Skip to main content

Mapping the Brain for Primary Brain Tumor Surgery

  • Chapter
  • First Online:
Malignant Brain Tumors

Abstract

Extensive resective surgery plays a major role in prolonging survival of glioma patients. However, patient’s will is not to survive as long as possible, but rather to enjoy the longest possible «normal» life. Because glioma infiltrates functional tissue, it is necessary to define resection boundaries by functional maps rather than by tumoral imaging. In this perspective, advances in brain mapping have deeply improved the surgical management of glioma patients. In this chapter, we summarize the preoperative and intraoperative methods that allows to map the brain and we review the cortical and axonal mapping of the main cognitive functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

ACEPS:

Axonal-cortical evoked potentials

CCEPs:

Cortico-cortical evoked potentials

CST:

Cortico-spinal tract

DES:

Direct electrical stimulation

DTI:

Diffusion tensor imaging

ECoG:

Electrocortiograms

HGA:

High-gamma activity

IFOF:

Inferior fronto-occipital fasciculus

PPTT:

Pyramid-palm-tree test

R-fMRI :

Rest-based fMRI

rTMS:

Repetitive transcranial magnetic stimulation

SLF:

Superior longitudinal fasciculus

SMA:

Supplementary motor area

T-fMRI:

Task-based fMRI

vPMC:

Ventral premotor cortex

VWFA:

Visual word from area

References

  1. Fernández Coello A, Moritz-Gasser S, Martino J, Martinoni M, Matsuda R, Duffau H. Selection of intraoperative tasks for awake mapping based on relationships between tumor location and functional networks. J Neurosurg. 2013;119(6):1380–94.

    Google Scholar 

  2. Diffuse Low-Grade Gliomas in Adults—Natural History, Interaction with the Brain, and New Individualized [Internet]. Springer. Hugues Duffau; [cited 2013 Dec 8]. Available from: http://www.springer.com/medicine/oncology/book/978-1-4471-2212-8.

  3. Duffau H, Mandonnet E. The, “onco-functional balance” in surgery for diffuse low-grade glioma: integrating the extent of resection with quality of life. Acta Neurochir (Wien). 2013;155(6):951–7.

    Article  Google Scholar 

  4. Gabriel M, Brennan NP, Peck KK, Holodny AI. Blood oxygen level dependent functional magnetic resonance imaging for presurgical planning. Neuroimaging Clin N Am. 2014;24(4):557–71.

    Article  PubMed  Google Scholar 

  5. Bartos R, Jech R, Vymazal J, Petrovický P, Vachata P, Hejcl A, et al. Validity of primary motor area localization with fMRI versus electric cortical stimulation: a comparative study. Acta Neurochir (Wien). 2009;151(9):1071–80.

    Article  Google Scholar 

  6. Giussani C, Roux F-E, Ojemann J, Sganzerla EP, Pirillo D, Papagno C. Is preoperative functional magnetic resonance imaging reliable for language areas mapping in brain tumor surgery? Review of language functional magnetic resonance imaging and direct cortical stimulation correlation studies. Neurosurgery. 2010;66(1):113–20.

    Article  PubMed  Google Scholar 

  7. Kuchcinski G, Mellerio C, Pallud J, Dezamis E, Turc G, Rigaux-Viodé O, et al. Three-tesla functional MR language mapping: comparison with direct cortical stimulation in gliomas. Neurology. 2015;84(6):560–8.

    Article  CAS  PubMed  Google Scholar 

  8. Mandonnet E. Intraoperative electrical mapping: advances, limitations and perspectives. In: MD PHD, editor. Brain mapping [Internet]. Springer Vienna; 2011 [cited 2016 Feb 6]. p. 101–8. Available from: http://link.springer.com/chapter/10.1007/978-3-7091-0723-2_8.

  9. Logothetis NK. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos Trans R Soc Lond B Biol Sci. 2002;357(1424):1003–37.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Ogawa H, Kamada K, Kapeller C, Hiroshima S, Prueckl R, Guger C. Rapid and minimum invasive functional brain mapping by real-time visualization of high gamma activity during awake craniotomy. World Neurosurg. 2014;82(5):912.e1–10.

    Google Scholar 

  11. Kunii N, Kamada K, Ota T, Kawai K, Saito N. Characteristic profiles of high gamma activity and blood oxygenation level-dependent responses in various language areas. Neuroimage. 2013;15(65):242–9.

