation for the Pediatric Hematologist/Oncologist

Abstract

Immune reconstitution after hematopoietic stem cell transplantation (HSCT) is critical in order for HSCT recipients to recover their ability to fight all types of infections. Restoration of individual components of the immune system occurs with different timelines. Factors that influence this differential recovery include the type of HSCT, type of donor, donor histocompatibility, donor hematopoietic stem cell source, age of the donor and recipient, conditioning regimen used, the underlying disease or disorder, graft manipulation strategies, and the presence of graft-versus-host disease (GvHD). In general, innate immunity recovers much earlier post-HSCT as compared to adaptive immunity. Complete immune reconstitution may occur from several months to up to 2 years after HSCT. This chapter discusses the typical time course of immune reconstitution by cell type as well as methods to monitor immune reconstitution and an approach to revaccination post-HSCT.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Park BG, Park CJ, Jang S, Chi HS, Kim DY, Lee JH, et al. Reconstitution of lymphocyte subpopulations after hematopoietic stem cell transplantation: comparison of hematologic malignancies and donor types in event-free patients. Leuk Res. 2015;39(12):1334–41.

    Article  PubMed  Google Scholar 

  2. de Koning C, Plantinga M, Besseling P, Boelens JJ, Nierkens S. Immune reconstitution after allogeneic hematopoietic cell transplantation in children. Biol Blood Marrow Transplant. 2016;22(2):195–206.

    Article  PubMed  Google Scholar 

  3. Alyea EP, Kim HT, Ho V, Cutler C, DeAngelo DJ, Stone R, et al. Impact of conditioning regimen intensity on outcome of allogeneic hematopoietic cell transplantation for advanced acute myelogenous leukemia and myelodysplastic syndrome. Biol Blood Marrow Transplant. 2006;12(10):1047–55.

    Article  PubMed  Google Scholar 

  4. Scott BL, Sandmaier BM, Storer B, Maris MB, Sorror ML, Maloney DG, et al. Myeloablative vs nonmyeloablative allogeneic transplantation for patients with myelodysplastic syndrome or acute myelogenous leukemia with multilineage dysplasia: a retrospective analysis. Leukemia. 2006;20(1):128–35.

    Article  CAS  PubMed  Google Scholar 

  5. Melenhorst JJ, Tian X, Xu D, Sandler NG, Scheinberg P, Biancotto A, et al. Cytopenia and leukocyte recovery shape cytokine fluctuations after myeloablative allogeneic hematopoietic stem cell transplantation. Haematologica. 2012;97(6):867–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Negrin RS. Graft-versus-host disease versus graft-versus-leukemia. Hematology Am Soc Hematol Educ Program. 2015;2015:225–30.

    PubMed  Google Scholar 

  7. Kang E, Gennery A. Hematopoietic stem cell transplantation for primary immunodeficiencies. Hematol Oncol Clin North Am. 2014;28(6):1157–70.

    Article  PubMed  PubMed Central  Google Scholar 

  8. van den Brink MR, Velardi E, Perales MA. Immune reconstitution following stem cell transplantation. Hematology Am Soc Hematol Educ Program. 2015;2015(1):215–9.

    PubMed  Google Scholar 

  9. Storek J, Geddes M, Khan F, Huard B, Helg C, Chalandon Y, et al. Reconstitution of the immune system after hematopoietic stem cell transplantation in humans. Semin Immunopathol. 2008;30(4):425–37.

    Article  PubMed  Google Scholar 

  10. Rihn C, Cilley J, Naik P, Pedicano AV, Mehta J. Definition of myeloid engraftment after allogeneic hematopoietic stem cell transplantation. Haematologica. 2004;89(6):763–4.

    PubMed  Google Scholar 

  11. Lewis A. Autologous stem cells derived from the peripheral blood compared to standard bone marrow transplant; time to engraftment: a systematic review. Int J Nurs Stud. 2005;42(5):589–96.

    Article  PubMed  Google Scholar 

  12. Holtick U, Albrecht M, Chemnitz JM, Theurich S, Shimabukuro-Vornhagen A, Skoetz N, et al. Comparison of bone marrow versus peripheral blood allogeneic hematopoietic stem cell transplantation for hematological malignancies in adults – a systematic review and meta-analysis. Crit Rev Oncol Hematol. 2015;94(2):179–88.

