Skip to main content

Bone Physiology and Biology

  • Chapter
  • First Online:
Bone Toxicology

Part of the book series: Molecular and Integrative Toxicology ((MOLECUL))

Abstract

This chapter is divided into three subsections: The bone biology part will provide some insight into the matrix composition as well as the origin and basic function attributed to the cellular components, the osteoblasts osteocytes and osteoclasts. In the second section, the interplay between these matrix components and the cells will be discussed in the context of skeletal growth, skeletal adaptation (modeling), and skeletal maintenance (bone remodeling). Finally, the third section will address similarities and differences in bone biology between human, nonhuman primate, rat, and mouse, the most commonly used species in the study of bone metabolic disorders. Other large animals like dogs, sheep, mini-pigs, or rabbits which are being successfully used to study orthopedic conditions (implant ingrowth, fracture healing, and bone augmentation) have not been addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ackert-Bicknell C, Beamer WG, Rosen CJ, Sundberg JP. Aging study: bone mineral density and body composition of 32 inbred strains of mice.MPD;Ackert1. Mouse Phenome Database Web Site. Bar Harbor: The Jackson Laboratory. 2008. http://phenome.jax.org/db/q?rtn=projects/details&id=250.

  • Akhter MP, Otero JK, Iwaniec UT, et al. Differences in vertebral structure and strength of inbred female mouse strains. J Musculoskelet Neuronal Interact. 2004;4(1):33–40.

    CAS  PubMed  Google Scholar 

  • Allen MR, Burr DB. Bone modeling and remodeling. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego: Academic; 2014. p. 75–90.

    Chapter  Google Scholar 

  • Anderson RE, Schraer H, Gay CV. Ultrastructural immunocytochemical localization of carbonic anhydrase in normal and calcitonin-treated chick osteoclasts. Anat Rec. 1982;204(1):9–20.

    Article  CAS  PubMed  Google Scholar 

  • Bagi CM, Mecham M, Weis J, et al. Comparative morphometric changes in rat cortical bone following ovariectomy and/or immobilization. Bone. 1993;14:877–83.

    Article  CAS  PubMed  Google Scholar 

  • Balemans W, Ebeling M, Patel N, et al. Increased bone density in sclerosteosis is due to the deficiency of a novel secreted protein (SOST). Hum Mol Genet. 2001;10(5):537–43.

    Article  CAS  PubMed  Google Scholar 

  • Baron R, Kneissel M. WNT signaling in bone homeostasis and disease: from human mutations to treatments. Nat Med. 2013;19(2):179–92.

    Article  CAS  PubMed  Google Scholar 

  • Bass SL, Saxon L, Daly R, et al. The effect of mechanical loading on the size and shape of bone in pre-, peri- and postpubertal girls: a study in tennis players. J Bone Miner Res. 2002;17(12):2274–80.

    Article  CAS  PubMed  Google Scholar 

  • Bassett JHD, Van der Spek A, Gogakos A et al. Quantitative X-ray imaging of the rodent bone by Faxitron. In: Helfrich, MH and Ralston, SH, editors. Methods in molecular medicine, Vol. 816: bone research protocols. 2nd ed. Totowa: Humana Press; 2012. p. 499–506. 978-1-61779-414-8.

    Google Scholar 

  • Beamer WG, Donahue LR, Rosen CJ, et al. Genetic variability in adult bone density among inbred strains of mice. Bone. 1996;18(5):397–403.

    Article  CAS  PubMed  Google Scholar 

  • Beck JA, Lloyd S, Hafezparast M, et al. Genealogies of mouse inbred strains. Nat Genet. 2000;24:23–5.

    Article  CAS  PubMed  Google Scholar 

  • Belanger LF. Osteocytic osteolysis. Calcif Tissue Res. 1969;4(1):1–12.

    Article  CAS  PubMed  Google Scholar 

  • Bell KL, Loveridge N, Power J, et al. Regional differences in cortical porosity in the fractured femoral neck. Bone. 1999;24:57–64.

    Article  CAS  PubMed  Google Scholar 

  • Bell KL, Loveridge N, Jordan GR, et al. A novel mechanism for induction of increased cortical porosity in cases of intracapsular hip fracture. Bone. 2000;27:297–304.

    Article  CAS  PubMed  Google Scholar 

  • Binkley N, Kimmel D, Bruner J, et al. Zoledronate prevents the development of absolute osteopenia following ovariectomy in adult rhesus monkeys. J Bone Miner Res. 1998;13:1775–82.

    Article  CAS  PubMed  Google Scholar 

  • Binkley N, Ellison G, O’Rourke C, Hall D, Johnston G, Kimmel D, Keller ET. Rib biopsy technique for cortical bone evaluation in rhesus monkeys (Macaca mulatta). Lab Anim Sci. 1999;49:87–9.

    CAS  PubMed  Google Scholar 

  • Black A, Tilmont EM, Handy AM, et al. A nonhuman primate model of age-related Bone loss: a longitudinal study in male and premenopausal female rhesus monkeys. Bone. 2001;28:295–302.

    Article  CAS  PubMed  Google Scholar 

  • Blair HC, Teitelbaum SL, Ghiselli R, et al. Osteoclastic bone resorption by a polarized vacuolar proton pump. Science. 1989;245(4920):855–7.

    Article  CAS  PubMed  Google Scholar 

  • Blouin S, Gallois Y, Moreau MF, et al. Disuse and orchidectomy have additional effects on bone loss in the aged male rat. Osteoporos Int. 2007;18(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  • Boivin G, Meunier PJ. Changes in bone remodeling rate influence the degree of mineralization of bone. Connect Tissue Res. 2002;43:535–7.

    Article  CAS  PubMed  Google Scholar 

  • Bonewald LF. Osteocytes. In: Rosen CJ, editor. Primer on the metabolic bone dis-eases and disorders of mineral metabolism. 8th ed. New York: Wiley; 2013. p. 34–41.

    Chapter  Google Scholar 

  • Boskey AL. Organic and inorganic matrices. In: Wnek G, Bowlin GL, editors. Encyclopedia of biomaterials and biomedical engineering. London: Dekker Encyclopedias, Taylor & Francis Books; 2006a. p. 1–15.

    Google Scholar 

  • Boskey AL. Assessment of bone mineral and matrix using backscatter electron imaging and FTIR imaging. Curr Osteoporos Rep. 2006b;4:71–5.

    Article  PubMed  Google Scholar 

  • Boskey A. Mineralization of bones and teeth. Elements Mag. 2007;3:385–92.

    Article  CAS  Google Scholar 

  • Boskey AL. Bone composition: relationship to bone fragility and antiosteoporotic drug effects. BoneKEy Reports 2, Article number: 447. 2013. doi:10.1038/bonekey.2013.181.

  • Boskey AL, Coleman R. Aging and bone. J Dent Res. 2010;89:1333–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boskey AL, Robey PG. The regulatory role of matrix proteins in mineralization of bone. In: Marcus R, Feldman D, Dempster DW, Luckey M, editors. Osteoporosis. New York: Elsevier; 2013. p. 235–58.

    Chapter  Google Scholar 

  • Bosu WT, Johansson ED, Gemzell C. Peripheral plasma levels of oestrone, oestradiol-17ß and progesterone during ovulatory menstrual cycles in the rhesus monkey with special reference to the onset of menstruation. Acta Endocrinol. 1973;74:732–42.

    CAS  PubMed  Google Scholar 

  • Bouxsein ML, Boyd SK, Christiansen BA, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res. 2010;25:1468–86.

    Article  PubMed  Google Scholar 

  • Boyd SK, Davison P, Müller R, et al. Monitoring individual morphological changes over time in ovariectomized rats by in vivo micro-computed tomography. Bone. 2006;39(4):854–62.

    Article  PubMed  Google Scholar 

  • Boyde A, Jones SJ. Backscattered electron imaging of skeletal tissues. Metab Bone Dis Rel Res. 1983;5:145–50.

    Article  Google Scholar 

  • Boyle WJ, Simonet WS, Lacey DL. Osteoclast differentiation and activation. Nature. 2003;423:337–42.