    Article  Google Scholar 

  12. Biswal B, Yetkin FZ, Haughton VM, Hyde JS. Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magn Reson Med. 1995;34(4):537–41.

    Article  CAS  PubMed  Google Scholar 

  13. Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA. 2005;102(27):9673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mitchell TJ, Hacker CD, Breshears JD, Szrama NP, Sharma M, Bundy DT, et al. A novel data-driven approach to preoperative mapping of functional cortex using resting-state functional magnetic resonance imaging. Neurosurgery. 2013;73(6):969–982; discussion 982–983.

    Google Scholar 

  15. Qiu T, Yan C, Tang W, Wu J, Zhuang D, Yao C, et al. Localizing hand motor area using resting-state fMRI: validated with direct cortical stimulation. Acta Neurochir (Wien). 2014;156(12):2295–302.

    Article  Google Scholar 

  16. Keller CJ, Bickel S, Entz L, Ulbert I, Milham MP, Kelly C, et al. Intrinsic functional architecture predicts electrically evoked responses in the human brain. Proc Natl Acad Sci USA. 2011;108(25):10308–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Keller CJ, Bickel S, Honey CJ, Groppe DM, Entz L, Craddock RC, et al. Neurophysiological investigation of spontaneous correlated and anticorrelated fluctuations of the BOLD signal. J Neurosci. 2013;33(15):6333–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Picht T, Schmidt S, Brandt S, Frey D, Hannula H, Neuvonen T, et al. Preoperative functional mapping for rolandic brain tumor surgery: comparison of navigated transcranial magnetic stimulation to direct cortical stimulation. Neurosurgery. 2011;69(3):581–588; discussion 588.

    Google Scholar 

  19. Krieg SM, Shiban E, Buchmann N, Gempt J, Foerschler A, Meyer B, et al. Utility of presurgical navigated transcranial magnetic brain stimulation for the resection of tumors in eloquent motor areas. J Neurosurg. 2012;116(5):994–1001.

    Article  PubMed  Google Scholar 

  20. Krieg SM, Tarapore PE, Picht T, Tanigawa N, Houde J, Sollmann N, et al. Optimal timing of pulse onset for language mapping with navigated repetitive transcranial magnetic stimulation. Neuroimage. 2014;15(100):219–36.

    Article  Google Scholar 

  21. Picht T, Krieg SM, Sollmann N, Rösler J, Niraula B, Neuvonen T, et al. A comparison of language mapping by preoperative navigated transcranial magnetic stimulation and direct cortical stimulation during awake surgery. Neurosurgery. 2013;72(5):808–19.

    Article  PubMed  Google Scholar 

  22. Ille S, Sollmann N, Hauck T, Maurer S, Tanigawa N, Obermueller T, et al. Impairment of preoperative language mapping by lesion location: a functional magnetic resonance imaging, navigated transcranial magnetic stimulation, and direct cortical stimulation study. J Neurosurg. 2015;123(2):314–24.

    Article  PubMed  Google Scholar 

  23. Pujol S, Wells W, Pierpaoli C, Brun C, Gee J, Cheng G, et al. The DTI challenge: toward standardized evaluation of diffusion tensor imaging tractography for neurosurgery. J Neuroimaging. 2015;25(6):875–82.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Taniguchi M, Cedzich C, Schramm J. Modification of cortical stimulation for motor evoked potentials under general anesthesia: technical description. Neurosurgery. 1993;32(2):219–26.

    Article  CAS  PubMed  Google Scholar 

  25. Bello L, Riva M, Fava E, Ferpozzi V, Castellano A, Raneri F, et al. Tailoring neurophysiological strategies with clinical context enhances resection and safety and expands indications in gliomas involving motor pathways. Neuro-oncology. 2014;16(8):1110–28.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Yamao Y, Matsumoto R, Kunieda T, Arakawa Y, Kobayashi K, Usami K, et al. Intraoperative dorsal language network mapping by using single-pulse electrical stimulation. Hum Brain Mapp. 2014;35(9):4345–61.

    Article  PubMed  Google Scholar 

  27. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in human neocortex. Science. 2006;313(5793):1626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Canolty RT, Soltani M, Dalal SS, Edwards E, Dronkers NF, Nagarajan SS, et al. Spatiotemporal dynamics of word processing in the human brain. Front Neurosci. 2007;1(1):185–96.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Edwards E, Nagarajan SS, Dalal SS, Canolty RT, Kirsch HE, Barbaro NM, et al. Spatiotemporal imaging of cortical activation during verb generation and picture naming. Neuroimage. 2010;50(1):291–301.