    Article  PubMed  Google Scholar 

  13. Moretta A, Maccario R, Fagioli F, Giraldi E, Busca A, Montagna D, et al. Analysis of immune reconstitution in children undergoing cord blood transplantation. Exp Hematol. 2001;29(3):371–9.

    Article  CAS  PubMed  Google Scholar 

  14. Renard C, Barlogis V, Mialou V, Galambrun C, Bernoux D, Goutagny MP, et al. Lymphocyte subset reconstitution after unrelated cord blood or bone marrow transplantation in children. Br J Haematol. 2011;152(3):322–30.

    Article  PubMed  Google Scholar 

  15. Bartelink IH, Belitser SV, Knibbe CA, Danhof M, de Pagter AJ, Egberts TC, et al. Immune reconstitution kinetics as an early predictor for mortality using various hematopoietic stem cell sources in children. Biol Blood Marrow Transplant. 2013;19(2):305–13.

    Article  PubMed  Google Scholar 

  16. Oshrine BR, Li Y, Teachey DT, Heimall J, Barrett DM, Bunin N. Immunologic recovery in children after alternative donor allogeneic transplantation for hematologic malignancies: comparison of recipients of partially T cell-depleted peripheral blood stem cells and umbilical cord blood. Biol Blood Marrow Transplant. 2013;19(11):1581–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rocha V, Broxmeyer HE. New approaches for improving engraftment after cord blood transplantation. Biol Blood Marrow Transplant. 2010;16(1 Suppl):S126–32.

    Article  PubMed  Google Scholar 

  18. Pichler H, Witt V, Winter E, Boztug H, Glogova E, Potschger U, et al. No impact of total or myeloid Cd34+ cell numbers on neutrophil engraftment and transplantation-related mortality after allogeneic pediatric bone marrow transplantation. Biol Blood Marrow Transplant. 2014;20(5):676–83.

    Article  CAS  PubMed  Google Scholar 

  19. Locatelli F, Rocha V, Chastang C, Arcese W, Michel G, Abecasis M, et al. Factors associated with outcome after cord blood transplantation in children with acute leukemia. Eurocord Cord Blood Transplant Group Blood. 1999;93(11):3662–71.

    CAS  PubMed  Google Scholar 

  20. Atkinson K, Biggs JC, Downs K, Juttner C, Bradstock K, Lowenthal RM, et al. GM-CSF after allogeneic bone marrow transplantation: accelerated recovery of neutrophils, monocytes and lymphocytes. Aust NZ J Med. 1991;21(5):686–92.

    Article  CAS  Google Scholar 

  21. Bensinger WI, Clift R, Martin P, Appelbaum FR, Demirer T, Gooley T, et al. Allogeneic peripheral blood stem cell transplantation in patients with advanced hematologic malignancies: a retrospective comparison with marrow transplantation. Blood. 1996;88(7):2794–800.

    CAS  PubMed  Google Scholar 

  22. Kent MW, Kelher MR, Silliman CC, Quinones R. Neutrophil function in children following allogeneic hematopoietic stem cell transplant. Pediatr Transplant. 2016;20:658–66.

    Article  CAS  PubMed  Google Scholar 

  23. Rezvani K, Rouce RH. The application of natural killer cell immunotherapy for the treatment of cancer. Front Immunol. 2015;6:578.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Ottinger HD, Beelen DW, Scheulen B, Schaefer UW, Grosse-Wilde H. Improved immune reconstitution after allotransplantation of peripheral blood stem cells instead of bone marrow. Blood. 1996;88(7):2775–9.

    CAS  PubMed  Google Scholar 

  25. Brahmi Z, Hommel-Berrey G, Smith F, Thomson B. NK cells recover early and mediate cytotoxicity via perforin/granzyme and Fas/FasL pathways in umbilical cord blood recipients. Hum Immunol. 2001;62(8):782–90.

    Article  CAS  PubMed  Google Scholar 

  26. Eissens DN, Schaap NP, Preijers FW, Dolstra H, van Cranenbroek B, Schattenberg AV, et al. CD3+/CD19+-depleted grafts in HLA-matched allogeneic peripheral blood stem cell transplantation lead to early NK cell cytolytic responses and reduced inhibitory activity of NKG2A. Leukemia. 2010;24(3):583–91.