    Article  CAS  PubMed  Google Scholar 

  • Brandi ML, Collin-Osdoby P. Vascular biology and the skeleton. J Bone Miner Res. 2006;21:183–92.

    Article  CAS  PubMed  Google Scholar 

  • Breen SA, Loveday BE, Millest AJ, et al. Stimulation and inhibition of bone formation: use of peripheral quantitative computed tomography in the mouse in vivo. Lab Anim. 1998;32:467–76.

    Article  CAS  PubMed  Google Scholar 

  • Brockstedt H, Kassem M, Eriksen EF, et al. Age- and sex-related changes in iliac cortical bone mass and remodeling. Bone. 1993;14(4):681–91.

    Article  CAS  PubMed  Google Scholar 

  • Brommage R. Perspectives on using nonhuman primates to understand the etiology and treatment of postmenopausal osteoporosis. J Musculoskelet Neuronal Interact. 2001;1(4):307–25.

    CAS  PubMed  Google Scholar 

  • Brommage R, Vafai H. Rapid embedding protocol for visualizing bone mineral and matrix. Calcif Tissue Int. 2000;67:479–80.

    Article  CAS  PubMed  Google Scholar 

  • Brommage R, Allison C, Stavisky R, et al. Measurement of serum bone-specific alkaline phosphatase activity in cynomolgus macaques. J Med Primatol. 1999;28:329–33.

    Article  CAS  PubMed  Google Scholar 

  • Brouwers JEM, Lambers FM, Gasser JA, et al. Bone degeneration and recovery after early and late bisphosphonate treatment of Ovariectomized Wistar rats assessed by in vivo micro-computed tomography. Calcif Tissue Int. 2008;82(3):202–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buenzli PR, Sims NA. Quantifying the osteocyte network in the human skeleton. Bone. 2015;75:144–50.

    Article  CAS  PubMed  Google Scholar 

  • Burr DB, Akkus O. Bone morphology and organization. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego: Academic; 2014. p. 3–25.

    Chapter  Google Scholar 

  • Burr DB, Martin RB, Schaffler MB, et al. Bone remodeling in response to in vivo fatigue microdamage. J Biomech. 1985;18:189–200.

    Article  CAS  PubMed  Google Scholar 

  • Burr DB, Turner CH, Naick P, et al. Does microdamage accumulation affect the mechanical properties of bone? J Biomech. 1998;31:337–45.

    Article  CAS  PubMed  Google Scholar 

  • Butterstein GM, Mann DR, Gould K, et al. Prolonged inhibition of normal ovarian cycles in the rat and cynomolgus monkeys following a single s.c. injection of danazol. Hum Reprod. 1997;12:1409–15.

    Article  CAS  PubMed  Google Scholar 

  • Cabal A, Jayakar RY, Sardesai S, et al. High-resolution peripheral quantitative computed tomography and finite element analysis of bone strength at the distal radius in ovariectomized adult rhesus monkey demonstrate efficacy of odanacatib and differentiation from alendronate. Bone. 2013;56:497–505.

    Article  CAS  PubMed  Google Scholar 

  • Canalis E. Growth factor control of bone mass. J Cell Biochem. 2009;108(4):769–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caplan AI, Bruder SP. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol Med. 2001;7(6):259–64.

    Article  CAS  PubMed  Google Scholar 

  • Carlson C, Tulli H, Jayo M, et al. Immunolocalization of noncolla-genous bone matrix proteins in lumbar vertebrae from intact and surgically menopausal cynomolgus monkeys. J Bone Miner Res. 1993;8:71–83.

    Article  CAS  PubMed  Google Scholar 

  • Cerroni AM, Tomilinson GA, Turnquist JE, et al. Bone mineral density, osteopenia, and osteoporosis in the rhesus macaques of Cayo Santiago. Am J Phys Anthropol. 2000;113:389–410.

    Article  CAS  PubMed  Google Scholar 

  • Chambers TJ, Fuller K. Bone cells predispose bone surfaces to resorption by exposure of mineral to osteoclastic contact. J Cell Sci. 1985;76:155–65.

    CAS  PubMed  Google Scholar 

  • Champ JE, Binkley N, Havighurst T, et al. The effect of advancing age on bone mineral content of female rhesus monkeys. Bone. 1996;19:485–92.

    Article  CAS  PubMed  Google Scholar 

  • Chellaiah MA. Regulation of actin ring formation by rho GTPases in osteoclasts. J Biol Chem. 2005;280:32930–43.

    Article  CAS  PubMed  Google Scholar 

  • Chen HK, Ke HZ, Jee WS, et al. Droloxifene prevents ovariectomy-induced bone loss in tibiae and femora of aged female rats: a dual-energy X-ray absorptiometric and histomorphometric study. J Bone Miner Res. 1995a;10:1256–62.

    Article  CAS  PubMed  Google Scholar 

  • Chen MM, Yeh JK, Aloia JF. Effect of ovariectomy on cancellous bone in the hypophysectomized rat. J Bone Miner Res. 1995b;10(9):1334–42.

    Article  CAS  PubMed  Google Scholar 

  • Chen LD, Kushwaha RS, McGill HC Jr, et al. Effect of naturally reduced ovarian function on plasma lipoprotein and 27-hydroxycholesterol levels in baboons (Papio sp.). Atherosclerosis. 1998;136:89–98.

    Article  CAS  PubMed  Google Scholar 

  • Chen D, Zhao M, Mundy GR. Bone morphogenetic proteins. Growth Factors. 2004;22(4):233–41.

    Article  CAS  PubMed  Google Scholar 

  • Chia R, Achilli F, Festing MF, et al. The origins and uses of mouse outbred stocks. Nat Genet. 2005;37:1181–6.

    Article  CAS  PubMed  Google Scholar 

  • Christian JC, Yu PL, Slemenda CW, et al. Heritability of bone mass: a longitudinal study in aging male twins. Am J Hum Genet. 1989;44(3):429–33.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Colman RJ, Kenmitz JW, Lane MA, et al. Skeletal effects of aging and menopausal status in female rhesus monkeys. J Clin Endocrinol Metab. 1999a;84:4144–8.

    CAS  PubMed  Google Scholar 

  • Colman RJ, Lane MA, Binkley N, et al. Skeletal effects of aging in male rhesus monkeys. Bone. 1999b;24:17–23.

    Article  CAS  PubMed  Google Scholar 

  • Committee on Standardized Genetic Nomenclature for Mice. 1952. http://www.informatics.jax.org/mgihome/nomen/strains.shtml

  • Crockett JC, Rogers MJ, Coxon FP, et al. Bone remodelling at a glance. J Cell Sci. 2011;124:991–8.

    Article  CAS  PubMed  Google Scholar 

  • Currey JD. Bones. Structure and mechanics. New Jersey: Princeton University Press; 2002. p. 1–380.

    Google Scholar 

  • Danforth DR, Chillik CF, Hertz R, et al. Effects of ovarian tissue reduction on the menstrual cycle: persistent normalcy after near-total oophorectomy. Biol Reprod. 1989;41:355–60.

    Article  CAS  PubMed  Google Scholar 

  • De Gorter DJJ, Ten Dijke P. Signal transduction cascades controlling osteoblast differentiation. In: Rosen CJ, editor. Primer on the metabolic Bone diseases and disorders of mineral metabolism. 8th ed. New York: Wiley; 2013. p. 15–24.

    Chapter  Google Scholar 

  • Dickerson SS, Hotchkiss CE. Relationships between densitometric and morphological parameters as measured by peripheral computed tomography and the compressive behavior of lumbar vertebral bodies from macaques (Macaca fascicularis). Spine. 2008;33:366–72.

    Article  PubMed  Google Scholar 

  • Dobnig H, Turner RT. Evidence that intermittent treatment with parathyroid hormone increases bone formation in adult rats by activation of bone lining cells. Endocrinology. 1995;136(8):3632–8.

    Article  CAS  PubMed  Google Scholar 

  • Donnelly E, Meredith DS, Nguyen JT, et al. Bone tissue composition varies across anatomic sites in the proximal femur and the iliac crest. J Orthop Res. 2012;30:700–6.

    Article  PubMed  Google Scholar 

  • Ducy P, Desbois C, Boyce B, et al. Increased bone formation in osteocalcin-deficient mice. Nature. 1996;382(6590):448–52.

    Article  CAS  PubMed  Google Scholar 

  • Ducy P, Zhang R, Geoffroy V, et al. Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell. 1997;89(5):747–54.

    Article  CAS  PubMed  Google Scholar 

  • Erben RG. Trabecular and endocortical bone surfaces in the rat: modeling or remodeling? Anat Rec. 1996;246:39–46.

    Article  CAS  PubMed  Google Scholar 

  • Erben RG and Glösmann. Histomorphometry in rodents. Helfrich, MH and Ralston, SH, editors. Methods in molecular medicine, Vol. 816: bone research protocols. 2nd ed. Totowa: Humana Press; 2012. p. 279–303. 978-1-61779-414-8.

    Google Scholar 

  • Erben RG, Eberle J, Stahr K, et al. Androgen deficiency induces high turnover osteopenia in aged male rats: a sequential histomorphometric study. J Bone Miner Res. 2000;15(6):1085–98.

    Article  CAS  PubMed  Google Scholar 

  • Feng XH, Derynck R. Specificity and versatility in TGF-β signaling through Smads. Annu Rev Cell Dev Biol. 2005;21:659–93.

    Article  CAS  PubMed  Google Scholar 

  • Feng JQ, Ward LM, Liu S, et al. Loss of DMP1 causes rickets and osteomalacia and identifies a role for osteocytes in mineral metabolism. Nat Genet. 2006;38(11):1310–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferrari S, Bianchi ML, Eisman JA, et al. IOF Committee of Scientific Advisors Working Group on osteoporosis pathophysiology. Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int. 2012;23(12):2735–48.

    Article  CAS  PubMed  Google Scholar 

  • Frost HM. Dynamics of bone remodeling. In: Frost HM, editor. BoneBiodynamics. Boston: Little Brown & Co; 1964. p. 315–33.

    Google Scholar 

  • Fukumoto S, Martin TJ. Bone as an endocrine organ. Trends Endocrinol Metab. 2009;20:230–6.

    Article  CAS  PubMed  Google Scholar 

  • Gallagher A, Chambers TJ, Tobias JH. The estrogen antagonist ICI 182,780 reduces cancellous bone volume in female rats. Endocrinology. 1993;133:2787–91.

    Article  CAS  PubMed  Google Scholar 

  • Garn S. The earlier gain and later loss of cortical bone. In: Nutritional perspectives. Springfield: Charles C. Thomas; 1970. p. 3–120.

    Google Scholar 

  • Gasser JA and Willnecker J. Bone measurements by peripheral quantitative computed tomography in rodents. In: Helfrich, MH and Ralston, SH, editors. Methods in molecular medicine, Vol. 816: bone research protocols. 2nd ed. Totowa: Humana Press Inc.; 2012. 477–98. 978-1-61779-414-8.

    Google Scholar 

  • Gasser JA, Green JR, Shen V, et al. A single intravenous administration of zoledronic acid prevents the bone loss and mechanical compromise induced by aromatase inhibition in rats. Bone. 2006;39(4):787–95.

    Article  CAS  PubMed  Google Scholar 

  • Gay CV, Mueller WJ. Carbonic anhydrase and osteoclasts: localization by labeled inhibitor autoradiography. Science. 1974;183(123):432–4.

    Article  CAS  PubMed  Google Scholar 

  • Gazzerro E, Canalis E. Bone morphogenetic proteins and their antagonists. Rev Endocr Metab Disord. 2006;7(1–2):51–65.

    CAS  PubMed  Google Scholar 

  • Gelb BD, Shi GP, Chapman HA, et al. Pycnodysostosis, a lysosomal disease caused by cathepsin K deficiency. Science. 1996;273(5279):1236–8.

    Article  CAS  PubMed  Google Scholar 

  • Gilardi KVK, Shideler SE, Valverde CR, et al. Characterization of the onset of menopause in the rhesus macaque. Biol Reprod. 1997;57:335–40.

    Article  CAS  PubMed  Google Scholar 

  • Gillooly JF, Brown JH, West GB, et al. Effects of size and temperature on metabolic rate. Science. 2001;293:2248–51.

    Article  CAS  PubMed  Google Scholar 

  • Glatt V, Canalis E, Stadmeyer L, et al. Age-related changes in trabecular architecture differ in female and male C57BL/6J mice. J Bone Miner Res. 2007;22:1197–207.

    Article  PubMed  Google Scholar 

  • Goldring MB, Goldring SR. Articular cartilage and subchondral bone in the pathogenesis of osteoarthritis. Ann N Y Acad Sci. 2010;1192:230–7.

    Article  CAS  PubMed  Google Scholar 

  • Goodman AL, Descalzi CD, Johnson DK, et al. Composite pattern of circulating LH, FSH, estradiol, and progesterone during the menstrual cycle in cynomolgus monkeys. Proc Soc Exp Biol Med. 1977;155:479–81.

    Article  CAS  PubMed  Google Scholar 

  • Goodwin BT, Jerome CP. Iliac biopsy for histomorphometric analysis of trabecular bone in cynomolgus monkeys and baboons. Lab Anim Sci. 1987;37:213–6.

    CAS  PubMed  Google Scholar 

  • Gordon K, Williams RF, Danforth DR, et al. Suppression of ovarian estradiol secretion by a single injection of antide in cynomolgus monkeys during the early follicular phase: immediate, sustained, and reversible actions. J Clin Endocrinol Metab. 1991;73:1262–8.

    Article  CAS  PubMed  Google Scholar 

  • Goulding A, Gold E. A new way to induce oestrogen-deficiency osteopenia in the rat: comparison of the effect of surgical ovariectomy and administration of the LHRH agonist buserelin on bone resorption and composition. J Endocrinol. 1989;121:293–8.

    Article  CAS  PubMed  Google Scholar 

  • Guo D, Keightley A, Guthrie J, et al. Identification of osteocyte-selective proteins. Proteomics. 2010;10(20):3688–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haapasalo H, Kontulainen S, Sievanen H, et al. Exercise-induced bone gain is due to enlargement in bone size without a change in volumetric bone density: a peripheral quantitative computed tomography study of the upper arms of male tennis players. Bone. 2000;27(3):351–7.

    Article  CAS  PubMed  Google Scholar 

  • Halloran BP, Ferguson VL, Simske SJ, et al. Changes in bone structure and mass with advancing age in the male C57BL/6J mouse. J Bone Miner Res. 2002;17:1044–50.

    Article  PubMed  Google Scholar 

  • Harada H, Tagashira S, Fujiwara M, et al. Cbfa1 isoforms exert functional differences in osteoblast differentiation. J Biol Chem. 1999;274(11):6972–8.

    Article  CAS  PubMed  Google Scholar 

  • Hauge E, Mosekilde L, Melsen F. Missing observations in bone histomorphometry on osteoporosis: implications and suggestions for an approach. Bone. 1999;25:389–95.

    Article  CAS  PubMed  Google Scholar 

  • Hauge EM, Qvesel D, Eriksen EF, et al. Cancellous bone remodeling occurs in specialized compartments lined by cells expressing osteoblastic markers. J Bone Miner Res. 2001;16:1575–82.

    Article  CAS  PubMed  Google Scholar 

  • Hermann LM, Smith KC. Percutaneous trephine biopsy of the vertebral body in the rhesus monkey (Macaca mulatta). Am J Vet Res. 1985;46:1403–7.

    CAS  PubMed  Google Scholar 

  • Hernandez CJ, Gupt A, Keaveny TM. A biomechanical analysis of the effects of resorption cavities on cancellous bone strength. J Bone Miner Res. 2006;21:1248–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • Hessle L, Johnson KA, Anderson HC, et al. Tissue-nonspecific alkaline phosphatase and plasma cell membrane glycoprotein-1 are central antagonistic regulators of bone mineralization. Proc Natl Acad Sci U S A. 2002;99(14):9445–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Heuck F. Comparative investigations of the function of osteocytes in bone resorption. Calcif Tissue Res Suppl. 1970:148–9.

    Google Scholar 

  • Hodgen GD, Goodman AL, O’Connor A, et al. Menopause in rhesus monkeys: model for study of disorders in the human climacteric. Am J Obstet Gynecol. 1977;127:581–4.

    Article  CAS  PubMed  Google Scholar 

  • Hofbauer LC, Khosla S, Dunstan CR, et al. The roles of osteoprotegerin and osteoprotegerin ligand in the paracrine regulation of bone resorption. J Bone Miner Res. 2000;15(1):2–12.

    Article  CAS  PubMed  Google Scholar 

  • Hoffman RA, Mack PB, Hood WN. Comparison of calcium and phosphorus excretion with bone density changes during restraint in immature Macaca nemestrina primates. Aerospace Med. 1972;43:376–83.

    CAS  PubMed  Google Scholar 

  • Hotchkiss CE. Use of peripheral quantitative computed tomography for densitometry of the femoral neck and spine in cynomolgus monkeys (Macaca fascicularis). Bone. 1999;24:101–7.

    Article  CAS  PubMed  Google Scholar 

  • Hotchkiss CE, Brommage R, Du M, et al. The anesthetic isoflurane decreases ionized calcium and increases parathyroid hormone and osteocalcin in cynomolgus monkeys. Bone. 1998;23:479–84.

    Article  CAS  PubMed  Google Scholar 

  • Inaoka T, Bilbe G, Ishibashi O, et al. Molecular cloning of human cDNA for cathepsin K: novel cysteine proteinase predominantly expressed in bone. Biochem Biophys Res Commun. 1995;206(1):89–96.

    Article  CAS  PubMed  Google Scholar 

  • Inskip MJ, Franklin CA, Subramanian KS, et al. Sampling of cortical and trabecular bone for lead analysis: method development in a study of lead mobilization during pregnancy. Neurotoxicology. 1992;13:825–34.

    CAS  PubMed  Google Scholar 

  • Iwaniec UT, Turner RT. Animal models of osteoporosis. In: Marcus R, Feldman D, Nelson DA, Rosen CJ, editors. Osteoporosis. 3rd ed. Amsterdam: Elsevier; 2008. p. 985–1110.

    Chapter  Google Scholar 

  • Iwaniec UT, Yuan D, Power RA, et al. Strain-dependent variations in the response of cancellous bone to ovariectomy in mice. J Bone Miner Res. 2006;21:1068–74.

    Article  CAS  PubMed  Google Scholar 

  • Jaffe AB, Hall A. Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol. 2005;21:247–69.

    Article  CAS  PubMed  Google Scholar 

  • Jämsä T, Jalovaara P, Peng Z, et al. Comparison of three-point bending test and peripheral quantitative computed tomography analysis in the evaluation of the strength of mouse femur and tibia. Bone. 1998;23:155–61.

    Article  PubMed  Google Scholar 

  • Janssens K, ten Dijke P, Janssens S, et al. Transforming growth factor-β1 to the bone. Endocr Rev. 2005;26(6):743–74.

    Article  CAS  PubMed  Google Scholar 

  • Jayo MJ, Jerome CP, Lees CJ, et al. Bone mass in female cynomolgus macaques: a crosssectional and longitudinal study by age. Calcif Tissue Int. 1994;54:231–6.

    Article  CAS  PubMed  Google Scholar 

  • Jee WS, Li XJ. Adaptation of cancellous bone to overloading in the adult rat: a single photon absorptiometry and histomorphometry study. Anat Rec. 1990;227:418–26.

    Article  CAS  PubMed  Google Scholar 

  • Jee WS, Ma Y. Animal models of immobilization osteopenia. Morphologie. 1999;83(261):25–34.

    CAS  PubMed  Google Scholar 

  • Jee WSS, Yao W. Overview: animal models of osteopenia and osteoporosis. J Musculoskelet Neuronal Interact. 2001;1:193–207.

    CAS  PubMed  Google Scholar 

  • Jepsen KJ. Functional interactions among morphologic and tissue quality traits define bone quality. Clin Orthop Relat Res. 2011;469:2150–9.

    Article  PubMed  Google Scholar 

  • Jepsen KJ, Silva MJ, Vashishth D, et al. Establishing biomechanical mechanisms in mouse models: practical guidelines for systematically evaluating phenotypic changes in the Diaphyses of long bones. J Bone Miner Res. 2015;30(6):951–66.

    Article  PubMed  PubMed Central  Google Scholar 

  • Jerome C. Hormonal therapies and osteoporosis. ILAR J. 2004;45:170–8.

    Article  CAS  PubMed  Google Scholar 

  • Jerome CP, Peterson PE. Nonhuman primate models in skeletal research. Bone. 2001;29:1–6.

    Article  CAS  PubMed  Google Scholar 

  • Jerome CP, Carlson CS, Register TC, et al. Bone functional changes in intact, ovariectomized, hormone-supplemented adult cynomolgus monkeys (Macaca fascicularis) evaluated by serum markers and dynamic histomorphometry. J Bone Miner Res. 1994;9:527–40.

    Article  CAS  PubMed  Google Scholar 

  • Jerome CP, Lees CJ, Weaver DS. Development of osteopenia in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone. 1995;17:403S–8S.

    CAS  PubMed  Google Scholar 

  • Jerome CP, Turner CH, Lees CJ. Decreased bone mass and strength in ovariectomized cynomolgus monkeys (Macaca fascicularis). Calcif Tissue Int. 1997;60:265–70.

    Article  CAS  PubMed  Google Scholar 

  • Jerome CP, Johnson CS, Vafai HT, et al. Effect of treatment for 6 months with human parathyroid hormone (1–34) peptide in ovariectomized cynomolgus monkeys (Macaca fascicularis). Bone. 1999;25:301–9.

    Article  CAS  PubMed  Google Scholar 

  • Jerome CP, Burr DB, Van Bibber T, et al. Treatment with human parathyroid hormone (1–34) for 18 months increases cancellous Bone volume and improves trabecular architecture in Ovariectomized Cynomolgus monkeys (Macaca fascicularis). Bone. 2001;28(2):150–9.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Jahagirdar BN, Reinhardt RL, et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature. 2002;418(6893):41–9.

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Zhao J, Liao EY, et al. Application of μCT-assessment of 3D bone microstructure in preclinical and clinical studies. J Bone Miner Metab. 2005;23:122–31.

    Article  PubMed  Google Scholar 

  • Jilka RL. The relevance of mouse models for investigating age-related Bone loss in humans. J Gerontol A Biol Sci Med Sci. 2013; doi:10.1093/gerona/glt046.

  • Johnson CS, Jerome CP, Brommage R. Unbiased determination of cytokine localization in bone: colocalization of interleukin-6 with osteoblasts in serial sections from monkey vertebrae. Bone. 2000;26:461–7.

    Article  CAS  PubMed  Google Scholar 

  • Kalajzic I, Braut A, Guo D, et al. Dentin matrix protein 1 expression during osteoblastic differentiation, generation of an osteocyte GFP-transgene. Bone. 2004;35(1):74–82.

    Article  CAS  PubMed  Google Scholar 

  • Kan L. Animal models of bone diseases – a. In: Conn PM, editor. Animal models for the study of human disease. San Diego: Academic; 2013. p. 353–90.

    Chapter  Google Scholar 

  • Kanis JA, McCloskey EV, Johansson H, et al. European guidance for the diagnosis and management of osteoporosis in postmenopausal women. Osteoporos Int. 2013;24:23–57.

    Article  CAS  PubMed  Google Scholar 

  • Kaplan JR, Adams MR, Clarkson TB, et al. Social behavior and gender in biomedical investigations using monkeys: studies in atherogenesis. Lab Anim Sci. 1991;41:334–43.

    CAS  PubMed  Google Scholar 

  • Kavukcuoglu NB, Denhardt DT, Guzelsu N, et al. Osteopontin deficiency and aging on nanomechanics of mouse bone. J Biomed Mater Res A. 2007;83(1):136–44.

    Article  PubMed  CAS  Google Scholar 

  • Kavukcuoglu NB, Patterson-Buckendahl P, Mann AB. Effect of osteocalcin deficiency on the nanomechanics and chemistry of mouse bones. J Mech Behav Biomed Mater. 2009;2:348–54.

    Article  CAS  PubMed  Google Scholar 

  • Kazanci M, Roschger P, Paschalis EP, et al. Bone osteonal tissues by Raman spectral mapping: orientation-composition. J Struct Biol. 2006;156:489–96.

    Article  CAS  PubMed  Google Scholar 

  • Keaveney TM. Cancellous bone. In: Black J, Hastings G, editors. Handbook of biomaterials properties. London: Chapman and Hall; 1998.

    Google Scholar 

  • Kenigsberg D, Hodgen GD. Ovulation inhibition by administration of weekly gonadotropin-releasing hormone antagonist. J Clin Endocrinol Metab. 1986;62:734–8.

    Article  CAS  PubMed  Google Scholar 

  • Kennedy OD, Herman BC, Laudier DM, et al. Activation of resorption in fatigue-loaded bone involves both apoptosis and active pro-osteoclastogenic signaling by distinct osteocyte populations. Bone. 2012;50:1115–22.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kerber WT, Reese WH. Comparison of the menstrual cycle of cynomolgus and rhesus monkeys. Fertil Steril. 1969;20:975–9.

    Article  CAS  PubMed  Google Scholar 

  • Kern B, Shen J, Starbuck M, et al. Cbfa1 contributes to the osteoblast-specific expression of type I collagen genes. J Biol Chem. 2001;276(10):7101–7.

    Article  CAS  PubMed  Google Scholar 

  • Kim SW, Divieti-Pajevic P, Selig M, et al. Intermittent PTH administration converts quiescent lining cells to active osteoblasts. J Bone Miner Res. 2012;27(10):2075–84.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein HJ, Seedor G, Frankenfeld DL, Thompson DD. Method for transiliac bone biopsy in baboons. J Am Vet Med Assoc. 1991;198:1977–9.

    CAS  PubMed  Google Scholar 

  • Kneissel M, Boyde A, Gasser JA. Bone tissue and its mineralization in aged estrogen-depleted rats after long-term intermittent treatment with parathyroid hormone (PTH) analog SDZ PTS 893 or human PTH(1-34). Bone. 2001;28:237–50.

    Article  CAS  PubMed  Google Scholar 

  • Knothe Tate ML, Adamson JR, Tami AE, et al. The osteocyte. Int J Biochem Cell Biol. 2004;36:1–8.

    Article  CAS  PubMed  Google Scholar 

  • Knutson JC, Hollis BW, LeVan LW, et al. Metabolism of 1-hydroxyvitamin D2 to activated dihydroxyvitamin D2 metabolites decreases endogenous 1,25-dihydroxyvitamin D3 in rats and monkeys. Endocrinology. 1995;136:4749–53.

    Article  CAS  PubMed  Google Scholar 

  • Koga T, Matsui Y, Asagiri M, et al. NFAT and Osterix cooperatively regulate bone formation. Nat Med. 2005;11(8):880–5.

    Article  CAS  PubMed  Google Scholar 

  • Komori T, Yagi H, Nomura S. Targeted disruption of Cbfa1 results in a complete lack of bone formation owing to maturational arrest of osteoblasts. Cell. 1997;89(5):755–64.

    Article  CAS  PubMed  Google Scholar 

  • Kostenuik PJ, Shalhoub V. Osteoprotegerin: a physiological and pharmacological inhibitor of bone resorption. Curr Pharm Des. 2001;7:613–35.

    Article  CAS  PubMed  Google Scholar 

  • Koyama T, de la Pena A, Hagino N. Plasma estrogen, progestin, and luteinizing hormone during the normal menstrual cycle of the baboon: role of luteinizing hormone. Am J Obstet Gynecol. 1977;127:67–72.

    Article  CAS  PubMed  Google Scholar 

  • Kramer I, Salie R, Susa M et al. Studying gene expression in bone by in situ hybridization. In: Helfrich, MH and Ralston, SH, editors. Methods in molecular medicine, vol. 816: bone research protocols. 2nd ed. Totowa: Humana Press Inc.; 2012. 305–320. 978-1-61779-414-8.

    Google Scholar 

  • Kristensen HB, Andersen TL, Marcussen N, et al. Osteoblast recruitment routes in human cancellous bone remodeling. Am J Pathol. 2014;184:778–89.

    Article  CAS  PubMed  Google Scholar 

  • Lane NE, Yao W, Balooch M, et al. Glucocorticoid-treated mice have localized changes in trabecular bone material properties and osteocyte lacunar size that are not observed in placebo-treated or estrogen-deficient mice. J Bone Miner Res. 2006;21(3):466–76.

    Article  CAS  PubMed  Google Scholar 

  • Lanyon LE, Baggott DG. Mechanical function as an influence on the structure and form of bone. J Bone Joint Surg. 1976;58-B(4):436–43.

    CAS  Google Scholar 

  • Lazner F, Gowen M, Pavasovic D, et al. Osteopetrosis and osteoporosis: two sides of the same coin. Hum Mol Genet. 1999;8(10):1839–46.

    Article  CAS  PubMed  Google Scholar 

  • Lees CJ, Ramsay H. Histomorphometry and bone biomarkers in cynomolgus females: a study in young, mature, and old monkeys. Bone. 1999;24:25–8.

    Article  CAS  PubMed  Google Scholar 

  • Lekamwasam S, Adachi JD, Agnusdei D, et al. Joint IOF-ECTS GIO guidelines working group. A framework for the development of guidelines for the management of glucocorticoid-induced osteoporosis. Osteoporos Int. 2012;23(9):2257–76.

    Article  CAS  PubMed  Google Scholar 

  • Lelovas PP, Xanthos TT, Thoma SE, et al. The laboratory rat as an animal model for osteoporosis research. Comp Med. 2008;58(5):424–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Shen Y, Qi H, et al. Comparison study of skeletal response to estrogen depletion at red and yellow marrow sites in rats. Anat Rec. 1996;245:472–80.

    Article  CAS  PubMed  Google Scholar 

  • Li M, Shen Y, Wronski TJ. Time course of femoral neck osteopenia in ovariectomizd rats. Bone. 1997;20:55–61.

    Article  CAS  PubMed  Google Scholar 

  • Lipkin EW. A longitudinal study of calcium regulation in a nonhuman primate model of parenteral nutrition. Am J Clin Nutr. 1998;67:246–54.

    CAS  PubMed  Google Scholar 

  • Lips P, Courpron P, Meunier PJ. Mean wall thickness of trabecular bone packets in the human iliac crest: changes with age. Calcif Tissue Res. 1978;10:13–7.

    Article  Google Scholar 

  • Loeb WF. The rat. In: Loeb WF, Quimby FW, editors. The clinical chemistry of laboratory animals. 2nd ed. Ann Arbor: Edwards Brothers; 1999. p. 33–45.

    Google Scholar 

  • Long F. Building strong bones: molecular regulation of the osteoblast lineage. Mol Cell Biol. 2012;13:27–38.

    CAS  Google Scholar 

  • Lozupone E, Favia A. The structure of the trabeculae of cancellous bone. 2. Long bones and mastoid. Calcif Tissue Int. 1990;46:367–72.

    Article  CAS  PubMed  Google Scholar 

  • Lyons KM. Animal models: genetic manipulation. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. New York: Wiley; 2013. p. 69–75.

    Chapter  Google Scholar 

  • Ma YF, Li XJ, Jee WS, et al. Effects of prostaglandin E2 and F2 alpha on the skeleton of osteopenic ovariectomized rats. Bone. 1995;17:549–54.

    Article  CAS  PubMed  Google Scholar 

  • Maeda S, Hayashi M, Komiya S, et al. Endogenous TGF-β signaling suppresses maturation of osteoblastic mesenchymal cells. EMBO J. 2004;23(3):552–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandair GS, Morris MD. Contributions of Raman spectroscopy to the understanding of bone strength. BoneKEy Reports 4, Article number: 620. 2015. doi:10.1038/bonekey.2014.115.

  • Mann DR, Gold KG, Collins DC. A potential primate model for bone loss resulting from medical oophorectomy or menopause. J Clin Endocrinol Metab. 1990;71:105–10.

    Article  CAS  PubMed  Google Scholar 

  • Marenzana M, Arnett TR. The key role of blood supply in bone. Bone Res. 2013;3:203–15.

    Article  CAS  Google Scholar 

  • Marie PJ, Glorieux FH. Relation between hypomineralized periosteocytic lesions and bone mineralization in vitamin D-resistant rickets. Calcif Tissue Int. 1983;35(4–5):443–8.

    Article  CAS  PubMed  Google Scholar 

  • Martin RB. Porosity and specific surface of bone. CRC Critical Rev Biomed Eng. 1984;10:179–221.

    CAS  Google Scholar 

  • Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev. 2005;19(23):2783–810.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy I. The physiology of bone blood flow: a review. J Bone Joint Surg Am. 2006;88(Suppl 3):4–9.

    PubMed  Google Scholar 

  • McNamara LM, Van Der Linden JC, Weinans H, et al. Stress-concentrating effect of resorption lacunae in trabecular bone. J Biomech. 2006;39:734–41.

    Article  CAS  PubMed  Google Scholar 

  • Mehta RR, Jenco JM, Gaynor LV, et al. Relationships between ovarian morphology, vaginal cytology, serum progesterone, and urinary immunoreactive pregnanediol during the menstrual cycle of the cynomolgus monkey. Biol Reprod. 1986;35:981–6.

    Article  CAS  PubMed  Google Scholar 

  • Meunier PJ. Assessment of bone turnover by histomorphometry in osteoporosis. In: Riggs BL, Melton LJ, editors. Osteoporosis: etiology, diagnosis, and management. New York: Raven Press; 1988. p. 317–32.

    Google Scholar 

  • Misof BM, Roschger P, Cosman F, et al. Effects of intermittent parathyroid hormone administration on bone mineralization density in iliac crest biopsies from patients with osteoporosis: a paired study before and after treatment. J Clin Endocrinol Metab. 2003;8(3):1150–6.

    Article  CAS  Google Scholar 

  • Miyakoshi N, Sato K, Tsuchida T, et al. Histomorphometric evaluation of the effects of ovariectomy on bone turnover in rat caudal vertebrae. Calcif Tissue Int. 1999;64:318–24.

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Burr DB. Increased intracortical remodeling following fatigue damage. Bone. 1993;14:103–9.

    Article  CAS  PubMed  Google Scholar 

  • Mori S, Jee WS, Li XJ. Production of new trabecular bone in osteopenic ovariectomized rats by prostaglandin E2. Calcif Tissue Int. 1992;50:80–7.

    Article  CAS  PubMed  Google Scholar 

  • Morris MD, Mandair GS. Raman assessment of bone quality. Clin Orthop Relat Res. 2011;469:2160–9.

    Article  PubMed  Google Scholar 

  • Murray PDF, Huxley JS. Self-differentiation in the grafted limb bud of the chick. J Anat. 1925;59:379–84.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakamura H. Morphology, function, and differentiation of bone cells. J Hard Tissue Biol. 2007;16(1):15–22.

    Article  CAS  Google Scholar 

  • Nakashima K, Zhou X, Kunkel G, et al. The novel zinc finger containing transcription factor osterix is required for osteoblast differentiation and bone formation. Cell. 2002;108(1):17–29.

    Article  CAS  PubMed  Google Scholar 

  • Negishi-Koga T, Shinohara M, Komatsu N, et al. Suppression of bone formation by osteoclastic expression of semaphoring 4D. Nat Med. 2011;17:1473–80.

    Article  CAS  PubMed  Google Scholar 

  • Nishio Y, Dong Y, Paris M, et al. Runx2-mediated regulation of the zinc finger Osterix/Sp7 gene. Gene. 2006;372:62–70.

    Article  CAS  PubMed  Google Scholar 

  • Nogues C, Milhaud C. A new technique for iliac crest biopsy in rhesus monkeys for use in weightlessness experiments: some results of ground studies. Aviat Space Environ Med. 1988;59:374–8.

    CAS  PubMed  Google Scholar 

  • Ott SM, O’Hanlan M, Lipkin EW, et al. Evaluation of vertebral volumetric vs areal bone mineral density during growth. Bone. 1997;20:553–6.

    Article  CAS  PubMed  Google Scholar 

  • Ott SM, Lipkin EW, Newell-Morris. Bone physiology during pregnancy and lactation in young macaques. J Bone Miner Res. 1999;14:1779–88.

    Article  CAS  PubMed  Google Scholar 

  • Otto F, Thornell AP, Crompton T, et al. Cbfa1, a candidate gene for cleidocranial dysplasia syndrome, is essential for osteoblast differentiation and bone development. Cell. 1997;89(5):765–71.

    Article  CAS  PubMed  Google Scholar 

  • Pacureanu A, Langer M, Boller E, et al. Nanoscale imaging of the bone cell network with synchrotron X-ray tomography: optimization of acquisition setup. Med Phys. 2012;39:2229–38.

    Article  PubMed  Google Scholar 

  • Parfitt AM. Targeted and nontargeted bone remodeling: relationship to basic multicellular unit origination and progression. Bone. 2002a;30(1):5–7.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM. Misconceptions (2): turnover is always higher in cancellous than in cortical bone. Bone. 2002b;30:807–9.

    Article  CAS  PubMed  Google Scholar 

  • Parfitt AM, Han ZH, Palnitkar S, et al. Effects of ethnicity and age or menopause on osteoblast function, bone mineralization, and osteoid accumulation in iliac bone. J Bone Miner Res. 1997;12:1864–73.

    Article  CAS  PubMed  Google Scholar 

  • Patsch JM, Burghardt AJ, Kazakia G, et al. Noninvasive imaging of bone microarchitecture. Ann N Y Acad Sci. 2011;1240:77–87.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pixley FJ, Stanley ER. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol. 2004;14:628–38.

    Article  CAS  PubMed  Google Scholar 

  • Pocock NA, Eisman JA, Hopper JL, et al. Genetic determinants of bone mass in adults. A twin study. J Clin Invest. 1987;80(3):706–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poole KE, van Bezooijen RL, Loveridge N, et al. Sclerostin is a delayed secreted product of osteocytes that inhibits bone formation. FASEB J. 2005;19(13):1842–4.

    CAS  PubMed  Google Scholar 

  • Qing H, Bonewald LF. Osteocyte remodeling of the perilacunar and pericanalicular matrix. Int J Oral Sci. 2009;1(2):59–65.

    Article  PubMed  PubMed Central  Google Scholar 

  • Recker RR, Kimmel DB, Parfitt AM, et al. Static and tetracycline-based bone histomorphometric data from 34 normal postmenopausal females. J Bone Miner Res. 1988;3:133–44.

    Article  CAS  PubMed  Google Scholar 

  • Recker R, Lappe J, Davies KM, et al. Bone remodeling increases substantially in the years after menopause and remains increased in older osteoporosis patients. J Bone Miner Res. 2004;19:1628–33.

    Article  PubMed  Google Scholar 

  • Recklinghausen FV, editor. Untersuchungen über rachitis and osteomalacia. Jena: Fischer Verlag; 1910.

    Google Scholar 

  • Register TC, Jerome CP. Increased urinary markers of collagen degradation accompany ovariectomy in skeletally mature cynomolgus macaques. J Bone Miner Res. 1996;11:S196.

    Google Scholar 

  • Reid DG, Shanahan CM, Duer MJ, et al. Lipids in biocalcification: contrasts and similarities between intimal and medial vascular calcification and bone by NMR. J Lipid Res. 2012;53:1569–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reponen P, Sahlberg C, Munaut C, et al. High expression of 92-kD type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J Cell Biol. 1994;124(6):1091–102.

    Article  CAS  PubMed  Google Scholar 

  • Roschger P, Rinnerthaler S, Yates J, et al. Alendronate increases degree and uniformity of mineralization in cancellous bone and decreases the porosity in cortical bone of osteoporotic women. Bone. 2001;29(2):185–91.

    Article  CAS  PubMed  Google Scholar 

  • Roschger P, Paschalis EP, Fratzl P, et al. Bone mineralization density distribution in health and disease. Bone. 2008;42:456–66.

    Article  CAS  PubMed  Google Scholar 

  • Ross FP. Osteoclast biology and bone resorption. In: Rosen CJ, editor. Primer on the metabolic bone dis-eases and disorders of mineral metabolism. 8th ed. New York: Wiley; 2013. p. 25–33.

    Chapter  Google Scholar 

  • Ross FP, Teitelbaum SL. alphavbeta3 and macrophage colony-stimulating factor: partners in osteoclast biology. Immunol Rev. 2005;208:88–105.

    Article  CAS  PubMed  Google Scholar 

  • Rossert J, de Crombrugghe B. Type I collagen: structure, synthesis and regulation. In: Bilezikian JP, Raisz LA, Rodan GA, editors. Principles of bone biology, vol. 1. 2nd ed. San Diego: Academic; 2002. p. 189–210.

    Chapter  Google Scholar 

  • Rowe PS, Kumagai Y, Gutierrez G, et al. MEPE has the properties of an osteoblastic phosphatonin and inhibin. Bone. 2004;34(2):303–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salo J, Lehenkari P, Mulari M, et al. Removal of osteoclast bone resorption products by transcytosis. Science. 1997;276:270–3.

    Article  CAS  PubMed  Google Scholar 

  • Sánchez-Duffhues G, Hiepen C, Knaus P, et al. Bone morphogenetic protein signaling in bone homeostasis. Bone. 2015;80:43–59.

    Article  PubMed  CAS  Google Scholar 

  • Schaffler MB, Burr DB. Primate cortical bone microstructure: relationship to locomotion. Am J Phys Anthropol. 1984;65:191–7.

    Article  CAS  PubMed  Google Scholar 

  • Schaffler M, Cheung W-Y, Majeska R, et al. Osteocytes: master orchestrators of bone. Calcif Tissue Int. 2014;94:5–24.

    Article  CAS  PubMed  Google Scholar 

  • Schneider P, Meier M, Wepf R, et al. Towards quantitative 3D imaging of the osteocyte lacuno-canalicular network. Bone. 2010;47:848–58.

    Article  PubMed  Google Scholar 

  • Schriefer JL, Robling AG, Warden SJ, et al. A comparison of mechanical properties derived from multiple skeletal sites in mice. J Biomech. 2005;38(3):467–75.

    Article  PubMed  Google Scholar 

  • Seeman E. Pathogenesis of bone fragility in women and men. Lancet. 2002;359:1841–50.

    Article  PubMed  Google Scholar 

  • Seeman E. Modeling and remodeling: the cellular machinery responsible for the gain and loss of Bone’s material and structural strength. In: Bilezikian JP, Raisz LA, Martin TJ, editors. Principles of bone biology, vol. 1. 3rd ed. San Diego: Academic; 2008. p. 3–28.

    Google Scholar 

  • Seeman E, Hopper J, Bach L, et al. Reduced bone mass in the daughters of women with osteoporosis. New Engl J Med. 1989;320:554–8.

    Article  CAS  PubMed  Google Scholar 

  • Seeman E, Hopper JL, Young NR, et al. Do genetic factors explain associations between muscle strength, lean mass, and bone density? A twin study. Am J Phys. 1996;270(2 Pt 1):E320–7.

    CAS  Google Scholar 

  • Shaikh AA, Naqvi RH, Shaikh SA (1978) Concentrations of oestradiol-17‚ and progesterone in the peripheral plasma of the cynomolgus monkey (Macaca fascicularis) in relation to the length of the menstrual cycle and its component phases. J Endocrinol 79:1–7.

    Google Scholar 

  • Sharir A, Barak MM, Shahar R. Whole bone mechanics and mechanical testing. Vet J. 2008;177:8–17.

    Article  PubMed  Google Scholar 

  • Shively CA, Laber-Laird K, Anton RF. Behavior and physiology of social stress and depression in female cynomolgus monkeys. Biol Psychol. 1997;41:871–82.

    Article  CAS  Google Scholar 

  • Sims NA and Martin TJ. Coupling signals between the osteoclast and osteoblast: how are messages transmitted between these temporary visitors to the bone surface? Frontiers Endocrinol. 2015. http://dx.doi.org/10.3389/fendo.2015.00041 Vol 6 (Article 41) 1–5.

  • Sims NA, Quinn JM, Martin TJ. Coupling between immune and bone cells. In: Lorenzo JA, Choi Y, Horowitz MC, Takayanagi H, editors. Osteoim- munology: interactions of the immune and skeletal systems. 2nd ed. London: Academic; 2015.

    Google Scholar 

  • Smith SY, Jolette J, Turner CH. Skeletal health: primate model of postmenopausal osteoporosis. Am J Primatol. 2009;71:752–65.

    Article  CAS  PubMed  Google Scholar 

  • Smith L, Bigelow EM, Jepsen KJ. Systematic evaluation of skeletal mechanical function. Curr Protoc Mouse Biol. 2013;3:39–67.

    Article  PubMed  PubMed Central  Google Scholar 

  • Snoeks TJA, Van Beek E, Que I et al (2012) Bioluminescence imaging of bone metastasis in rodents. Helfrich, Miep H and Ralston, Stuart H, editors. Methods in molecular medicine, vol. 816: bone research protocols 2nd ed. Totowa: Humana Press Inc.; 507–15. 978-1-61779-414-8.

    Google Scholar 

  • Sogaard CH, Wronski TJ, McOsker JE, et al. The positive effect of parathyroid hormone on femoral neck bone strength in ovariectomized rats is more pronounced than that of estrogen or bisphosphonates. Endocrinology. 1994;134:650–7.

    Article  CAS  PubMed  Google Scholar 

  • Sopelak VM, Lynch A, Williams RF, et al. Maintenance of ovulatory menstrual cycles in chronically cannulated monkeys: a vest and mobile tether assembly. Biol Reprod. 1983;28:703–6.

    Article  CAS  PubMed  Google Scholar 

  • Sowa H, Kaji H, Yamaguchi T, et al. Smad3 promotes alkaline phosphatase activity and mineralization of osteoblastic MC3T3-E1 cells. J Bone Miner Res. 2002;17(7):1190–9.

    Article  CAS  PubMed  Google Scholar 

  • Sroga GE, Vashishth D. Effects of bone matrix proteins on fracture and fragility in osteoporosis. Curr Osteoporos Rep. 2012;10:141–50.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stenbeck G, Horton MA. Endocytic trafficking in actively resorbing osteoclasts. J Cell Sci. 2004;117:827–36.

    Article  CAS  PubMed  Google Scholar 

  • Stroup GB, Kumar S, Jerome CP. Treatment with a potent cathepsin K inhibitor preserves cortical and trabecular bone mass in ovariectomized monkeys. Calcif Tissue Int. 2009;85:344–55.

    Article  CAS  PubMed  Google Scholar 

  • Suda T, Takahashi N, Udagawa N, et al. Modulation of osteoclast differentiation and function by the new members of the tumor necrosis factor receptor and ligand families. Endocr Rev. 1999;20:345–57.

    Article  CAS  PubMed  Google Scholar 

  • Szulc P, Seeman P, Duboeuf F, et al. Bone fragility: failure of periosteal apposition to compensate for increased endocortical resorption in postmenopausal women. J Bone Miner Res. 2006;21:1856–63.

    Article  PubMed  Google Scholar 

  • Teitelbaum SL. Osteoporosis and integrins. J Clin Endocrinol Metab. 2005;90:2466–8.

    Article  CAS  PubMed  Google Scholar 

  • Teitelbaum SL, Ross FP. Genetic regulation of osteoclast development and function. Nat Rev Genet. 2003;4:638–49.

    Article  CAS  PubMed  Google Scholar 

  • The HYP Consortium. A gene (PEX) with homologies to endopeptidases is mutated in patients with X-linked hypophosphatemic rickets. Nat Genet. 1995;11(2):130–6.

    Article  Google Scholar 

  • Tripp EJ, Mac Kay EH. Silver staining of bone prior to decalcification for quantitative determination of osteoid in sections. Stain Technol. 1972;47(3):129–36.

    Article  CAS  PubMed  Google Scholar 

  • Turner AS. Animal models of osteoporosis – necessity and limitations. Eur Cell Mater. 2001;1:66–81.

    Article  CAS  PubMed  Google Scholar 

  • Turner CH. Bone strength: current concepts. Ann N Y Acad Sci. 2006;1068:429–46.

    Article  PubMed  Google Scholar 

  • Turner RT, Lotinun S, Hefferan T, et al. Animal models for osteoporosis. Rev Endocr Metab Disord. 2001;2:117–27.

    Article  CAS  PubMed  Google Scholar 

  • Urist MR. Bone: formation by autoinduction. Science. 1965;150(698):893–9.

    Article  CAS  PubMed  Google Scholar 

  • Urist MR, Mikulski A, Lietze A. Solubilized and insolubilized bone morphogenetic protein. Proc Natl Acad Sci U S A. 1979;76(4):1828–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vahle JL, Ma YL and Burr DB. Skeletal assessments in the nonhuman primate. Chapter 32. In: Bluemel J, Korte S, Schenck E, Weinbauer GF, editors. The nonhuman primate in nonclinical drug development and safety assessment. San Diego: Academic; 2015. 605–25. 978–0–12-417144-2.

    Google Scholar 

  • Van der Linden JC, Homminga J, Verhaar JAN, et al. Mechanical consequences of bone loss in cancellous bone. J Bone Miner Res. 2001;16:457–65.

    Article  PubMed  Google Scholar 

  • Van’t Hof, R (2012) Analysis of bone architecture in rodents using microcomputed tomography. In: Helfrich, Miep H and Ralston, Stuart H, editors. Methods in molecular medicine, vol. 816: bone research protocols. 2nd ed, Totowa: Humana Press; 461–76. 978-1-61779-414-8.

    Google Scholar 

  • Verborgt O, Gibson GJ, Schaffler MB. Loss of osteocyte integrity in association with microdamage and bone remodeling after fatigue damage in vivo. J Bone Miner Res. 2000;15:60–7.

    Article  CAS  PubMed  Google Scholar 

  • Verborgt O, Tatton NA, Majeska RJ, et al. Spatial distribution of Bax and Bcl-2 in osteocytes after bone fatigue: complementary roles in bone remodeling regulation? J Bone Miner Res. 2002;17(5):907–14.

    Article  CAS  PubMed  Google Scholar 

  • Vieth R, Kessler MJ, Pritzker KPH. Serum concentrations of vitamin D metabolites in Cayo Santiago Rhesus macaques. J Med Primatol. 1987;16:347–57.

    Google Scholar 

  • Vieth R, Kessler MJ, Pritzker KP. Species differences in the binding kinetics of 25-hydroxyvitamin D3 to vitamin D binding protein. Can J Physiol Pharmacol. 1990;68:1368–71.

    Article  CAS  PubMed  Google Scholar 

  • Walker ML. Menopause in female rhesus monkeys. Am J Primatol. 1995;35:59–71.

    Article  Google Scholar 

  • Wallace JM. Skeletal hard tissue biomechanics. In: Burr DB, Allen MR, editors. Basic and applied bone biology. San Diego: Academic; 2014. p. 115–30.

    Chapter  Google Scholar 

  • Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci. 1998;28:271–98.

    Article  CAS  Google Scholar 

  • Weinstein RS. Clinical use of bone biopsy. In: Coe FL, Favus MJ, editors. Disorders of bone and mineral metabolism. New York: Raven Press; 1992. p. 455–74.

    Google Scholar 

  • Weinstein RS, Jilka RL, Parfitt AM, et al. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts and osteocytes by glucocorticoids. Potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102:274–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weitzmann MN, Cenci S, Rifas L, et al. Interluekin-7 stimulates osteoclast formation by upregulating the T-cell production of soluble osteoclastogenic cytokincs. Blood. 2000;96:1873–8.

    CAS  PubMed  Google Scholar 

  • Wronski TJ, Cintron M, Dann LM. Temporal relationship between bone loss and increased bone turnover in ovariectomized rats. Calcif Tissue Int. 1988;43:179–83.

    Article  CAS  PubMed  Google Scholar 

  • Wronski TJ, Dann LM, Scott KS, et al. Long-term effects of ovariectomy and aging on the rat skeleton. Calcif Tissue Int. 1989;45:360–6.

    Article  CAS  PubMed  Google Scholar 

  • Wronski TJ, Dann LM, Horner SL. Time course of vertebral osteopenia in ovariectomized rats. Bone. 1990;10:295–301.

    Article  Google Scholar 

  • Yamaguchi A, Katagiri T, Ikeda T, et al. Recombinant human bone morphogenetic protein-2 stimulates osteoblastic maturation and inhibits myogenic differentiation in vitro. J Cell Biol. 1991;113(3):681–7.

    Article  CAS  PubMed  Google Scholar 

  • Yang Y. Skeletal morphogenesis and embryonic development. In: Rosen CJ, editor. Primer on the metabolic bone diseases and disorders of mineral metabolism. 8th ed. New York: Wiley; 2013. p. 3–14.

    Google Scholar 

  • Yeh JK, Chen MM, Aloia JF. Skeletal alterations in hypophysectomized rats: I. A histomorphometric study on tibial cancellous bone. Anat Rec. 1995;241(4):505–12.

    Article  CAS  PubMed  Google Scholar 

  • Yeni YN, Brown CU, Wang Z, et al. The influence of bone morphology on fracture toughness of the human femur and tibia. Bone. 1997;21:453–9.

    Article  CAS  PubMed  Google Scholar 

  • Yuan R, Tsaih SW, Petkova SB, et al. Aging in inbred strains of mice: study design and interim report on median lifespans and circulating IGF1 levels. Aging Cell. 2009;8:277–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zebaze R, Seeman E. Cortical bone: a challenging geography. J Bone Miner Res. 2015;30(1):24–9.

    Article  PubMed  Google Scholar 

  • Zhao C, Irie N, Takada Y, et al. Bidirectional ephrinB2-EphB4 signaling controls bone homeostasis. Cell Metab. 2006;4:111–21.

    Article  CAS  PubMed  Google Scholar 

  • Zoehrer R, Roschger P, Durchschlag E, et al. Bone mineralization density distribution in triple biopsies of the iliac crest in post-menopausal women. J Bone Miner Res. 2006;21(7):1106–12.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We wish to thank Alan Abrams, Novartis Institutes for BioMedical Research (Cambridge, USA) for contributing the scientific artwork for Figs. 2.1, 2.2, 2.6, 2.8, 2.9, 2.11, 2.14, 2.16a, 2.17, and 2.18. Our sincere thanks go to Nathalie Gris-Accard, Novartis Institutes for BioMedical Research (Basel, Switzerland) for providing histologic images for Figs. 2.3 and 2.7a.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürg Andreas Gasser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gasser, J.A., Kneissel, M. (2017). Bone Physiology and Biology. In: Smith, S., Varela, A., Samadfam, R. (eds) Bone Toxicology. Molecular and Integrative Toxicology. Springer, Cham. https://doi.org/10.1007/978-3-319-56192-9_2

Download citation

Publish with us

Policies and ethics