    Article  PubMed  Google Scholar 

  30. Mainy N, Jung J, Baciu M, Kahane P, Schoendorff B, Minotti L, et al. Cortical dynamics of word recognition. Hum Brain Mapp. 2008;29(11):1215–30.

    Article  PubMed  Google Scholar 

  31. Pei X, Leuthardt EC, Gaona CM, Brunner P, Wolpaw JR, Schalk G. Spatiotemporal dynamics of electrocorticographic high gamma activity during overt and covert word repetition. Neuroimage. 2011;54(4):2960–72.

    Article  PubMed  Google Scholar 

  32. Pallud J. A concept car or an all-road car to drive all along glioma resection? World Neurosurg. 2015;84(1):187.

    Article  PubMed  Google Scholar 

  33. Bakken HE, Kawasaki H, Oya H, Greenlee JDW, Howard MA. A device for cooling localized regions of human cerebral cortex. Technical note. J Neurosurg. 2003;99(3):604–8.

    Article  PubMed  Google Scholar 

  34. Lüders HO, Dinner DS, Morris HH, Wyllie E, Comair YG. Cortical electrical stimulation in humans. The negative motor areas. Adv Neurol. 1995;67:115–29.

    PubMed  Google Scholar 

  35. Mikuni N, Ohara S, Ikeda A, Hayashi N, Nishida N, Taki J, et al. Evidence for a wide distribution of negative motor areas in the perirolandic cortex. Clin Neurophysiol. 2006;117(1):33–40.

    Article  PubMed  Google Scholar 

  36. Filevich E, Kühn S, Haggard P. Negative motor phenomena in cortical stimulation: implications for inhibitory control of human action. Cortex. 2012;48(10):1251–61.

    Article  PubMed  Google Scholar 

  37. Martino J, Gabarrós A, Deus J, Juncadella M, Acebes JJ, Torres A, et al. Intrasurgical mapping of complex motor function in the superior frontal gyrus. Neuroscience. 2011;14(179):131–42.

    Article  CAS  Google Scholar 

  38. Brindley GS, Lewin WS. The visual sensations produced by electrical stimulation of the medial occipital cortex. J Physiol (Lond). 1968;194(2):54–5.

    CAS  Google Scholar 

  39. Mandonnet E, Sarubbo S, Duffau H. Proposal of an optimized strategy for intraoperative testing of speech and language during awake mapping. Neurosurgical Review. In Press.

    Google Scholar 

  40. Indefrey P, Levelt WJM. The spatial and temporal signatures of word production components. Cognition. 2004;92(1–2):101–44.

    Article  CAS  PubMed  Google Scholar 

  41. Duffau H, Moritz-Gasser S, Mandonnet E. A re-examination of neural basis of language processing: Proposal of a dynamic hodotopical model from data provided by brain stimulation mapping during picture naming. Brain Lang. 2013.

    Google Scholar 

  42. Duffau H. Stimulation mapping of white matter tracts to study brain functional connectivity. Nat Rev Neurol. 2015;11(5):255–65.

    Article  PubMed  Google Scholar 

  43. Tate MC, Herbet G, Moritz-Gasser S, Tate JE, Duffau H. Probabilistic map of critical functional regions of the human cerebral cortex: Broca’s area revisited. Brain. 2014.

    Google Scholar 

  44. Ojemann GA. Individual variability in cortical localization of language. J Neurosurg. 1979;50(2):164–9.

    Article  CAS  PubMed  Google Scholar 

  45. Vigneau M, Beaucousin V, Hervé PY, Duffau H, Crivello F, Houdé O, et al. Meta-analyzing left hemisphere language areas: phonology, semantics, and sentence processing. Neuroimage. 2006;30(4):1414–32.

    Article  CAS  PubMed  Google Scholar 

  46. Gatignol P, Capelle L, Le Bihan R, Duffau H. Double dissociation between picture naming and comprehension: an electrostimulation study. NeuroReport. 2004;15(1):191–5.

    Article  PubMed  Google Scholar 

  47. Bello L, Gallucci M, Fava M, Carrabba G, Giussani C, Acerbi F, et al. Intraoperative subcortical language tract mapping guides surgical removal of gliomas involving speech areas. Neurosurgery. 2007;60(1):67–80; discussion 80–82.