    Article  CAS  PubMed  Google Scholar 

  27. Lang P, Feuchtinger T, Teltschik HM, Schwinger W, Schlegel P, Pfeiffer M, et al. Improved immune recovery after transplantation of TCRalphabeta/CD19-depleted allografts from haploidentical donors in pediatric patients. Bone Marrow Transplant. 2015;50(Suppl 2):S6–10.

    Article  CAS  PubMed  Google Scholar 

  28. Bigley AB, Rezvani K, Shah N, Sekine T, Balneger N, Pistillo M, et al. Latent cytomegalovirus infection enhances anti-tumour cytotoxicity through accumulation of NKG2C+ NK cells in healthy humans. Clin Exp Immunol. 2016;185(2):239–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Green ML, Leisenring WM, Xie H, Walter RB, Mielcarek M, Sandmaier BM, et al. CMV reactivation after allogeneic HCT and relapse risk: evidence for early protection in acute myeloid leukemia. Blood. 2013;122(7):1316–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. DeCook LJ, Thoma M, Huneke T, Johnson ND, Wiegand RA, Patnaik MM, et al. Impact of lymphocyte and monocyte recovery on the outcomes of allogeneic hematopoietic SCT with fludarabine and melphalan conditioning. Bone Marrow Transplant. 2013;48(5):708–14.

    Article  CAS  PubMed  Google Scholar 

  31. Thoma MD, Huneke TJ, DeCook LJ, Johnson ND, Wiegand RA, Litzow MR, et al. Peripheral blood lymphocyte and monocyte recovery and survival in acute leukemia postmyeloablative allogeneic hematopoietic stem cell transplant. Biol Blood Marrow Transplant. 2012;18(4):600–7.

    Article  PubMed  Google Scholar 

  32. Yu VW, Scadden DT. Hematopoietic stem cell and its bone marrow niche. Curr Top Dev Biol. 2016;118:21–44.

    Article  CAS  PubMed  Google Scholar 

  33. Mise-Omata S, Alles N, Fukazawa T, Aoki K, Ohya K, Jimi E, et al. NF-kappaB RELA-deficient bone marrow macrophages fail to support bone formation and to maintain the hematopoietic niche after lethal irradiation and stem cell transplantation. Int Immunol. 2014;26(11):607–18.

    Article  CAS  PubMed  Google Scholar 

  34. Doring M, Cabanillas Stanchi KM, Haufe S, Erbacher A, Bader P, Handgretinger R, et al. Patterns of monocyte subpopulations and their surface expression of HLA-DR during adverse events after hematopoietic stem cell transplantation. Ann Hematol. 2015;94(5):825–36.

    Article  PubMed  Google Scholar 

  35. Mackall CL, Fleisher TA, Brown MR, Andrich MP, Chen CC, Feuerstein IM, et al. Distinctions between CD8+ and CD4+ T-cell regenerative pathways result in prolonged T-cell subset imbalance after intensive chemotherapy. Blood. 1997;89(10):3700–7.

    CAS  PubMed  Google Scholar 

  36. Heitger A, Neu N, Kern H, Panzer-Grumayer ER, Greinix H, Nachbaur D, et al. Essential role of the thymus to reconstitute naive (CD45RA+) T-helper cells after human allogeneic bone marrow transplantation. Blood. 1997;90(2):850–7.

    CAS  PubMed  Google Scholar 

  37. Fagnoni FF, Lozza L, Zibera C, Zambelli A, Ponchio L, Gibelli N, et al. T-cell dynamics after high-dose chemotherapy in adults: elucidation of the elusive CD8+ subset reveals multiple homeostatic T-cell compartments with distinct implications for immune competence. Immunology. 2002;106(1):27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Fallen PR, McGreavey L, Madrigal JA, Potter M, Ethell M, Prentice HG, et al. Factors affecting reconstitution of the T cell compartment in allogeneic haematopoietic cell transplant recipients. Bone Marrow Transplant. 2003;32(10):1001–14.

    Article  CAS  PubMed  Google Scholar 

  39. Alho AC, Kim HT, Chammas MJ, Reynolds CG, Matos TR, Forcade E, et al. Unbalanced recovery of regulatory and effector T cells after allogeneic stem cell transplantation contributes to chronic GVHD. Blood. 2016;127(5):646–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pavletic ZS, Joshi SS, Pirruccello SJ, Tarantolo SR, Kollath J, Reed EC, et al. Lymphocyte reconstitution after allogeneic blood stem cell transplantation for hematologic malignancies. Bone Marrow Transplant. 1998;21(1):33–41.

    Article  CAS  PubMed  Google Scholar 

  41. Bosch M, Dhadda M, Hoegh-Petersen M, Liu Y, Hagel LM, Podgorny P, et al. Immune reconstitution after anti-thymocyte globulin-conditioned hematopoietic cell transplantation. Cytotherapy. 2012;14(10):1258–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Admiraal R, van Kesteren C, Jol-van der Zijde CM, Lankester AC, Bierings MB, Egberts TC, et al. Association between anti-thymocyte globulin exposure and CD4+ immune reconstitution in paediatric haemopoietic cell transplantation: a multicentre, retrospective pharmacodynamic cohort analysis. Lancet Haematol. 2015;2(5):e194–203.

    Article  PubMed  Google Scholar 

  43. Shah AJ, Kapoor N, Crooks GM, Weinberg KI, Azim HA, Killen R, et al. The effects of Campath 1H upon graft-versus-host disease, infection, relapse, and immune reconstitution in recipients of pediatric unrelated transplants. Biol Blood Marrow Transplant. 2007;13(5):584–93.

    Article  CAS  PubMed  Google Scholar 

  44. Willemsen L, Jol-van der Zijde CM, Admiraal R, Putter H, Jansen-Hoogendijk AM, Ostaijen-Ten Dam MM, et al. Impact of serotherapy on immune reconstitution and survival outcomes after stem cell transplantations in children: thymoglobulin versus alemtuzumab. Biol Blood Marrow Transplant. 2015;21(3):473–82.

    Article  CAS  PubMed  Google Scholar 

  45. Chakraverty R, Orti G, Roughton M, Shen J, Fielding A, Kottaridis P, et al. Impact of in vivo alemtuzumab dose before reduced intensity conditioning and HLA-identical sibling stem cell transplantation: pharmacokinetics, GVHD, and immune reconstitution. Blood. 2010;116(16):3080–8.

    Article  CAS  PubMed  Google Scholar 

  46. Bastien JP, Roy J, Roy DC. Selective T-cell depletion for haplotype-mismatched allogeneic stem cell transplantation. Semin Oncol. 2012;39(6):674–82.

    Article  CAS  PubMed  Google Scholar 

  47. Ball L, Lankester A, Bredius R, Fibbe W, Van Tol M, Egeler R. Graft dysfunction and delayed immune reconstitution following haploidentical peripheral blood hematopoietic stem cell transplantation. Bone Marrow Transplant. 2005;35:S35–S8.

    Article  PubMed  Google Scholar 

  48. Pfeiffer MM, Feuchtinger T, Teltschik HM, Schumm M, Muller I, Handgretinger R, et al. Reconstitution of natural killer cell receptors influences natural killer activity and relapse rate after haploidentical transplantation of T- and B-cell depleted grafts in children. Haematologica. 2010;95(8):1381–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Perez-Martinez A, Gonzalez-Vicent M, Valentin J, Aleo E, Lassaletta A, Sevilla J, et al. Early evaluation of immune reconstitution following allogeneic CD3/CD19-depleted grafts from alternative donors in childhood acute leukemia. Bone Marrow Transplant. 2012;47(11):1419–27.

    Article  CAS  PubMed  Google Scholar 

  50. Bertaina A, Merli P, Rutella S, Pagliara D, Bernardo ME, Masetti R, et al. HLA-haploidentical stem cell transplantation after removal of alphabeta+ T and B cells in children with nonmalignant disorders. Blood. 2014;124(5):822–6.

    Article  CAS  PubMed  Google Scholar 

  51. Lucchini G, Perales MA, Veys P. Immune reconstitution after cord blood transplantation: peculiarities, clinical implications and management strategies. Cytotherapy. 2015;17(6):711–22.

    Article  CAS  PubMed  Google Scholar 

  52. Chiesa R, Gilmour K, Qasim W, Adams S, Worth AJ, Zhan H, et al. Omission of in vivo T-cell depletion promotes rapid expansion of naive CD4+ cord blood lymphocytes and restores adaptive immunity within 2 months after unrelated cord blood transplant. Br J Haematol. 2012;156(5):656–66.

    Article  CAS  PubMed  Google Scholar 

  53. Clave E, Lisini D, Douay C, Giorgiani G, Busson M, Zecca M, et al. Thymic function recovery after unrelated donor cord blood or T-cell depleted HLA-haploidentical stem cell transplantation correlates with leukemia relapse. Front Immunol. 2013;4:54.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lindemans CA, Chiesa R, Amrolia PJ, Rao K, Nikolajeva O, de Wildt A, et al. Impact of thymoglobulin prior to pediatric unrelated umbilical cord blood transplantation on immune reconstitution and clinical outcome. Blood. 2014;123(1):126–32.

    Article  CAS  PubMed  Google Scholar 

  55. Mold JE, Venkatasubrahmanyam S, Burt TD, Michaelsson J, Rivera JM, Galkina SA, et al. Fetal and adult hematopoietic stem cells give rise to distinct T cell lineages in humans. Science. 2010;330(6011):1695–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Szabolcs P, Niedzwiecki D. Immune reconstitution after unrelated cord blood transplantation. Cytotherapy. 2007;9(2):111–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Buckley RH. Transplantation of hematopoietic stem cells in human severe combined immunodeficiency: longterm outcomes. Immunol Res. 2011;49(1–3):25–43.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Pai SY, Logan BR, Griffith LM, Buckley RH, Parrott RE, Dvorak CC, et al. Transplantation outcomes for severe combined immunodeficiency, 2000–2009. N Engl J Med. 2014;371(5):434–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Urbini B, Arpinati M, Bonifazi F, Chirumbolo G, Falcioni S, Stanzani M, et al. Allogeneic graft CD34(+) cell dose correlates with dendritic cell dose and clinical outcome, but not with dendritic cell reconstitution after transplant. Exp Hematol. 2003;31(10):959–65.

    Article  PubMed  Google Scholar 

  60. Vakkila J, Thomson AW, Hovi L, Vettenranta K, Saarinen-Pihkala UM. Circulating dendritic cell subset levels after allogeneic stem cell transplantation in children correlate with time post transplant and severity of acute graft-versus-host disease. Bone Marrow Transplant. 2005;35(5):501–7.

    Article  CAS  PubMed  Google Scholar 

  61. Auletta JJ, Devine SM, Waller EK. Plasmacytoid dendritic cells in allogeneic hematopoietic cell transplantation: benefit or burden? Bone Marrow Transplant. 2016;51(3):333–43.

    Article  CAS  PubMed  Google Scholar 

  62. Storek J, Ferrara S, Ku N, Giorgi JV, Champlin RE, Saxon A. B cell reconstitution after human bone marrow transplantation: recapitulation of ontogeny? Bone Marrow Transplant. 1993;12(4):387–98.

    CAS  PubMed  Google Scholar 

  63. Storek J, Lalovic BB, Rupert K, Dawson MA, Shen DD, Maloney DG. Kinetics of B, CD4 T, and CD8 T cells infused into humans: estimates of intravascular:extravascular ratios and total body counts. Clin Immunol. 2002;102(3):249–57.

    Article  CAS  PubMed  Google Scholar 

  64. Small TN, Keever CA, Weiner-Fedus S, Heller G, O'Reilly RJ, Flomenberg N. B-cell differentiation following autologous, conventional, or T-cell depleted bone marrow transplantation: a recapitulation of normal B-cell ontogeny. Blood. 1990;76(8):1647–56.

    CAS  PubMed  Google Scholar 

  65. Scarselli A, Di Cesare S, Capponi C, Cascioli S, Romiti ML, Di Matteo G, et al. Longitudinal evaluation of immune reconstitution and B-cell function after hematopoietic cell transplantation for primary immunodeficiency. J Clin Immunol. 2015;35(4):373–83.

    Article  CAS  PubMed  Google Scholar 

  66. Bae KW, Kim BE, Koh KN, Im HJ, Seo JJ. Factors influencing lymphocyte reconstitution after allogeneic hematopoietic stem cell transplantation in children. Korean J Hematol. 2012;47(1):44–52.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Guillaume T, Rubinstein DB, Symann M. Immune reconstitution and immunotherapy after autologous hematopoietic stem cell transplantation. Blood. 1998;92(5):1471–90.

    CAS  PubMed  Google Scholar 

  68. Storek J, Witherspoon RP, Webb D, Storb R. Lack of B cells precursors in marrow transplant recipients with chronic graft-versus-host disease. Am J Hematol. 1996;52(2):82–9.

    Article  CAS  PubMed  Google Scholar 

  69. Storek J, Wells D, Dawson MA, Storer B, Maloney DG. Factors influencing B lymphopoiesis after allogeneic hematopoietic cell transplantation. Blood. 2001;98(2):489–91.

    Article  CAS  PubMed  Google Scholar 

  70. Worth A, Conyers R, Cohen J, Jagani M, Chiesa R, Rao K, et al. Pre-emptive rituximab based on viraemia and T cell reconstitution: a highly effective strategy for the prevention of Epstein-Barr virus-associated lymphoproliferative disease following stem cell transplantation. Br J Haematol. 2011;155(3):377–85.

    Article  CAS  PubMed  Google Scholar 

  71. Alousi AM, Uberti J, Ratanatharathorn V. The role of B cell depleting therapy in graft versus host disease after allogeneic hematopoietic cell transplant. Leuk Lymphoma. 2010;51(3):376–89.

    Article  PubMed  Google Scholar 

  72. Law J, Cowan MJ, Dvorak CC, Musick L, Long-Boyle JR, Baxter-Lowe LA, et al. Busulfan, fludarabine, and alemtuzumab as a reduced toxicity regimen for children with malignant and nonmalignant diseases improves engraftment and graft-versus-host disease without delaying immune reconstitution. Biol Blood Marrow Transplant. 2012;18(11):1656–63.

    Article  CAS  PubMed  Google Scholar 

  73. D'Sa S, Peggs K, Pizzey A, Verfuerth S, Thuraisundaram D, Watts M, et al. T- and B-cell immune reconstitution and clinical outcome in patients with multiple myeloma receiving T-cell-depleted, reduced-intensity allogeneic stem cell transplantation with an alemtuzumab-containing conditioning regimen followed by escalated donor lymphocyte infusions. Br J Haematol. 2003;123(2):309–22.

    Article  PubMed  Google Scholar 

  74. Eyrich M, Leiler C, Lang P, Schilbach K, Schumm M, Bader P, et al. A prospective comparison of immune reconstitution in pediatric recipients of positively selected CD34+ peripheral blood stem cells from unrelated donors vs recipients of unmanipulated bone marrow from related donors. Bone Marrow Transplant. 2003;32(4):379–90.

    Article  CAS  PubMed  Google Scholar 

  75. Olkinuora H, von Willebrand E, Kantele JM, Vainio O, Talvensaari K, Saarinen-Pihkala U, et al. The impact of early viral infections and graft-versus-host disease on immune reconstitution following paediatric stem cell transplantation. Scand J Immunol. 2011;73(6):586–93.

    Article  CAS  PubMed  Google Scholar 

  76. Haddad E, Leroy S, Buckley RH. B-cell reconstitution for SCID: should a conditioning regimen be used in SCID treatment? J Allergy Clin Immunol. 2013;131(4):994–1000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Griffith LM, Cowan MJ, Notarangelo LD, Kohn DB, Puck JM, Pai SY, et al. Primary immune deficiency treatment consortium (PIDTC) report. J Allergy Clin Immunol. 2014;133(2):335–47.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mala K. Talekar MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Talekar, M.K., Olson, T. (2018). Immune Reconstitution After Hematopoietic Stem Cell Transplantation. In: Brown, V. (eds) Hematopoietic Stem Cell Transplantation for the Pediatric Hematologist/Oncologist. Springer, Cham. https://doi.org/10.1007/978-3-319-63146-2_26

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-63146-2_26

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-63144-8

  • Online ISBN: 978-3-319-63146-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics