Skip to main content

Interaction of LRRK2 and α-Synuclein in Parkinson’s Disease

  • Chapter
  • First Online:
Leucine-Rich Repeat Kinase 2 (LRRK2)

Part of the book series: Advances in Neurobiology ((NEUROBIOL,volume 14))

Abstract

Parkinson’s disease (PD) is a progressively debilitating neurodegenerative syndrome. It is best described as a movement disorder characterized by motor dysfunctions, progressive degeneration of dopaminergic neurons of the substantia nigra pars compacta, and abnormal intraneuronal protein aggregates, named Lewy bodies and Lewy neurites. Nevertheless, knowledge of the molecular events leading to this pathophysiology is incomplete. To date, only mutations in the α-synuclein and LRRK2-encoding genes have been associated with typical findings of clinical and pathologic PD. LRRK2 appears to have a central role in the pathogenesis of PD as it is associated with α-synuclein pathology and other proteins implicated in neurodegeneration. Thus, LRRK2 dysfunction may influence the accumulation of α-synuclein and its pathology through diverse pathomechanisms altering cellular functions and signaling pathways, including immune system, autophagy, vesicle trafficking, and retromer complex modulation. Consequently, development of novel LRRK2 inhibitors can be justified to treat the neurodegeneration associated with abnormal α-synuclein accumulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lang AE, Lozano AM (1998) Parkinson’s disease. First of two parts. N Engl J Med 339(15):1044–1053

    Article  CAS  PubMed  Google Scholar 

  2. Lang AE, Lozano AM (1998) Parkinson’s disease. Second of two parts. N Engl J Med 339(16):1130–1143

    Article  CAS  PubMed  Google Scholar 

  3. Spillantini MG et al (1997) Alpha-synuclein in Lewy bodies. Nature 388(6645):839–840

    Article  CAS  PubMed  Google Scholar 

  4. Gasser T (2009) Mendelian forms of Parkinson’s disease. Biochim Biophys Acta 1792(7):587–596

    Article  CAS  PubMed  Google Scholar 

  5. Hardy J et al (2006) Genetics of Parkinson’s disease and parkinsonism. Ann Neurol 60(4):389–398

    Article  CAS  PubMed  Google Scholar 

  6. Polymeropoulos MH (1997) Mutation in the -synuclein gene identified in families with Parkinson’s disease. Science 276(5321):2045–2047

    Article  CAS  PubMed  Google Scholar 

  7. Kruger R et al (1998) Ala30Pro mutation in the gene encoding alpha-synuclein in Parkinson’s disease. Nat Genet 18(2):106–108

    Article  CAS  PubMed  Google Scholar 

  8. Zarranz JJ et al (2004) The new mutation, E46K, of alpha-synuclein causes Parkinson and Lewy body dementia. Ann Neurol 55(2):164–173

    Article  CAS  PubMed  Google Scholar 

  9. Chartier-Harlin MC et al (2004) alpha-synuclein locus duplication as a cause of familial Parkinson’s disease. Lancet 364(9440):1167–1169

    Article  CAS  PubMed  Google Scholar 

  10. Singleton AB et al (2003) α-Synuclein locus triplication causes Parkinson’s disease. Science 302(5646):841

    Article  CAS  PubMed  Google Scholar 

  11. Ross OA et al (2008) Genomic investigation of alpha-synuclein multiplication and parkinsonism. Ann Neurol 63(6):743–750

    Article  CAS  PubMed  Google Scholar 

  12. Paisan-Ruiz C et al (2004) Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron 44(4):595–600

    Article  CAS  PubMed  Google Scholar 

  13. Zimprich A et al (2004) Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron 44(4):601–607

    Article  CAS  PubMed  Google Scholar 

  14. Healy DG et al (2008) Phenotype, genotype, and worldwide genetic penetrance of LRRK2-associated Parkinson’s disease: a case-control study. Lancet Neurol 7(7):583–590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. International Parkinson Disease Genomics Consortium, Nalls MA, Plagnol V, Hernandez DG, Sharma M, Sheerin UM, Saad M et al (2011) Imputation of sequence variants for identification of genetic risks for Parkinson’s disease: a meta-analysis of genome-wide association studies. Lancet 377(9766):641–649

    Article  PubMed Central  CAS  Google Scholar 

  16. Santpere G, Ferrer I (2009) LRRK2 and neurodegeneration. Acta Neuropathol 117(3):227–246

    Article  CAS  PubMed  Google Scholar 

  17. Wider C et al (2010) Leucine-rich repeat kinase 2 gene-associated disease: redefining genotype-phenotype correlation. Neurodegener Dis 7(1–3):175–179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Ruffmann C et al (2012) Atypical tauopathy in a patient with LRRK2-G2019S mutation and tremor-dominant Parkinsonism. Neuropathol Appl Neurobiol 38(4):382–386

    Article  CAS  PubMed  Google Scholar 

  19. Ujiie S et al (2012) LRRK2 I2020T mutation is associated with tau pathology. Parkinsonism Relat Disord 18(7):819–823

    Article  PubMed  Google Scholar 

  20. Khan NL et al (2005) Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: clinical, pathological, olfactory and functional imaging and genetic data. Brain 128(Pt 12):2786–2796

    Article  PubMed  Google Scholar 

  21. Wszolek ZK et al (2004) Autosomal dominant parkinsonism associated with variable synuclein and tau pathology. Neurology 62(9):1619–1622

    Article  CAS  PubMed  Google Scholar 

  22. Marti-Masso JF et al (2009) Neuropathology of Parkinson’s disease with the R1441G mutation in LRRK2. Mov Disord 24(13):1998–2001

    Article  PubMed  Google Scholar 

  23. Puschmann A et al (2012) First neuropathological description of a patient with Parkinson’s disease and LRRK2 p.N1437H mutation. Parkinsonism Relat Disord 18(4):332–338

    Article  PubMed  Google Scholar 

  24. Iwai A et al (1995) The precursor protein of non-Aβ component of Alzheimer’s disease amyloid is a presynaptic protein of the central nervous system. Neuron 14(2):467–475

    Article  CAS  PubMed  Google Scholar 

  25. Jakes R et al (1994) Identification of two distinct synucleins from human brain. FEBS Lett 345(1):27–32

    Article  CAS  PubMed  Google Scholar 

  26. Withers GS et al (1997) Delayed localization of synelfin (synuclein, NACP) to presynaptic terminals in cultured rat hippocampal neurons. Dev Brain Res 99(1):87–94

    Article  CAS  Google Scholar 

  27. Lee SJ et al (2008) alpha-Synuclein is localized in a subpopulation of rat brain synaptic vesicles. Acta Neurobiol Exp 68(4):509–515

    Google Scholar 

  28. Cabin DE et al (2002) Synaptic vesicle depletion correlates with attenuated synaptic responses to prolonged repetitive stimulation in mice lacking alpha-synuclein. J Neurosci 22(20):8797–8807

    CAS  PubMed  Google Scholar 

  29. Abeliovich A et al (2000) Mice lacking α-synuclein display functional deficits in the nigrostriatal dopamine system. Neuron 25(1):239–252

    Article  CAS  PubMed  Google Scholar 

  30. Yavich L et al (2004) Role of alpha-synuclein in presynaptic dopamine recruitment. J Neurosci 24(49):11165–11170

    Article  CAS  PubMed  Google Scholar 

  31. Scott DA et al (2010) A pathologic cascade leading to synaptic dysfunction in alpha-synuclein-induced neurodegeneration. J Neurosci 30(24):8083–8095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Nemani VM et al (2010) Increased expression of alpha-synuclein reduces neurotransmitter release by inhibiting synaptic vesicle reclustering after endocytosis. Neuron 65(1):66–79

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Lee HJ et al (2008) Assembly-dependent endocytosis and clearance of extracellular alpha-synuclein. Int J Biochem Cell Biol 40(9):1835–1849

    Article  CAS  PubMed  Google Scholar 

  34. Lee HJ et al (2008) Clearance and deposition of extracellular alpha-synuclein aggregates in microglia. Biochem Biophys Res Commun 372(3):423–428

    Article  CAS  PubMed  Google Scholar 

  35. Conway KA et al (1998) Accelerated in vitro fibril formation by a mutant alpha-synuclein linked to early-onset Parkinson disease. Nat Med 4(11):1318–1320

    Article  CAS  PubMed  Google Scholar 

  36. Tsigelny IF et al (2008) Mechanisms of hybrid oligomer formation in the pathogenesis of combined Alzheimer’s and Parkinson’s diseases. PLoS One 3(9), e3135

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Oueslati A et al (2010) Role of post-translational modifications in modulating the structure, function and toxicity of α-synuclein. Prog Brain Res 183:115–145

    Article  CAS  PubMed  Google Scholar 

  38. Taschenberger G et al (2012) Aggregation of alphaSynuclein promotes progressive in vivo neurotoxicity in adult rat dopaminergic neurons. Acta Neuropathol 123(5):671–683

    Article  CAS  PubMed  Google Scholar 

  39. Galvin JE et al (2001) Synucleinopathies. Arch Neurol 58(2):186

    Article  CAS  PubMed  Google Scholar 

  40. Conway KA et al (2000) Accelerated oligomerization by Parkinson’s disease linked α-synuclein mutants. Ann N Y Acad Sci 920(1):42–45

    Article  CAS  PubMed  Google Scholar 

  41. Lashuel HA et al (2013) The many faces of alpha-synuclein: from structure and toxicity to therapeutic target. Nat Rev Neurosci 14(1):38–48

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Braak H et al (2003) Staging of brain pathology related to sporadic Parkinson’s disease. Neurobiol Aging 24(2):197–211

    Article  PubMed  Google Scholar 

  43. Kordower JH et al (2008) Lewy body-like pathology in long-term embryonic nigral transplants in Parkinson’s disease. Nat Med 14(5):504–506

    Article  CAS  PubMed  Google Scholar 

  44. Li JY et al (2008) Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host-to-graft disease propagation. Nat Med 14(5):501–503

    Article  CAS  PubMed  Google Scholar 

  45. Desplats P et al (2009) Inclusion formation and neuronal cell death through neuron-to-neuron transmission of alpha-synuclein. Proc Natl Acad Sci U S A 106(31):13010–13015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Lee HJ et al (2005) Intravesicular localization and exocytosis of alpha-synuclein and its aggregates. J Neurosci 25(25):6016–6024

    Article  CAS  PubMed  Google Scholar 

  47. Hansen C et al (2011) alpha-Synuclein propagates from mouse brain to grafted dopaminergic neurons and seeds aggregation in cultured human cells. J Clin Invest 121(2):715–725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Greggio E et al (2008) The Parkinson disease-associated leucine-rich repeat kinase 2 (LRRK2) is a dimer that undergoes intramolecular autophosphorylation. J Biol Chem 283(24):16906–16914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Stafa K et al (2012) GTPase activity and neuronal toxicity of Parkinson’s disease-associated LRRK2 is regulated by ArfGAP1. PLoS Genet 8(2), e1002526

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Sheng Z et al (2012) Ser1292 autophosphorylation is an indicator of LRRK2 kinase activity and contributes to the cellular effects of PD mutations. Sci Transl Med 4(164):164ra161

    Article  PubMed  CAS  Google Scholar 

  51. Greggio E et al (2006) Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiol Dis 23(2):329–341

    Article  CAS  PubMed  Google Scholar 

  52. Smith WW et al (2006) Kinase activity of mutant LRRK2 mediates neuronal toxicity. Nat Neurosci 9(10):1231–1233

    Article  CAS  PubMed  Google Scholar 

  53. Smith WW et al (2005) Leucine-rich repeat kinase 2 (LRRK2) interacts with parkin, and mutant LRRK2 induces neuronal degeneration. Proc Natl Acad Sci U S A 102(51):18676–18681

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. West AB et al (2005) Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proc Natl Acad Sci U S A 102(46):16842–16847

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. West AB et al (2007) Parkinson’s disease-associated mutations in LRRK2 link enhanced GTP-binding and kinase activities to neuronal toxicity. Hum Mol Genet 16(2):223–232

    Article  CAS  PubMed  Google Scholar 

  56. Lee BD et al (2010) Inhibitors of leucine-rich repeat kinase-2 protect against models of Parkinson’s disease. Nat Med 16(9):998–1000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Lee S et al (2010) LRRK2 kinase regulates synaptic morphology through distinct substrates at the presynaptic and postsynaptic compartments of the Drosophila neuromuscular junction. J Neurosci 30(50):16959–16969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Ito G et al (2007) GTP binding is essential to the protein kinase activity of LRRK2, a causative gene product for familial Parkinson’s disease. Biochemistry 46(5):1380–1388

    Article  CAS  PubMed  Google Scholar 

  59. Guo L et al (2007) The Parkinson’s disease-associated protein, leucine-rich repeat kinase 2 (LRRK2), is an authentic GTPase that stimulates kinase activity. Exp Cell Res 313(16):3658–3670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Xiong Y et al (2010) GTPase activity plays a key role in the pathobiology of LRRK2. PLoS Genet 6(4), e1000902

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Taymans JM et al (2011) LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding. PLoS One 6(8), e23207

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Biosa A et al (2013) GTPase activity regulates kinase activity and cellular phenotypes of Parkinson’s disease-associated LRRK2. Hum Mol Genet 22(6):1140–1156

    Article  CAS  PubMed  Google Scholar 

  63. MacLeod D et al (2006) The familial Parkinsonism gene LRRK2 regulates neurite process morphology. Neuron 52(4):587–593

    Article  CAS  PubMed  Google Scholar 

  64. Plowey ED et al (2008) Role of autophagy in G2019S-LRRK2-associated neurite shortening in differentiated SH-SY5Y cells. J Neurochem 105(3):1048–1056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Moehle MS et al (2012) LRRK2 inhibition attenuates microglial inflammatory responses. J Neurosci 32(5):1602–1611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Thevenet J et al (2011) Regulation of LRRK2 expression points to a functional role in human monocyte maturation. PLoS One 6(6), e21519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Maekawa T et al (2010) Age-dependent and cell-population-restricted LRRK2 expression in normal mouse spleen. Biochem Biophys Res Commun 392(3):431–435

    Article  CAS  PubMed  Google Scholar 

  68. Moehle MS et al (2015) The G2019S LRRK2 mutation increases myeloid cell chemotactic responses and enhances LRRK2 binding to actin-regulatory proteins. Hum Mol Genet 24(15):4250–4267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Choi I et al (2015) LRRK2 G2019S mutation attenuates microglial motility by inhibiting focal adhesion kinase. Nat Commun 6:8255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Saha S et al (2009) LRRK2 modulates vulnerability to mitochondrial dysfunction in Caenorhabditis elegans. J Neurosci 29(29):9210–9218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Wang D et al (2008) Dispensable role of Drosophila ortholog of LRRK2 kinase activity in survival of dopaminergic neurons. Mol Neurodegener 3:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Andres-Mateos E et al (2009) Unexpected lack of hypersensitivity in LRRK2 knock-out mice to MPTP (1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine). J Neurosci 29(50):15846–15850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Daher JP et al (2014) Abrogation of alpha-synuclein-mediated dopaminergic neurodegeneration in LRRK2-deficient rats. Proc Natl Acad Sci U S A 111(25):9289–9294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Liu Z et al (2008) A Drosophila model for LRRK2-linked parkinsonism. Proc Natl Acad Sci U S A 105(7):2693–2698

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ng CH et al (2009) Parkin protects against LRRK2 G2019S mutant-induced dopaminergic neurodegeneration in Drosophila. J Neurosci 29(36):11257–11262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Li Y et al (2009) Mutant LRRK2(R1441G) BAC transgenic mice recapitulate cardinal features of Parkinson’s disease. Nat Neurosci 12(7):826–828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Li X et al (2010) Enhanced striatal dopamine transmission and motor performance with LRRK2 overexpression in mice is eliminated by familial Parkinson’s disease mutation G2019S. J Neurosci 30(5):1788–1797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Melrose HL et al (2010) Impaired dopaminergic neurotransmission and microtubule-associated protein tau alterations in human LRRK2 transgenic mice. Neurobiol Dis 40(3):503–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Tong Y et al (2009) R1441C mutation in LRRK2 impairs dopaminergic neurotransmission in mice. Proc Natl Acad Sci U S A 106(34):14622–14627

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Ramonet D et al (2011) Dopaminergic neuronal loss, reduced neurite complexity and autophagic abnormalities in transgenic mice expressing G2019S mutant LRRK2. PLoS One 6(4), e18568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Dusonchet J et al (2011) A rat model of progressive nigral neurodegeneration induced by the Parkinson’s disease-associated G2019S mutation in LRRK2. J Neurosci 31(3):907–912

    Article  CAS  PubMed  Google Scholar 

  82. Tsika E et al (2015) Adenoviral-mediated expression of G2019S LRRK2 induces striatal pathology in a kinase-dependent manner in a rat model of Parkinson’s disease. Neurobiol Dis 77:49–61

    Article  CAS  PubMed  Google Scholar 

  83. Walker MD et al (2014) Behavioral deficits and striatal DA signaling in LRRK2 p.G2019S transgenic rats: a multimodal investigation including PET neuroimaging. J Parkinsons Dis 4(3):483–498

    CAS  PubMed  Google Scholar 

  84. Lee JW et al (2015) Behavioral, neurochemical, and pathologic alterations in bacterial artificial chromosome transgenic G2019S leucine-rich repeated kinase 2 rats. Neurobiol Aging 36(1):505–518

    Article  CAS  PubMed  Google Scholar 

  85. Sloan M et al (2016) LRRK2 BAC transgenic rats develop progressive, L-DOPA-responsive motor impairment, and deficits in dopamine circuit function. Hum Mol Genet 25(5):951–963

    Google Scholar 

  86. Lin X et al (2009) Leucine-rich repeat kinase 2 regulates the progression of neuropathology induced by Parkinson’s-disease-related mutant alpha-synuclein. Neuron 64(6):807–827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Daher JP et al (2012) Neurodegenerative phenotypes in an A53T alpha-synuclein transgenic mouse model are independent of LRRK2. Hum Mol Genet 21(11):2420–2431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Herzig MC et al (2012) High LRRK2 levels fail to induce or exacerbate neuronal alpha-synucleinopathy in mouse brain. PLoS One 7(5), e36581

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Daher JP et al (2015) Leucine-rich Repeat Kinase 2 (LRRK2) pharmacological inhibition abates alpha-synuclein gene-induced neurodegeneration. J Biol Chem 290(32):19433–19444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Russo I et al (2015) Leucine-rich repeat kinase 2 positively regulates inflammation and down-regulates NF-kappaB p50 signaling in cultured microglia cells. J Neuroinflammation 12(1):230

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Boddu R et al (2015) Leucine-rich repeat kinase 2 deficiency is protective in rhabdomyolysis-induced kidney injury. Hum Mol Genet 24(14):4078–4093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Fuji RN et al (2015) Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Sci Transl Med 7(273):273ra215

    Article  CAS  Google Scholar 

  93. Alegre-Abarrategui J et al (2009) LRRK2 regulates autophagic activity and localizes to specific membrane microdomains in a novel human genomic reporter cellular model. Hum Mol Genet 18(21):4022–4034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Tong Y et al (2010) Loss of leucine-rich repeat kinase 2 causes impairment of protein degradation pathways, accumulation of alpha-synuclein, and apoptotic cell death in aged mice. Proc Natl Acad Sci U S A 107(21):9879–9884

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Tong Y et al (2012) Loss of leucine-rich repeat kinase 2 causes age-dependent bi-phasic alterations of the autophagy pathway. Mol Neurodegener 7:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Bravo-San Pedro JM et al (2013) The LRRK2 G2019S mutant exacerbates basal autophagy through activation of the MEK/ERK pathway. Cell Mol Life Sci 70(1):121–136

    Article  CAS  PubMed  Google Scholar 

  97. Manzoni C et al (2013) Inhibition of LRRK2 kinase activity stimulates macroautophagy. Biochim Biophys Acta 1833(12):2900–2910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Orenstein SJ et al (2013) Interplay of LRRK2 with chaperone-mediated autophagy. Nat Neurosci 16(4):394–406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Dodson MW et al (2014) Novel ethyl methanesulfonate (EMS)-induced null alleles of the Drosophila homolog of LRRK2 reveal a crucial role in endolysosomal functions and autophagy in vivo. Dis Model Mech 7(12):1351–1363

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  100. Schapansky J et al (2014) Membrane recruitment of endogenous LRRK2 precedes its potent regulation of autophagy. Hum Mol Genet 23(16):4201–4214

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Saez-Atienzar S et al (2014) The LRRK2 inhibitor GSK2578215A induces protective autophagy in SH-SY5Y cells: involvement of Drp-1-mediated mitochondrial fission and mitochondrial-derived ROS signaling. Cell Death Dis 5, e1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Pfeffer S, Aivazian D (2004) Targeting Rab GTPases to distinct membrane compartments. Nat Rev Mol Cell Biol 5(11):886–896

    Article  CAS  PubMed  Google Scholar 

  103. Shin N et al (2008) LRRK2 regulates synaptic vesicle endocytosis. Exp Cell Res 314(10):2055–2065

    Article  CAS  PubMed  Google Scholar 

  104. Kondo K et al (2011) alpha-Synuclein aggregation and transmission are enhanced by leucine-rich repeat kinase 2 in human neuroblastoma SH-SY5Y cells. Biol Pharm Bull 34(7):1078–1083

    Article  CAS  PubMed  Google Scholar 

  105. Matta S et al (2012) LRRK2 controls an EndoA phosphorylation cycle in synaptic endocytosis. Neuron 75(6):1008–1021

    Article  CAS  PubMed  Google Scholar 

  106. Guerreiro PS et al (2013) LRRK2 interactions with alpha-synuclein in Parkinson’s disease brains and in cell models. J Mol Med (Berl) 91(4):513–522

    Article  CAS  Google Scholar 

  107. MacLeod DA et al (2013) RAB7L1 interacts with LRRK2 to modify intraneuronal protein sorting and Parkinson’s disease risk. Neuron 77(3):425–439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Beilina A et al (2014) Unbiased screen for interactors of leucine-rich repeat kinase 2 supports a common pathway for sporadic and familial Parkinson disease. Proc Natl Acad Sci U S A 111(7):2626–2631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Luk KC et al (2012) Pathological alpha-synuclein transmission initiates Parkinson-like neurodegeneration in nontransgenic mice. Science 338(6109):949–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

I thank Dr. Andrew West for a critical review of this manuscript.

Conflict of Interest

The author declares no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to João Paulo Lima Daher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Daher, J.P.L. (2017). Interaction of LRRK2 and α-Synuclein in Parkinson’s Disease. In: Rideout, H. (eds) Leucine-Rich Repeat Kinase 2 (LRRK2). Advances in Neurobiology, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-49969-7_11

Download citation

Publish with us

Policies and ethics