    Google Scholar 

  48. Teichmann M, Rosso C, Martini J-B, Bloch I, Brugières P, Duffau H, et al. A cortical-subcortical syntax pathway linking Broca’s area and the striatum. Hum Brain Mapp. 2015;36(6):2270–83.

    Article  PubMed  Google Scholar 

  49. De Witte E, Mariën P. The neurolinguistic approach to awake surgery reviewed. Clin Neurol Neurosurg. 2013;115(2):127–45.

    Article  PubMed  Google Scholar 

  50. Rofes A, Miceli G. Language mapping with verbs and sentences in awake surgery: a review. Neuropsychol Rev. 2014;24(2):185–99.

    Article  PubMed  Google Scholar 

  51. Talacchi A, Santini B, Casartelli M, Monti A, Capasso R, Miceli G. Awake surgery between art and science. Part II: language and cognitive mapping. Funct Neurol. 2013;28(3):223–39.

    PubMed  PubMed Central  Google Scholar 

  52. De Witte E, Satoer D, Robert E, Colle H, Verheyen S, Visch-Brink E, et al. The Dutch Linguistic Intraoperative Protocol: a valid linguistic approach to awake brain surgery. Brain Lang. 2015;140:35–48.

    Article  PubMed  Google Scholar 

  53. Rofes A, de Aguiar V, Miceli G. A minimal standardization setting for language mapping tests: an Italian example. Neurol Sci. 2015;36(7):1113–9.

    Article  PubMed  Google Scholar 

  54. Papagno C, Casarotti A, Comi A, Pisoni A, Lucchelli F, Bizzi A, et al. Long-term proper name anomia after removal of the uncinate fasciculus. Brain Struct Funct. 2014.

    Google Scholar 

  55. Papagno C, Miracapillo C, Casarotti A, Romero Lauro LJ, Castellano A, Falini A, et al. What is the role of the uncinate fasciculus? Surgical removal and proper name retrieval. Brain. 2011;134(Pt 2):405–14.

    Article  PubMed  Google Scholar 

  56. Roux F-E, Trémoulet M. Organization of language areas in bilingual patients: a cortical stimulation study. J Neurosurg. 2002;97(4):857–64.

    Article  PubMed  Google Scholar 

  57. Giussani C, Roux F-E, Lubrano V, Gaini SM, Bello L. Review of language organisation in bilingual patients: what can we learn from direct brain mapping? Acta Neurochir (Wien). 2007;149(11):1109–1116; discussion 1116.

    Google Scholar 

  58. Lucas TH, McKhann GM, Ojemann GA. Functional separation of languages in the bilingual brain: a comparison of electrical stimulation language mapping in 25 bilingual patients and 117 monolingual control patients. J Neurosurg. 2004;101(3):449–57.

    Article  PubMed  Google Scholar 

  59. Walker JA, Quiñones-Hinojosa A, Berger MS. Intraoperative speech mapping in 17 bilingual patients undergoing resection of a mass lesion. Neurosurgery. 2004;54(1):113–117; discussion 118.

    Google Scholar 

  60. Bello L, Acerbi F, Giussani C, Baratta P, Taccone P, Songa V, et al. Intraoperative language localization in multilingual patients with gliomas. Neurosurgery. 2006;59(1):115–125; discussion 115–125.

    Google Scholar 

  61. Gaillard R, Naccache L, Pinel P, Clémenceau S, Volle E, Hasboun D, et al. Direct intracranial, FMRI, and lesion evidence for the causal role of left inferotemporal cortex in reading. Neuron. 2006;50(2):191–204.

    Article  CAS  PubMed  Google Scholar 

  62. Gil-Robles S, Carvallo A, Jimenez MDM, Gomez Caicoya A, Martinez R, Ruiz-Ocaña C, et al. Double dissociation between visual recognition and picture naming: a study of the visual language connectivity using tractography and brain stimulation. Neurosurgery. 2013;72(4):678–86.

    Article  PubMed  Google Scholar 

  63. Mandonnet E, Gatignol P, Duffau H. Evidence for an occipito-temporal tract underlying visual recognition in picture naming. Clin Neurol Neurosurg. 2009;111(7):601–5.

    Article  PubMed  Google Scholar 

  64. Roux F-E, Durand J-B, Jucla M, Réhault E, Reddy M, Démonet J-F. Segregation of lexical and sub-lexical reading processes in the left perisylvian cortex. PLoS ONE. 2012;7(11):e50665.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Roux F-E, Lubrano V, Lauwers-Cances V, Trémoulet M, Mascott CR, Démonet J-F. Intra-operative mapping of cortical areas involved in reading in mono- and bilingual patients. Brain. 2004;127(Pt 8):1796–810.

    Article  PubMed  Google Scholar 

  66. Milea D, Lobel E, Lehéricy S, Duffau H, Rivaud-Péchoux S, Berthoz A, et al. Intraoperative frontal eye field stimulation elicits ocular deviation and saccade suppression. NeuroReport. 2002;13(10):1359–64.

    Article  PubMed  Google Scholar 

  67. Hoffman P, Lambon Ralph MA, Woollams AM. Triangulation of the neurocomputational architecture underpinning reading aloud. Proc Natl Acad Sci USA. 2015;112(28):E3719–28.

    Google Scholar 

  68. Thiebaut de Schotten M, Urbanski M, Duffau H, Volle E, Lévy R, Dubois B, et al. Direct evidence for a parietal-frontal pathway subserving spatial awareness in humans. Science. 2005;309(5744):2226–8.

    Article  CAS  PubMed  Google Scholar 

  69. Roux F-E, Dufor O, Lauwers-Cances V, Boukhatem L, Brauge D, Draper L, et al. Electrostimulation mapping of spatial neglect. Neurosurgery. 2011;69(6):1218–31.

    Article  PubMed  Google Scholar 

  70. Vallar G, Bello L, Bricolo E, Castellano A, Casarotti A, Falini A, et al. Cerebral correlates of visuospatial neglect: a direct cerebral stimulation study. Hum Brain Mapp. 2014;35(4):1334–50.

    Article  PubMed  Google Scholar 

  71. Dehaene S, Piazza M, Pinel P, Cohen L. Three parietal circuits for number processing. Cogn Neuropsychol. 2003;20(3):487–506.

    Article  PubMed  Google Scholar 

  72. Whalen J, McCloskey M, Lesser RP, Gordon B. Localizing arithmetic processes in the brain: evidence from a transient deficit during cortical stimulation. J Cogn Neurosci. 1997;9(3):409–17.

    Article  CAS  PubMed  Google Scholar 

  73. Duffau H, Denvil D, Lopes M, Gasparini F, Cohen L, Capelle L, et al. Intraoperative mapping of the cortical areas involved in multiplication and subtraction: an electrostimulation study in a patient with a left parietal glioma. J Neurol Neurosurg Psychiatr. 2002;73(6):733–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Pu S, Li Y, Wu C, Wang Y, Zhou X, Jiang T. Cortical areas involved in numerical processing: an intraoperative electrostimulation study. Stereotact Funct Neurosurg. 2011;89(1):42–7.

    Article  PubMed  Google Scholar 

  75. Yu X, Chen C, Pu S, Wu C, Li Y, Jiang T, et al. Dissociation of subtraction and multiplication in the right parietal cortex: evidence from intraoperative cortical electrostimulation. Neuropsychologia. 2011;49(10):2889–95.

    Article  PubMed  Google Scholar 

  76. Roux F-E, Boetto S, Sacko O, Chollet F, Trémoulet M. Writing, calculating, and finger recognition in the region of the angular gyrus: a cortical stimulation study of Gerstmann syndrome. J Neurosurg. 2003;99(4):716–27.

    Article  PubMed  Google Scholar 

  77. Roux F-E, Boukhatem L, Draper L, Sacko O, Démonet J-F. Cortical calculation localization using electrostimulation. J Neurosurg. 2009;110(6):1291–9.

    Article  PubMed  Google Scholar 

  78. Herbet G, Lafargue G, Bonnetblanc F, Moritz-Gasser S. Menjot de Champfleur N, Duffau H. Inferring a dual-stream model of mentalizing from associative white matter fibres disconnection. Brain. 2014;137(Pt 3):944–59.

    Article  PubMed  Google Scholar 

  79. Giussani C, Pirillo D, Roux F-E. Mirror of the soul: a cortical stimulation study on recognition of facial emotions. J Neurosurg. 2010;112(3):520–7.

    Article  PubMed  Google Scholar 

  80. Herbet G, Lafargue G, Moritz-Gasser S, Bonnetblanc F, Duffau H. Interfering with the neural activity of mirror-related frontal areas impairs mentalistic inferences. Brain Struct Funct. 2015;220(4):2159–69.

    Article  PubMed  Google Scholar 

  81. Herbet G, Lafargue G, Bonnetblanc F, Moritz-Gasser S, Duffau H. Is the right frontal cortex really crucial in the mentalizing network? A longitudinal study in patients with a slow-growing lesion. Cortex. 2013;49(10):2711–27.

    Article  PubMed  Google Scholar 

  82. Desmurget M, Reilly KT, Richard N, Szathmari A, Mottolese C, Sirigu A. Movement intention after parietal cortex stimulation in humans. Science. 2009;324(5928):811–3.

    Article  CAS  PubMed  Google Scholar 

  83. Knight J. An out of body experience. Nature. 2002;419(6903):106–7.

    Article  CAS  PubMed  Google Scholar 

  84. Herbet G, Lafargue G, de Champfleur NM, Moritz-Gasser S, le Bars E, Bonnetblanc F, et al. Disrupting posterior cingulate connectivity disconnects consciousness from the external environment. Neuropsychologia. 2014;56:239–44.

    Article  PubMed  Google Scholar 

  85. Shiban E, Krieg SM, Obermueller T, Wostrack M, Meyer B, Ringel F. Continuous subcortical motor evoked potential stimulation using the tip of an ultrasonic aspirator for the resection of motor eloquent lesions. J Neurosurg. 2015;123(2):301–6.

    Article  PubMed  Google Scholar 

  86. Raabe A, Beck J, Schucht P, Seidel K. Continuous dynamic mapping of the corticospinal tract during surgery of motor eloquent brain tumors: evaluation of a new method. J Neurosurg. 2014;120(5):1015–24.

    Article  PubMed  Google Scholar 

  87. Schucht P, Moritz-Gasser S, Herbet G, Raabe A, Duffau H. Subcortical electrostimulation to identify network subserving motor control. Hum Brain Mapp. 2013;34(11):3023–30.

    Article  PubMed  Google Scholar 

  88. Rech F, Herbet G, Moritz-Gasser S, Duffau H. Disruption of bimanual movement by unilateral subcortical electrostimulation. Hum Brain Mapp. 2013.

    Google Scholar 

  89. Rech F, Herbet G, Moritz-Gasser S, Duffau H. Somatotopic organization of the white matter tracts underpinning motor control in humans: an electrical stimulation study. Brain Struct Funct. 2015.

    Google Scholar 

  90. Duffau H, Capelle L, Sichez N, Denvil D, Lopes M, Sichez J-P, et al. Intraoperative mapping of the subcortical language pathways using direct stimulations. An anatomo-functional study. Brain. 2002;125(Pt 1):199–214.

    Article  PubMed  Google Scholar 

  91. Hickok G, Poeppel D. Dorsal and ventral streams: a framework for understanding aspects of the functional anatomy of language. Cognition. 2004;92(1–2):67–99.

    Article  PubMed  Google Scholar 

  92. Catani M, Howard RJ, Pajevic S, Jones DK. Virtual in vivo interactive dissection of white matter fasciculi in the human brain. Neuroimage. 2002;17(1):77–94.

    Article  PubMed  Google Scholar 

  93. Martino J, Brogna C, Robles SG, Vergani F, Duffau H. Anatomic dissection of the inferior fronto-occipital fasciculus revisited in the lights of brain stimulation data. Cortex. 2010;46(5):691–9.

    Article  PubMed  Google Scholar 

  94. Sarubbo S, De Benedictis A, Maldonado IL, Basso G, Duffau H. Frontal terminations for the inferior fronto-occipital fascicle: anatomical dissection, DTI study and functional considerations on a multi-component bundle. Brain Struct Funct. 2013;218(1):21–37.

    Article  PubMed  Google Scholar 

  95. Catani M, Dell’acqua F, Vergani F, Malik F, Hodge H, Roy P, et al. Short frontal lobe connections of the human brain. Cortex. 2012;48(2):273–91.

    Google Scholar 

  96. Ford A, McGregor KM, Case K, Crosson B, White KD. Structural connectivity of Broca’s area and medial frontal cortex. Neuroimage. 2010;52(4):1230–7.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Kinoshita M, Shinohara H, Hori O, Ozaki N, Ueda F, Nakada M, et al. Association fibers connecting the Broca center and the lateral superior frontal gyrus: a microsurgical and tractographic anatomy. J Neurosurg. 2012;116(2):323–30.

    Article  PubMed  Google Scholar 

  98. Makris N, Preti MG, Asami T, Pelavin P, Campbell B, Papadimitriou GM, et al. Human middle longitudinal fascicle: variations in patterns of anatomical connections. Brain Struct Funct. 2013;218(4):951–68.

    Article  CAS  PubMed  Google Scholar 

  99. Makris N, Preti MG, Wassermann D, Rathi Y, Papadimitriou GM, Yergatian C, et al. Human middle longitudinal fascicle: segregation and behavioral-clinical implications of two distinct fiber connections linking temporal pole and superior temporal gyrus with the angular gyrus or superior parietal lobule using multi-tensor tractography. Brain Imaging Behav. 2013;7(3):335–52.

    Article  CAS  PubMed  Google Scholar 

  100. Makris N, Papadimitriou GM, Kaiser JR, Sorg S, Kennedy DN, Pandya DN. Delineation of the middle longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2009;19(4):777–85.

    Article  PubMed  Google Scholar 

  101. Maldonado IL, de Champfleur NM, Velut S, Destrieux C, Zemmoura I, Duffau H. Evidence of a middle longitudinal fasciculus in the human brain from fiber dissection. J Anat. 2013;223(1):38–45.

    Article  PubMed  PubMed Central  Google Scholar 

  102. Makris N, Kennedy DN, McInerney S, Sorensen AG, Wang R, Caviness VS, et al. Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. Cereb Cortex. 2005;15(6):854–69.

    Article  PubMed  Google Scholar 

  103. Maldonado IL, Mandonnet E, Duffau H. Dorsal fronto-parietal connections of the human brain: a fiber dissection study of their composition and anatomical relationships. Anat Rec (Hoboken). 2012;295(2):187–95.

    Article  Google Scholar 

  104. Yagmurlu K, Middlebrooks EH, Tanriover N, Rhoton AL. Fiber tracts of the dorsal language stream in the human brain. J Neurosurg. 2015;20:1–10.

    Google Scholar 

  105. Forkel SJ, Thiebaut de Schotten M, Kawadler JM, Dell’Acqua F, Danek A, Catani M. The anatomy of fronto-occipital connections from early blunt dissections to contemporary tractography. Cortex. 2014;56:73–84.

    Google Scholar 

  106. Ius T, Angelini E. Thiebaut de Schotten M, Mandonnet E, Duffau H. Evidence for potentials and limitations of brain plasticity using an atlas of functional resectability of WHO grade II gliomas: towards a “minimal common brain”. Neuroimage. 2011;56(3):992–1000.

    Article  PubMed  Google Scholar 

  107. Sarubbo S, De Benedictis A, Merler S, Mandonnet E, Balbi S, Granieri E, et al. Towards a functional atlas of human white matter. Hum Brain Mapp. 2015;36(8):3117–36.

    Article  PubMed  Google Scholar 

  108. Maldonado IL, Moritz-Gasser S, Duffau H. Does the left superior longitudinal fascicle subserve language semantics? A brain electrostimulation study. Brain Struct Funct. 2011;216(3):263–74.

    Article  PubMed  Google Scholar 

  109. Maldonado IL, Moritz-Gasser S, de Champfleur NM, Bertram L, Moulinié G, Duffau H. Surgery for gliomas involving the left inferior parietal lobule: new insights into the functional anatomy provided by stimulation mapping in awake patients. J Neurosurg. 2011;115(4):770–9.

    Article  PubMed  Google Scholar 

  110. Duffau H, Gatignol P, Mandonnet E, Peruzzi P, Tzourio-Mazoyer N, Capelle L. New insights into the anatomo-functional connectivity of the semantic system: a study using cortico-subcortical electrostimulations. Brain. 2005;128(Pt 4):797–810.

    Article  PubMed  Google Scholar 

  111. Khan OH, Herbet G, Moritz-Gasser S, Duffau H. The role of left inferior fronto-occipital fascicle in verbal perseveration: a brain electrostimulation mapping study. Brain Topogr. 2013.

    Google Scholar 

  112. Hickok G, Poeppel D. The cortical organization of speech processing. Nat Rev Neurosci. 2007;8(5):393–402.

    Article  CAS  PubMed  Google Scholar 

  113. Duffau H, Gatignol P, Denvil D, Lopes M, Capelle L. The articulatory loop: study of the subcortical connectivity by electrostimulation. NeuroReport. 2003;14(15):2005–8.

    Article  PubMed  Google Scholar 

  114. Kemerdere R, de Champfleur NM, Deverdun J, Cochereau J, Moritz-Gasser S, Herbet G, et al. Role of the left frontal aslant tract in stuttering: a brain stimulation and tractographic study. J Neurol. 2015.

    Google Scholar 

  115. Kinoshita M, de Champfleur NM, Deverdun J, Moritz-Gasser S, Herbet G, Duffau H. Role of fronto-striatal tract and frontal aslant tract in movement and speech: an axonal mapping study. Brain Struct Funct. 2014.

    Google Scholar 

  116. Zemmoura I, Herbet G, Moritz-Gasser S, Duffau H. New insights into the neural network mediating reading processes provided by cortico-subcortical electrical mapping. Hum Brain Mapp. 2015;36(6):2215–30.

    Article  PubMed  Google Scholar 

  117. Goga C, Türe U. The anatomy of Meyer’s loop revisited: changing the anatomical paradigm of the temporal loop based on evidence from fiber microdissection. J Neurosurg. 2015;122(6):1253–62.

    Article  PubMed  Google Scholar 

  118. Sarubbo S, De Benedictis A, Milani P, Paradiso B, Barbareschi M, Rozzanigo U, et al. The course and the anatomo-functional relationships of the optic radiation: a combined study with “post mortem” dissections and “in vivo” direct electrical mapping. J Anat. 2015;226(1):47–59.

    Article  PubMed  Google Scholar 

  119. Sincoff EH, Tan Y, Abdulrauf SI. White matter fiber dissection of the optic radiations of the temporal lobe and implications for surgical approaches to the temporal horn. J Neurosurg. 2004;101(5):739–46.

    Article  PubMed  Google Scholar 

  120. Rubino PA, Rhoton AL, Tong X, Oliveira E de. Three-dimensional relationships of the optic radiation. Neurosurgery. 2005;57(4 Suppl.):219–27; discussion 219–227.

    Google Scholar 

  121. Ebeling U, Reulen HJ. Neurosurgical topography of the optic radiation in the temporal lobe. Acta Neurochir (Wien). 1988;92(1–4):29–36.

    Article  CAS  Google Scholar 

  122. Gras-Combe G, Moritz-Gasser S, Herbet G, Duffau H. Intraoperative subcortical electrical mapping of optic radiations in awake surgery for glioma involving visual pathways. J Neurosurg. 2012;117(3):466–73.

    Article  PubMed  Google Scholar 

  123. Corbetta M, Kincade MJ, Lewis C, Snyder AZ, Sapir A. Neural basis and recovery of spatial attention deficits in spatial neglect. Nat Neurosci. 2005;8(11):1603–10.

    Article  CAS  PubMed  Google Scholar 

  124. Della Puppa A, De Pellegrin S, Lazzarini A, Gioffrè G, Rustemi O, Cagnin A, et al. Subcortical mapping of calculation processing in the right parietal lobe. J Neurosurg. 2015;122(5):1038–41.

    Google Scholar 

  125. Wilson SM, Lam D, Babiak MC, Perry DW, Shih T, Hess CP, et al. Transient aphasias after left hemisphere resective surgery. J Neurosurg. 2015;123(3):581–93.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Bartolo M, Zucchella C, Pace A, Lanzetta G, Vecchione C, Bartolo M, et al. Early rehabilitation after surgery improves functional outcome in inpatients with brain tumours. J Neurooncol. 2012;107(3):537–44.

    Article  PubMed  Google Scholar 

  127. Zucchella C, Capone A, Codella V, De Nunzio AM, Vecchione C, Sandrini G, et al. Cognitive rehabilitation for early post-surgery inpatients affected by primary brain tumor: a randomized, controlled trial. J Neurooncol. 2013;114(1):93–100.

    Article  CAS  PubMed  Google Scholar 

  128. Martino J, Taillandier L, Moritz-Gasser S, Gatignol P, Duffau H. Re-operation is a safe and effective therapeutic strategy in recurrent WHO grade II gliomas within eloquent areas. Acta Neurochir (Wien). 2009;151(5):427–36; discussion 436.

    Google Scholar 

  129. Southwell DG, Hervey-Jumper SL, Perry DW, Berger MS. Intraoperative mapping during repeat awake craniotomy reveals the functional plasticity of adult cortex. J Neurosurg. 2015;6:1–10.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hugues Duffau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Mandonnet, E., Duffau, H. (2017). Mapping the Brain for Primary Brain Tumor Surgery. In: Moliterno Gunel, J., Piepmeier, J., Baehring, J. (eds) Malignant Brain Tumors . Springer, Cham. https://doi.org/10.1007/978-3-319-49864-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49864-5_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49863-8

  • Online ISBN: 978-3-319-49864-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics