Skip to main content

Pharmacokinetic–Pharmacodynamic Modelling of Anesthetic Drugs

  • Chapter
  • First Online:
Total Intravenous Anesthesia and Target Controlled Infusions

Abstract

The aim of pharmacokinetic–pharmacodynamic (PKPD) modelling is to be able to predict the time course of clinical effect resulting from different drug administration regimens and to predict the influence of various factors such as body weight, age, gender, underlying pathology and co-medication, on the clinical effect.

In this chapter, the general principles of PKPD modelling are described and explained. An overview of PKPD modelling of drugs used in anaesthesia and examples of their application in clinical anaesthetic practice are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Minto CF, Schnider TW. Contributions of PK/PD modeling to intravenous anesthesia. Clin Pharmacol Ther. 2008;84:27–38.

    Article  CAS  PubMed  Google Scholar 

  2. Sadean MR, Glass PSA. Pharmacokinetic–pharmacodynamic modeling in anesthesia, intensive care and pain medicine. Curr Opin Anaesthesiol. 2009;22:463–8.

    Article  PubMed  Google Scholar 

  3. Bouillon TW. Hypnotic and opioid anesthetic drug interactions on the CNS, focus on response surface modelling, modern anesthetics. In: Schuttler J, Schwilden H, editors. Handbook of experimental pharmacology, vol. 182. Berlin Heidelberg: Springer; 2008. p. 471–875.

    Google Scholar 

  4. Vereecke HEM, Proost JH, Eleveld DJ, Struys MMRF. Drug interactions in anesthesia. In: Johnson K, editor. Clinical pharmacology for anesthesiology. McGraw-Hill Education; 2015. ISBN-13: 978-0071736169 ISBN-10: 0071736166.

    Google Scholar 

  5. Rowland M, Tozer T. Clinical pharmacokinetics and pharmacodynamics: concepts and applications. 4th ed. Philadelphia: Lippincott Williams and Wilkins; 2010.

    Google Scholar 

  6. Bonate PL. Pharmacokinetic-pharmacodynamic modeling and simulation. 2nd ed. New York: Springer; 2011. ISBN 978-1-4419-9484-4.

    Book  Google Scholar 

  7. Levitt DG, Schnider TW. Human physiologically based pharmacokinetic model for propofol. BMC Anesthesiol. 2005;5:4. doi:10.1186/1471-2253-5-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Masui K, Upton RN, Doufas AG, Coutzee JF, Kazama T, Mortier EP, Struys MMRF. The performance of compartmental and physiologically based recirculatory pharmacokinetic models for propofol: a comparison using bolus, continuous, and target-controlled infusion data. Anesth Analg. 2010;111(2):368–79.

    Article  CAS  PubMed  Google Scholar 

  9. Edginton AN, Theil FP, Schmitt W, Willmann S. Whole body physiologically-based pharmacokinetic models: their use in clinical drug development. Expert Opin Drug Metab Toxicol. 2008;4(9):1143–52.

    Article  CAS  PubMed  Google Scholar 

  10. Nestorov I. Whole-body physiologically based pharmacokinetic models. Expert Opin Drug Metab Toxicol. 2007;3(2):235–49.

    Article  CAS  PubMed  Google Scholar 

  11. Rostami-Hodjegan A. Physiologically based pharmacokinetics joined with in vitro–in vivo extrapolation of ADME: a marriage under the arch of systems pharmacology. Clin Pharmacol Ther. 2012;92(1):50–61.

    Article  CAS  PubMed  Google Scholar 

  12. Avram MJ, Krejcie TC. Using front-end kinetics to optimize target-controlled drug infusions. Anesthesiology. 2003;99:1078–86.

    Article  PubMed  Google Scholar 

  13. Krejcie TC, Henthorn TK, Niemann CU, Klein C, Gupta DK, Gentry WB, Shanks CA, Avram MJ. Recirculatory pharmacokinetic models of blood, extracellular fluid and total body water administered concomitantly. J Pharmacol Exp Ther. 1996;278:1050–7.

    CAS  PubMed  Google Scholar 

  14. Struys MMRF, Coppens MJ, De Neve N, Mortier EP, Doufas AG, Van Bocxlaer JFP, Shafer SL. Influence of administration rate on propofol plasma-effect site equilibration. Anesthesiology. 2007;107(3):386–96.

    Article  CAS  PubMed  Google Scholar 

  15. Beaufort TM, Proost JH, Kuizenga K, Houwertjes MC, Kleef UW, Wierda JMKH. Do plasma concentrations obtained from early arterial blood sampling improve pharmacokinetic/pharmacodynamic modeling? J Pharmacokinet Biopharm. 1999;27(2):173–90.

    Article  CAS  PubMed  Google Scholar 

  16. Ducharme J, Varin F, Bevan DR, Donati F. Importance of early blood sampling on vecuronium pharmacokinetic and pharmacodynamic parameters. Clin Pharmacokinet. 2003;24(6):507–18.

    Article  Google Scholar 

  17. Chiou WL. The phenomenon and rationale of marked dependence of drug concentration on blood sampling site. Implications in pharmacokinetics, pharmacodynamics, toxicology and therapeutics (Part I). Clin Pharmacokinet. 1989;17(3):175–99.

    Article  CAS  PubMed  Google Scholar 

  18. Donati F, Varin F, Ducharme J, Gill SS, Théorêt Y, Bevan DR. Pharmacokinetics and pharmacodynamics of atracurium obtained with arterial and venous blood samples. Clin Pharmacol Ther. 1991;49(5):515–22.

    Article  CAS  PubMed  Google Scholar 

  19. Hermann DJ, Egan TD, Muir KT. Influence of arteriovenous sampling on remifentanil pharmacokinetics and pharmacodynamics. Clin Pharmacol Ther. 1999;65(5):511–8.

    Article  CAS  PubMed  Google Scholar 

  20. Levitt DG. Physiologically based pharmacokinetic modeling of arterial—antecubital vein concentration difference. BMC Clin Pharmacol. 2004;4:2.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Olofsen E, Mooren R, van Dorp E, Aarts L, Smith T, den Hartigh J, Dahan A, Sarton E. Arterial and venous pharmacokinetics of morphine-6-glucuronide and impact of sample site on pharmacodynamic parameter estimates. Anesth Analg. 2010;111(3):626–32.

    Article  CAS  PubMed  Google Scholar 

  22. Weaver BMQ, Staddon GE, Raptopoulos D, Mapleson WW. Partitioning of propofol between blood cells, plasma and deproteinised plasma in sheep. J Vet Anaesth. 1998;25(1):19–23.

    Article  CAS  Google Scholar 

  23. Benet LZ, Hoener B. Changes in plasma protein binding have little clinical relevance. Clin Pharmacol Ther. 2002;71(3):115–21.

    Article  CAS  PubMed  Google Scholar 

  24. Heuberger J, Schmidt S, Derendorf H. When is protein binding important? J Pharm Sci. 2013;102(9):3458–67.

    Article  CAS  PubMed  Google Scholar 

  25. Roberts JA, Pea F, Lipman J. The clinical relevance of plasma protein binding changes. Clin Pharmacokinet. 2013;52:1–8.

    Article  CAS  PubMed  Google Scholar 

  26. Hiraoka H, Yamamoto K, Okano N, Morita T, Goto F, Horiuchi R. Changes in drug plasma concentrations of an extensively bound and highly extracted drug, propofol, in response to altered plasma binding. Clin Pharmacol Ther. 2004;75(4):324–30.

    Article  CAS  PubMed  Google Scholar 

  27. Mazoit JX, Samii K. Binding of propofol to blood components: implications for pharmacokinetics and for pharmacodynamics. Br J Clin Pharmacol. 1999;47(1):35–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suarez E, Calvo R, Zamacona MK, Lukas J. Binding of propofol to blood components. Br J Clin Pharmacol. 2000;49(4):380–1.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sheiner LB, Stanski DR, Vozeh S, Miller RD, Ham J. Simultaneous modeling of pharmacokinetics and pharmacodynamics: application to d tubocurarine. Clin Pharmacol Ther. 1979;25:358–71.

    Article  CAS  PubMed  Google Scholar 

  30. Holford NHG, Sheiner LB. Understanding the dose effect relationship: clinical application of pharmacokinetic-pharmacodynamic models. Clin Pharmacokinet. 1981;6:429–53.

    Article  CAS  PubMed  Google Scholar 

  31. Schiere S, Proost JH, Roggeveld J, Wierda JMKH. An interstitial compartment is necessary to link the pharmacokinetics and pharmacodynamics of mivacurium. Eur J Anaesthesiol. 2004;21(11):882–91.

    Article  CAS  PubMed  Google Scholar 

  32. Manyam SC, Gupta DK, Johnson KB, White JL, Pace NL, Westenskow DR, Egan TD. Opioid-volatile anesthetic synergy: a response surface model with remifentanil and sevoflurane as prototypes. Anesthesiology. 2006;105(2):267–78.

    Article  CAS  PubMed  Google Scholar 

  33. Goutelle S, Maurin M, Rougier F, Barbaut X, Bourguignon L, Ducher M, Maire P. The Hill equation: a review of its capabilities in pharmacological modelling. Fundam Clin Pharmacol. 2008;22(6):633–48.

    Article  CAS  PubMed  Google Scholar 

  34. Minto CF, Schnider TW, Short TG, Gregg KM, Gentilini A, Shafer SL. Response surface model for anesthetic drug interactions. Anesthesiology. 2000;92:1603–16.

    Article  CAS  PubMed  Google Scholar 

  35. Greco WR, Bravo GO, Parsons JC. The search for synergy: a critical review from a response surface perspective. Pharmacol Rev. 1995;47(2):331–85.

    CAS  PubMed  Google Scholar 

  36. Greco WR, Park HS, Rustum YM. Application of a new approach for the quantitation of drug synergism to the combination of cis-diamminedichloroplatinum and 1-beta-D-arabinofuranosylcytosine. Cancer Res. 1990;50:5318–27.

    CAS  PubMed  Google Scholar 

  37. Heyse B, Proost JH, Schumacher PM, Bouillon TW, Vereecke HEM, Eleveld DJ, Luginbühl M, Struys MMRF. Sevoflurane remifentanil interaction: Comparison of different response surface models. Anesthesiology. 2012;116(2):311–23.

    Article  CAS  PubMed  Google Scholar 

  38. Jonker DM, Visser SAG, van der Graaf PH, Voskuyl RA, Danhof M. Towards a mechanism-based analysis of pharmacodynamic drug–drug interactions in vivo. Pharmacol Ther. 2005;106:1–18.

    Article  CAS  PubMed  Google Scholar 

  39. Tallarida RJ. Drug synergism: its detection and applications. J Pharmacol Exp Ther. 2001;298(3):865–72.

    CAS  PubMed  Google Scholar 

  40. Bol CJ, Vogelaar JP, Tang JP, Mandema JW. Quantification of pharmacodynamic interactions between dexmedetomidine and midazolam in the rat. J Pharmacol Exp Ther. 2000;294:347–55.

    CAS  PubMed  Google Scholar 

  41. Bouillon TW, Bruhn J, Radulescu L, Andresen C, Shafer TJ, Cohane C, Shafer SL. Pharmacodynamic interaction between propofol and remifentanil regarding hypnosis, tolerance of laryngoscopy, bispectral index, and electroencephalographic approximate entropy. Anesthesiology. 2004;100:1353–72.

    Article  CAS  PubMed  Google Scholar 

  42. Luginbuhl M, Schumacher PM, Vuilleumier P, Vereecke H, Heyse B, Bouillon TW, Struys MM. Noxious stimulation response index: a novel anesthetic state index based on hypnotic-opioid interaction. Anesthesiology. 2010;112:872–80.

    Article  PubMed  Google Scholar 

  43. Fidler M, Kern SE. Flexible interaction model for complex interactions of multiple anesthetics. Anesthesiology. 2006;105(2):286–96.

    Article  PubMed  Google Scholar 

  44. Kong M, Lee JJ. A generalized response surface model with varying relative potency for assessing drug interaction. Biometrics. 2006;62:986–95.

    Article  PubMed  Google Scholar 

  45. Lee S. Drug interactions: focussing on response surface models. Korean J Anesthesiol. 2010;58(5):421–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Godfrey KR, Chapman MJ, Vajda S. Identifiability and indistinguishability of nonlinear pharmacokinetic models. J Pharmacokinet Biopharm. 1994;22:229–51.

    Article  CAS  PubMed  Google Scholar 

  47. Jacquez JA, Perry T. Parameter estimation—local identifiability of parameters. Am J Physiol. 1990;258:E727–36.

    CAS  PubMed  Google Scholar 

  48. Ludden TM, Beal SL, Sheiner LB. Comparison of the Akaike Information Criterion, the Schwarz Criterion and the F test as guides to model selection. J Pharmacokinet Biopharm. 1994;22:431–45.

    Article  CAS  PubMed  Google Scholar 

  49. Eleveld DJ, Proost JH, Cortinez LI, Absalom AR, Struys MMRF. A general purpose pharmacokinetic model for propofol. Anesth Analg. 2014;118(6):1221–37.

    Article  CAS  PubMed  Google Scholar 

  50. Vereecke HEM, Proost JH, Heyse B, Eleveld DJ, Katoh T, Luginbühl M, Struys MMRF. Interaction between nitrous oxide, sevoflurane and opioids: a response surface approach. Anesthesiology. 2013;118(4):894–902.

    Article  CAS  PubMed  Google Scholar 

  51. Post TM, Cremers SC, Kerbusch T, Danhof M. Bone physiology, disease and treatment: towards disease system analysis in osteoporosis. Clin Pharmacokinet. 2010;49(2):89–118.

    Article  CAS  PubMed  Google Scholar 

  52. Post TM, Schmidt S, Peletier LA, de Greef R, Kerbusch T, Danhof M. Application of a mechanism-based disease systems model for osteoporosis to clinical data. J Pharmacokinet Pharmacodyn. 2013;40(2):143–56.

    Article  CAS  PubMed  Google Scholar 

  53. Pilla Reddy V, Kozielska M, Johnson M, Vermeulen A, de Greef R, Liu J, Groothuis GMM, Danhof M, Proost JH. Structural models describing placebo treatment effects in schizophrenia and other neuropsychiatric disorders. Clin Pharmacokinet. 2011;50(7):429–50.

    Article  PubMed  Google Scholar 

  54. Danhof M, de Jongh J, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic modeling: biophase distribution, receptor theory, and dynamical systems analysis. Annu Rev Pharmacol Toxicol. 2007;47:357–400.

    Article  CAS  PubMed  Google Scholar 

  55. Danhof M, De Lange ECM, Della Pasqua O, Ploeger BA, Voskuyl RA. Mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling in translational drug research. Trends Pharmacol Sci. 2008;29(4):186–91.

    Article  CAS  PubMed  Google Scholar 

  56. Mager DE, Jusko WJ. Development of translational pharmacokinetic–pharmacodynamic models. Clin Pharmacol Ther. 2008;83(6):909–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ploeger BA, Smeets J, Strougo A, Drenth HJ, Ruigt G, Houwing N, Danhof M. Pharmacokinetic-pharmacodynamic model for the reversal of neuromuscular blockade by sugammadex. Anesthesiology. 2009;110(1):95–105.

    Article  CAS  PubMed  Google Scholar 

  58. Ploeger BA, van der Graaf PH, Danhof M. Incorporating receptor theory in mechanism-based pharmacokinetic-pharmacodynamic (PK-PD) modeling. Drug Metab Pharmacokinet. 2009;24(1):3–15.

    Article  CAS  PubMed  Google Scholar 

  59. Van der Graaf PH. Pharmacometrics and systems pharmacology. CPT Pharmacometrics Syst Pharmacol. 2012;1, e8. doi:10.1038/psp.2012.8.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Proost JH, Eleveld DJ. Performance of an iterative two-stage Bayesian technique for population pharmacokinetic analysis of rich data sets. Pharm Res. 2006;23(12):2748–59. Erratum in Pharm Res 2007;24(8):1599.

    Article  CAS  PubMed  Google Scholar 

  61. Lacroix BD, Friberg LE, Karlsson MO. Evaluation of IPPSE, an alternative method for sequential population PKPD analysis. J Pharmacokinet Pharmacodyn. 2012;39(2):177–93.

    Article  CAS  PubMed  Google Scholar 

  62. Zhang L, Beal SL, Sheiner LB. Simultaneous vs. sequential analysis for population PK/PD data I: best-case performance. J Pharmacokinet Pharmacodyn. 2003;30:387–404.

    Article  PubMed  Google Scholar 

  63. Proost JH, Schiere S, Eleveld DJ, Wierda JMKH. Simultaneous versus sequential pharmacokinetic-pharmacodynamic population analysis using an Iterative two-stage Bayesian technique. Biopharm Drug Dispos. 2007;28(8):455–73.

    Article  CAS  PubMed  Google Scholar 

  64. Zhang L, Beal SL, Sheiner LB. Simultaneous vs. sequential analysis for population PK/PD data II: robustness of methods. J Pharmacokinet Pharmacodyn. 2003;30:405–16.

    Article  CAS  PubMed  Google Scholar 

  65. Unadkat JD, Bartha F, Sheiner LB. Simultaneous modeling of pharmacokinetics and pharmacodynamics with nonparametric kinetic and dynamic models. Clin Pharmacol Ther. 1986;40:86–93.

    Article  CAS  PubMed  Google Scholar 

  66. De Haes A, Proost JH, De Baets MH, Stassen MHW, Houwertjes MC, Wierda JMKH. Pharmacokinetic-pharmacodynamic modeling of rocuronium in case of a decreased number of acetylcholine receptors: a study in myasthenic pigs. Anesthesiology. 2003;98(1):133–42.

    Article  PubMed  Google Scholar 

  67. De Haes A, Proost JH, Kuks JBM, van den Tol DC, Wierda JMKH. Pharmacokinetic-pharmacodynamic modeling of rocuronium in myasthenic patients is improved by taking into account the number of unbound acetylcholine receptors. Anesth Analg. 2002;95(3):588–96.

    PubMed  Google Scholar 

  68. D’Argenio DZ. Optimal sampling times for pharmacokinetic experiments. J Pharmacokinet Biopharm. 1981;9(6):739–56.

    Article  PubMed  Google Scholar 

  69. Bazzoli C, Retouta S, Mentré F. Design evaluation and optimisation in multiple response nonlinear mixed effect models: PFIM 3.0. Comput Methods Programs Biomed. 2010;98:55–65.

    Article  PubMed  Google Scholar 

  70. Dokoumetzidis A, Aarons L. Bayesian optimal designs for pharmacokinetic models: sensitivity to uncertainty. J Biopharm Stat. 2007;17(5):851–67.

    Article  PubMed  Google Scholar 

  71. Hooker AC, Foracchia M, Dodds MG, Vicini P. An evaluation of population D-optimal designs via pharmacokinetic simulations. Ann Biomed Eng. 2003;31:98–111.

    Article  PubMed  Google Scholar 

  72. Short TG, Ho TY, Minto CF, Schnider TW, Shafer SL. Efficient trial design for eliciting a pharmacokinetic-pharmacodynamic model-based response surface describing the interaction between two intravenous anesthetic drugs. Anesthesiology. 2002;96:400–8.

    Article  CAS  PubMed  Google Scholar 

  73. Adis Data Information. Clinical pharmacokinetics preferred symbols. 2006. http://static.springer.com/sgw/documents/1372030/application/pdf/40262_CPK_symbols.pdf. Accessed 21 Aug 2015.

  74. Rowland M, Tucker G. Symbols in pharmacokinetics. J Pharmacokinet Biopharm. 1980;8(5):497–507.

    Article  CAS  PubMed  Google Scholar 

  75. Food and Drug Administration. Guidance for industry—population pharmacokinetics. 1999. http://www.fda.gov/downloads/Drugs/…/Guidances/UCM072137.pdf. Accessed 21 Aug 2015.

  76. Committee for medicinal products for human use (CHMP) and European Medicines Agency. Guideline on reporting the results of population pharmacokinetic analyses. 2007. http://www.ema.europa.eu/docs/en_GB/document_library/Scientific_guideline/2009/09/WC500003067.pdf. Accessed 21 Aug 2015.

  77. Jamsen KM, McLeay SC, Barras MA, Green B. Reporting a population pharmacokinetic-pharmacodynamic study: a journal’s perspective. Clin Pharmacokinet. 2014;53:111–22.

    Article  CAS  PubMed  Google Scholar 

  78. Kanji S, Hayes M, Ling A, Shamseer L, Chant C, Edwards DJ, Edwards S, Ensom MH, Foster DR, Hardy B, Kiser TH, la Porte C, Roberts JA, Shulman R, Walker S, Zelenitsky S, Moher D. Reporting guidelines for clinical pharmacokinetic studies: the ClinPK statement. Clin Pharmacokinet. 2015;54(7):783–95.

    Article  PubMed  Google Scholar 

  79. Viby-Mogensen J, Østergaard D, Donati F, Fisher D, Hunter J, Kampmann JP, Kopman A, Proost JH, Rasmussen SN, Skovgaard LT, Varin F, Wright PMC. Pharmacokinetic studies of neuromuscular blocking agents: Good Clinical Research Practice (GCRP). Acta Anaesthesiol Scand. 2000;44(10):1169–90.

    Article  CAS  PubMed  Google Scholar 

  80. Fuchs-Buder T, Claudius C, Skovgaard LT, Eriksson LI, Mirakhur RK, Viby-Mogensen J. Good clinical research practice in pharmacodynamic studies of neuromuscular blocking agents II: the Stockholm revision. Acta Anaesthesiol Scand. 2007;51:789–808.

    Article  CAS  PubMed  Google Scholar 

  81. Hull CJ, Van Beem HBH, McLeod K, Sibbald A, Watson MJ. A pharmacokinetic model for pancuronium. Br J Anaesth. 1978;50:1113–23.

    Article  CAS  PubMed  Google Scholar 

  82. Nigrovic V, Amann A. Physiologic-pharmacologic interpretation of the constants in the Hill equation for neuromuscular block: a hypothesis. J Pharmacokinet Pharmacodyn. 2002;29(2):189–206.

    Article  CAS  PubMed  Google Scholar 

  83. Donati F, Meistelman C. A kinetic-dynamic model to explain the relationship between high potency and slow onset time for neuromuscular blocking drugs. J Pharmacokinet Biopharm. 1991;19:537–52.

    Article  CAS  PubMed  Google Scholar 

  84. Glavinovic MI, Law Min JC, Kapural L, Donati F, Bevan DR. Speed of action of various muscle relaxants at the neuromuscular junction binding vs buffering hypothesis. J Pharmacol Exp Ther. 1993;265:1181–6.

    CAS  PubMed  Google Scholar 

  85. Proost JH, Wierda JMKH, Meijer DKF. An extended pharmacokinetic/pharmacodynamic (PK/PD) model describing quantitatively the influence of plasma protein binding, tissue binding, and receptor binding on the potency and time course of action of drugs. J Pharmacokinet Biopharm. 1996;24(1):45–77.

    Article  CAS  PubMed  Google Scholar 

  86. Bowman WC, Rodger IW, Houston J, Marshall IG, McIndewar I. Structure-action relationships among some desacetoxy analogues of pancuronium and vecuronium in the anesthetized cat. Anesthesiology. 1988;89:57–62.

    Article  Google Scholar 

  87. Kopman AF. Molar potency and the onset of action of rocuronium [Letter]. Anesth Analg. 1994;78:815.

    Article  CAS  PubMed  Google Scholar 

  88. Kopman AF. Pancuronium, gallamine, and d-tubocurarine compared: Is speed of onset inversely related to drug potency? Anesthesiology. 1989;70:915–20.

    Article  CAS  PubMed  Google Scholar 

  89. Proost JH, Houwertjes MC, Wierda JMKH. Is time to peak effect of neuromuscular blocking agents dependent on dose? Testing the concept of buffered diffusion. Eur J Anaesthesiol. 2008;25(7):572–80.

    Article  CAS  PubMed  Google Scholar 

  90. Proost JH, Wright PMC. A pharmacokinetic-dynamic explanation of the rapid onset/offset of rapacuronium. Eur J Anaesthesiol. 2001;18 Suppl 23:83–9.

    CAS  Google Scholar 

  91. Beaufort TM, Nigrovic V, Proost JH, Houwertjes MC, Wierda JMKH. Inhibition of the enzymic degradation of suxamethonium and mivacurium increases the onset time of submaximal neuromuscular block. Anesthesiology. 1998;89(3):707–14.

    Article  CAS  PubMed  Google Scholar 

  92. Proost JH, Wierda JMKH. Pharmacokinetic aspects of the onset of action of neuromuscular blocking agents. Anasthesiol Intensivmed Notfallmed Schmerzther. 2000;35(2):98–100.

    CAS  PubMed  Google Scholar 

  93. D’Hollander AA, Delcroix C. An analytical pharmacodynamic model for non-depolarizing neuromuscular blocking agents. J Pharmacokinet Biopharm. 1981;9:27–40.

    Article  PubMed  Google Scholar 

  94. De Haes A, Proost JH, De Baets MH, Stassen MHW, Houwertjes MC, Wierda JMKH. Decreased number of acetylcholine receptors is the mechanism that alters the time course of muscle relaxants in myasthenia gravis: a study in a rat model. Eur J Anaesthesiol. 2005;22(8):591–6.

    Article  PubMed  Google Scholar 

  95. Donati F, Meistelman C, Plaud B. Vecuronium neuromuscular blockade at the vocal cords and adductor pollicis in humans. Anesthesiology. 1991;74:833–7.

    Article  CAS  PubMed  Google Scholar 

  96. Plaud B, Proost JH, Wierda JMKH, Barre J, Debaene B, Meistelman C. Pharmacokinetics and pharmacodynamics of rocuronium at the vocal cords and the adductor pollicis in humans. Clin Pharmacol Ther. 1995;58:185–91.

    Article  CAS  PubMed  Google Scholar 

  97. Laurin J, Nekka F, Donati F, Varin F. Assuming peripheral elimination: its impact on the estimation of pharmacokinetic parameters of muscle relaxants. J Pharmacokinet Biopharm. 1999;27(5):491–512.

    Article  CAS  PubMed  Google Scholar 

  98. Kato M, Shiratori T, Yamamuro M, Haga S, Hoshi K, Matsukawa S, Jalal IM, Hashimoto Y. Comparison between in vivo and in vitro pharmacokinetics of succinylcholine in humans. J Anesth. 1999;13(4):189–92.

    Article  CAS  PubMed  Google Scholar 

  99. Roy JJ, Donati F, Boismenu D, Varin F. Concentration-effect relation of succinylcholine chloride during propofol anesthesia. Anesthesiology. 2002;97(5):1082–92.

    Article  CAS  PubMed  Google Scholar 

  100. Torda TA, Graham GG, Warwick NR, Donohue P. Pharmacokinetics and pharmacodynamics of suxamethonium. Anaesth Intensive Care. 1997;25(3):272–8.

    CAS  PubMed  Google Scholar 

  101. Bragg P, Fisher DM, Shi J, Donati F, Meistelman C, Lau M, Sheiner LB. Comparison of twitch depression of the adductor pollicis and the respiratory muscles. Pharmacodynamic modeling without plasma concentrations. Anesthesiology. 1994;80(2):310–9.

    Article  CAS  PubMed  Google Scholar 

  102. Fisher DM, Wright PM. Are plasma concentration values necessary for pharmacodynamic modeling of muscle relaxants? Anesthesiology. 1997;86(3):567–75.

    Article  CAS  PubMed  Google Scholar 

  103. Verotta D, Sheiner LB. Semiparametric analysis of non-steady-state pharmacodynamic data. J Pharmacokinet Biopharm. 1991;19(6):691–712.

    Article  CAS  PubMed  Google Scholar 

  104. Nigrovic V, Amann A. Competition between acetylcholine and a nondepolarizing muscle relaxant for binding to the postsynaptic receptors at the motor end plate: simulation of twitch strength and neuromuscular block. J Pharmacokinet Pharmacodyn. 2003;30(1):23–51.

    Article  CAS  PubMed  Google Scholar 

  105. Bhatt SB, Kohl J, Amann A, Nigrovic V. The relationship between twitch depression and twitch fade during neuromuscular block produced by vecuronium: correlation with the release of acetylcholine. Theor Biol Med Model. 2007;4:24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Breslin DS, Jiao K, Habib AS, Schultz J, Gan TJ. Pharmacodynamic interactions between cisatracurium and rocuronium. Anesth Analg. 2004;98(1):107–10.

    Article  CAS  PubMed  Google Scholar 

  107. Kim KS, Chun YS, Chon SU, Suh JK. Neuromuscular interaction between cisatracurium and mivacurium, atracurium, vecuronium or rocuronium administered in combination. Anaesthesia. 1998;53(9):872–8.

    Article  CAS  PubMed  Google Scholar 

  108. Naguib M, Samarkandi AH, Ammar A, Elfaqih SR, Al-Zahrani S, Turkistani A. Comparative clinical pharmacology of rocuronium, cisatracurium, and their combination. Anesthesiology. 1998;89(5):1116–24. Erratum in: Anesthesiology 1999; 90(4):1241.

    Article  CAS  PubMed  Google Scholar 

  109. Nigrovic V, Amann A. Simulation of interaction between two non-depolarizing muscle relaxants: generation of an additive or a supra-additive neuromuscular block. J Pharmacokinet Pharmacodyn. 2004;31(2):157–79.

    Article  CAS  PubMed  Google Scholar 

  110. Unadkat JD, Sheiner LB, Hennis PJ, Cronelly R, Miller RD, Sharma M. An integrated model for the interaction of muscle relaxants with their antagonists. J Appl Physiol. 1986;61:1593–8.

    CAS  PubMed  Google Scholar 

  111. Van den Broek L, Proost JH, Wierda JMKH, Njoo MD, Hennis PJ. Neuromuscular and cardiovascular effects of neostigmine and methyl-atropine administered at different degrees of rocuronium-induced neuromuscular block. Eur J Anaesthesiol. 1994;11:481–7.

    PubMed  Google Scholar 

  112. Van den Broek L, Proost JH, Wierda JMKH. Early and late reversibility of rocuronium bromide. Eur J Anaesthesiol. 1994;11 Suppl 9:128–32.

    Google Scholar 

  113. Verotta D, Kitts J, Rodriguez R, Caldwell J, Miller RD, Sheiner LB. Reversal of neuromuscular blockade in humans by neostigmine and edrophonium: a mathematical model. J Pharmacokinet Biopharm. 1991;19:713–29.

    Article  CAS  PubMed  Google Scholar 

  114. Bom A, Epemolu O, Hope F, Rutherford S, Thomson K. Selective relaxant binding agents for reversal of neuromuscular blockade. Curr Opin Pharmacol. 2007;7:298–302.

    Article  CAS  PubMed  Google Scholar 

  115. Epemolu O, Bom A, Hope F, Mason R, Cert HN. Reversal of neuromuscular blockade and simultaneous increase in plasma rocuronium concentration after the intravenous infusion of the novel reversal agent Org 25969. Anesthesiology. 2003;99:632–7.

    Article  CAS  PubMed  Google Scholar 

  116. Gijsenbergh F, Ramael S, Houwing N, van Iersel T. First human exposure of Org 25969, a novel agent to reverse the action of rocuronium bromide. Anesthesiology. 2005;103:695–703.

    Article  CAS  PubMed  Google Scholar 

  117. Sorgenfrei IF, Norrild K, Bo Larsen P, Stensballe J, Østergaard D, Prins ME, Viby-Mogensen J. Reversal of rocuronium-induced neuromuscular block by the selective relaxant binding agent sugammadex a dose-finding and safety study. Anesthesiology. 2006;104:667–74.

    Article  CAS  PubMed  Google Scholar 

  118. Sparr HJ, Vermeyen KM, Beaufort AM, Rietbergen H, Proost JH, Saldien V, Velik-Salchner C, Wierda JMKH. Early reversal of profound rocuronium-induced neuromuscular blockade by sugammadex in a randomized multicenter study: efficacy, safety, and pharmacokinetics. Anesthesiology. 2007;106(5):935–43.

    Article  CAS  PubMed  Google Scholar 

  119. Eleveld DJ, Kuizenga K, Proost JH, Wierda JMKH. A temporary decrease in twitch response during reversal of rocuronium-induced muscle relaxation with a small dose of sugammadex. Anesth Analg. 2007;104(3):582–4.

    Article  CAS  PubMed  Google Scholar 

  120. Kennedy R, McKellow M, French R, Sleigh J. Sevoflurane end-tidal to effect-site equilibration in women determined by response to laryngeal mask airway insertion. Anesth Analg. 2013;117:786–91.

    Article  CAS  PubMed  Google Scholar 

  121. Bailey JM. The pharmacokinetics of volatile anesthetic agent elimination: a theoretical study. J Pharmacokinet Biopharm. 1989;17(1):109–23.

    Article  CAS  PubMed  Google Scholar 

  122. Enlund M, Kietzmann D, Bouillon T, Züchner K, Meineke I. Population pharmacokinetics of sevoflurane in conjunction with the AnaConDa: toward target-controlled infusion of volatiles into the breathing system. Acta Anaesthesiol Scand. 2008;52(4):553–60.

    Article  CAS  PubMed  Google Scholar 

  123. Lerou JGC, Booij LHDJ. Model-based administration of inhalation anaesthesia. 1. Developing a system model. Br J Anaesth. 2001;86(1):12–28.

    Article  CAS  PubMed  Google Scholar 

  124. Lerou JGC, Booij LHDJ. Model-based administration of inhalation anaesthesia. 2. Exploring the system model. Br J Anaesth. 2001;86(1):29–37.

    Article  CAS  PubMed  Google Scholar 

  125. Lerou JGC, Booij LHDJ. Model-based administration of inhalation anaesthesia. 3. Validating the system model. Br J Anaesth. 2002;88(1):24–37.

    Article  CAS  PubMed  Google Scholar 

  126. Lerou JGC, Booij LHDJ. Model-based administration of inhalation anaesthesia. 4. Applying the system model. Br J Anaesth. 2002;88(2):175–83.

    Article  CAS  PubMed  Google Scholar 

  127. Lu CC, Tsai CS, Hu OY, Chen RM, Chen TL, Ho ST. Pharmacokinetics of isoflurane in human blood. Pharmacology. 2008;81(4):344–9.

    Article  CAS  PubMed  Google Scholar 

  128. Yasuda N, Lockhart SH, Eger EI, Weiskopf RB, Johnson BH, Freire BS, Fassoulaki A. Kinetics of desflurane, isoflurane, and halothane in humans. Anesthesiology. 1991;74:489–98.

    Article  CAS  PubMed  Google Scholar 

  129. Yasuda N, Lockhart SH, Eger EI, Weiskopf RB, Liu J, Laster M, Taheri S, Peterson NA. Comparison of kinetics of sevoflurane and isoflurane in humans. Anesth Analg. 1991;72(3):316–24.

    Article  CAS  PubMed  Google Scholar 

  130. Beline M, Wilke HJ, Harder S. Clinical pharmacokinetics of sevoflurane. Clin Pharmacokinet. 1999;36(1):13–26.

    Article  Google Scholar 

  131. Marsh B, White M, Morton N, Kenny GN. Pharmacokinetic model driven infusion of propofol in children. Br J Anaesth. 1991;67:41–8.

    Article  CAS  PubMed  Google Scholar 

  132. Schnider TW, Minto CF, Gambus PL, Andresen C, Goodale DB, Shafer SL, Youngs EJ. The influence of method of administration and covariates on the pharmacokinetics of propofol in adult volunteers. Anesthesiology. 1998;88(5):1170–82.

    Article  CAS  PubMed  Google Scholar 

  133. Schnider TW, Minto CF, Shafer SL, Gambus PL, Andresen C, Goodale DB, Youngs EJ. The influence of age on propofol pharmacodynamics. Anesthesiology. 1999;90(6):1502–16.

    Article  CAS  PubMed  Google Scholar 

  134. Absalom AR, Mani V, De Smet T, Struys MMRF. Pharmacokinetic models for propofol—defining and illuminating the devil in the detail. Br J Anaesth. 2009;103(1):26–37.

    Article  CAS  PubMed  Google Scholar 

  135. Coppens M, Van Limmen JG, Schnider T, Wyler B, Bonte S, Dewaele F, Struys MM, Vereecke HE. Study of the time course of the clinical effect of propofol compared with the time course of the predicted effect-site concentration: performance of three pharmacokinetic-dynamic models. Br J Anaesth. 2010;104(4):452–8.

    Article  CAS  PubMed  Google Scholar 

  136. Egan TD, Shafer SL. Target-controlled infusions for intravenous anesthetics: surfing USA not! Anesthesiology. 2003;99(5):1039–41.

    Article  PubMed  Google Scholar 

  137. Struys M, Versichelen L, Thas O, Herregods L, Rolly G. Comparison of computer-controlled administration of propofol with two manually controlled infusion techniques. Anaesthesia. 1997;52(1):41–50.

    Article  CAS  PubMed  Google Scholar 

  138. Cortinez LI, Anderson BJ, Penna A, Olivares L, Munoz HR, Holford NHG, Struys MMRF, Sepulveda P. Influence of obesity on propofol pharmacokinetics: derivation of a pharmacokinetic model. Br J Anaesth. 2010;105(4):448–56.

    Article  CAS  PubMed  Google Scholar 

  139. La Colla L, Albertin A, La Colla G, Ceriani V, Lodi T, Porta A, Aldegheri G, Mangano A, Khairallah I, Fermo I. No adjustment vs. adjustment formula as input weight for propofol target-controlled infusion in morbidly obese patients. Eur J Anaesthesiol. 2009;26:362–9.

    Article  PubMed  CAS  Google Scholar 

  140. Choi BM, Lee HG, Byon HJ, Lee SH, Lee EK, Kim HS, Noh GJ. Population pharmacokinetic and pharmacodynamic model of propofol externally validated in children. J Pharmacokinet Pharmacodyn. 2015;42(2):163–77.

    Article  CAS  PubMed  Google Scholar 

  141. Coppens MJ, Eleveld DJ, Proost JH, Marks LA, Van Bocxlaer JF, Vereecke H, Absalom AR, Struys MMRF. An evaluation of using population pharmacokinetic models to estimate pharmacodynamic parameters for propofol and bispectral index in children. Anesthesiology. 2011;115(1):83–93.

    Article  CAS  PubMed  Google Scholar 

  142. Peeters MYM, Allegaert K, Blusse van Oud-Alblas HJ, Cella M, Tibboel D, Danhof M, Knibbe CAJ. Prediction of propofol clearance in children from an allometric model developed in rats, children and adults versus a 0.75 fixed-exponent allometric model. Clin Pharmacokinet. 2010;49(4):269–75.

    Article  CAS  PubMed  Google Scholar 

  143. Peeters MY, Prins SA, Knibbe CA, DeJongh J, van Schaik RH, van Dijk M, van der Heiden IP, Tibboel D, Danhof M. Propofol pharmacokinetics and pharmacodynamics for depth of sedation in nonventilated infants after major craniofacial surgery. Anesthesiology. 2006;104(3):466–74.

    Article  CAS  PubMed  Google Scholar 

  144. Diepstraten J, Chidambaran V, Sadhasivam S, Esslinger HR, Cox SL, Inge TH, Knibbe CAJ, Vinks AA. Propofol clearance in morbidly obese children and adolescents: influence of age and body size. Clin Pharmacokinet. 2012;51(8):543–51.

    Article  CAS  Google Scholar 

  145. Somma J, Donner A, Zomorodi K, Sladen R, Ramsay J, Geller E, Shafer SL. Population pharmacodynamics of midazolam administered by target controlled infusion in SICU patients after CABG surgery. Anesthesiology. 1998;89(6):1430–43.

    Article  CAS  PubMed  Google Scholar 

  146. Peeters MY, Prins SA, Knibbe CA, Dejongh J, Mathôt RA, Warris C, van Schaik RH, Tibboel D, Danhof M. Pharmacokinetics and pharmacodynamics of midazolam and metabolites in nonventilated infants after craniofacial surgery. Anesthesiology. 2006;105(6):1135–46.

    Article  CAS  PubMed  Google Scholar 

  147. van Rongen A, Vaughns JD, Moorthy G, Barrett JS, Knibbe CA, van den Anker JN. Population pharmacokinetics of midazolam and its metabolites in overweight and obese adolescents. Br J Clin Pharmacol. 2015. doi:10.1111/bcp.12693. Epub ahead of print.

    PubMed  PubMed Central  Google Scholar 

  148. Potts AL, Anderson BJ, Warman GR, Lerman J, Diaz SM, Vilo S. Dexmedetomidine pharmacokinetics in pediatric intensive care—a pooled analysis. Pediatr Anesth. 2009;19(11):1119–29.

    Article  Google Scholar 

  149. Hannivoort LN, Eleveld DJ, Proost JH, Reyntjens KMEM, Absalom AR, Vereecke HEM, Struys MMRF. Development of an optimized pharmacokinetic model of dexmedetomidine using target controlled infusion in healthy volunteers. Anesthesiology. 2015;123:357–67.

    Article  CAS  PubMed  Google Scholar 

  150. Harris RS, Lazar O, Johansen JW, Sebel PS. Interaction of propofol and sevoflurane on loss of consciousness and movement to skin incision during general anesthesia. Anesthesiology. 2006;104(6):1170–5.

    Article  CAS  PubMed  Google Scholar 

  151. Schumacher PM, Dossche J, Mortier EP, Luginbuehl M, Bouillon TW, Struys MM. Response surface modeling of the interaction between propofol and sevoflurane. Anesthesiology. 2009;111(4):790–804.

    Article  CAS  PubMed  Google Scholar 

  152. Diz JC, Del Rio R, Lamas A, Mendoza M, Duran M, Ferreira LM. Analysis of pharmacodynamic interaction of sevoflurane and propofol on Bispectral Index during general anaesthesia using a response surface model. Br J Anaesth. 2009;104(6):733–9.

    Article  CAS  Google Scholar 

  153. Lichtenbelt BJ, Olofsen E, Dahan A, van Kleef JW, Struys MM, Vuyk J. Propofol reduces the distribution and clearance of midazolam. Anesth Analg. 2010;110(6):1597–606.

    Article  CAS  PubMed  Google Scholar 

  154. Vuyk J, Hennis PJ, Burm AG, de Voogt JW, Spierdijk J. Comparison of midazolam and propofol in combination with alfentanil for total intravenous anesthesia. Anesth Analg. 1990;71(6):645–50.

    Article  CAS  PubMed  Google Scholar 

  155. Vuyk J, Lichtenbelt BJ, Olofsen E, van Kleef JW, Dahan A. Mixed-effects modeling of the influence of midazolam on propofol pharmacokinetics. Anesth Analg. 2009;108(5):1522–30.

    Article  CAS  PubMed  Google Scholar 

  156. Teh J, Short TG, Wong J, Tan P. Pharmacokinetic interactions between midazolam and propofol: an infusion study. Br J Anaesth. 1994;72(1):62–5.

    Article  CAS  PubMed  Google Scholar 

  157. McClune S, McKay AC, Wright PM, Patterson CC, Clarke RS. Synergistic interaction between midazolam and propofol. Br J Anaesth. 1992;69(3):240–5.

    Article  CAS  PubMed  Google Scholar 

  158. Short TG, Chui PT. Propofol and midazolam act synergistically in combination. Br J Anaesth. 1991;67(5):539–45.

    Article  CAS  PubMed  Google Scholar 

  159. Short TG, Plummer JL, Chui PT. Hypnotic and anaesthetic interactions between midazolam, propofol and alfentanil. Br J Anaesth. 1992;69(2):162–7.

    Article  CAS  PubMed  Google Scholar 

  160. Vinik HR, Bradley Jr EL, Kissin I. Triple anesthetic combination: propofol-midazolam-alfentanil. Anesth Analg. 1994;78(2):354–8.

    Article  CAS  PubMed  Google Scholar 

  161. Lemmens HJM. Pharmacokinetic-pharmacodynamic relationships for opioids in balanced anaesthesia. Clin Pharmacokinet. 1995;29(4):231–42.

    Article  CAS  PubMed  Google Scholar 

  162. Scholz J, Steinfath M, Schulz M. Clinical pharmacokinetics of alfentanil, fentanyl and sufentanil: an update. Clin Pharmacokinet. 1996;31(4):275–92.

    Article  CAS  PubMed  Google Scholar 

  163. Egan TD, Huizinga B, Gupta SK, Jaarsma RL, Sperry RJ, Yee JB, Muir KT. Remifentanil pharmacokinetics in obese versus lean patients. Anesthesiology. 1998;89(3):562–73.

    Article  CAS  PubMed  Google Scholar 

  164. Egan TD, Lemmens HJ, Fiset P, Hermann DJ, Muir KT, Stanski DR, Shafer SL. The pharmacokinetics of the new short-acting opioid remifentanil (GI87084B) in healthy adult male volunteers. Anesthesiology. 1993;79(5):881–92.

    Article  CAS  PubMed  Google Scholar 

  165. Egan TD, Minto CF, Hermann DJ, Barr J, Muir KT, Shafer SL. Remifentanil versus alfentanil: comparative pharmacokinetics and pharmacodynamics in healthy adult male volunteers. Anesthesiology. 1996;84(4):821–33. Erratum in: Anesthesiology 1996;85(3):695.

    Article  CAS  PubMed  Google Scholar 

  166. Minto CF, Schnider TW, Egan TD, Youngs E, Lemmens HJ, Gambus PL, Billard V, Hoke JF, Moore KH, Hermann DJ, Muir KT, Mandema JW, Shafer SL. Influence of age and gender on the pharmacokinetics and pharmacodynamics of remifentanil. I Model development. Anesthesiology. 1997;86:10–23.

    Article  CAS  PubMed  Google Scholar 

  167. Minto CF, Schnider TW, Shafer SL. Pharmacokinetics and pharmacodynamics of remifentanil. II Model application. Anesthesiology. 1997;86:24–33.

    Article  CAS  PubMed  Google Scholar 

  168. Drover DR, Lemmens HJ. Population pharmacodynamics and pharmacokinetics of remifentanil as a supplement to nitrous oxide anesthesia for elective abdominal surgery. Anesthesiology. 1998;89(4):869–77.

    Article  CAS  PubMed  Google Scholar 

  169. La Colla L, Albertin A, La Colla G, Porta A, Aldegheri G, Di Candia D, Gigli F. Predictive performance of the ‘Minto’ remifentanil pharmacokinetic parameter set in morbidly obese patients ensuing from a new method for calculating lean body mass. Clin Pharmacokinet. 2010;49(2):131–9.

    Article  PubMed  Google Scholar 

  170. Mertens MJ, Engbers FH, Burm AG, Vuyk J. Predictive performance of computer-controlled infusion of remifentanil during propofol/remifentanil anaesthesia. Br J Anaesth. 2003;90(2):132–41.

    Article  CAS  PubMed  Google Scholar 

  171. McEwan AI, Smith C, Dyar O, Goodman D, Smith LR, Glass PS. Isoflurane minimum alveolar concentration reduction by fentanyl. Anesthesiology. 1993;78(5):864–9.

    Article  CAS  PubMed  Google Scholar 

  172. Westmoreland CL, Sebel PS, Gropper A. Fentanyl or alfentanil decreases the minimum alveolar anesthetic concentration of isoflurane in surgical patients. Anesth Analg. 1994;78:23–8.

    Article  CAS  PubMed  Google Scholar 

  173. Brunner MD, Braithwaite P, Jhaveri R, McEwan AI, Goodman DK, Smith LR, Glass PSA. MAC reduction of isoflurane by sufentanil. Br J Anaesth. 1994;72:42–6.

    Article  CAS  PubMed  Google Scholar 

  174. Lang E, Kapila A, Shlugman D, Hoke JF, Sebel PS, Glass PS. Reduction of isoflurane minimal alveolar concentration by remifentanil. Anesthesiology. 1996;85(4):721–8.

    Article  CAS  PubMed  Google Scholar 

  175. Katoh T, Kobayashi S, Suzuki A, Iwamoto T, Bito H, Ikeda K. The effect of fentanyl on sevoflurane requirements for somatic and sympathetic responses to surgical incision. Anesthesiology. 1999;90:398–405.

    Article  CAS  PubMed  Google Scholar 

  176. Bouillon T, Bruhn J, Radulescu L, Andresen C, Cohane C, Shafer SL. A model of the ventilatory depressant potency of remifentanil in the non-steady state. Anesthesiology. 2003;99(4):779–87.

    Article  CAS  PubMed  Google Scholar 

  177. Bouillon T, Garstka G, Stafforst D, Shafer S, Schwilden H, Hoeft A. Piritramide and alfentanil display similar respiratory depressant potency. Acta Anaesthesiol Scand. 2003;47(10):1231–41.

    Article  CAS  PubMed  Google Scholar 

  178. Gambus PL, Gregg KM, Shafer SL. Validation of the alfentanil canonical univariate parameter as a measure of opioid effect on the electroencephalogram. Anesthesiology. 1995;83:747–56.

    Article  CAS  PubMed  Google Scholar 

  179. Struys MMRF, Absalom AR, Shafer SL. Intravenous drug delivery systems. In: Miller RD, Cohen NH, Eriksson LI, Fleisher LA, Wiener-Kronisch JP, Young WL, editors. Miller’s anesthesia. 8th ed. St. Louis: Saunders; 2014. p. 929.

    Google Scholar 

  180. Glass PS, Gan TJ, Howell S. A review of the pharmacokinetics and pharmacodynamics of remifentanil. Anesth Analg. 1999;89 Suppl 4:S7–14.

    Article  CAS  PubMed  Google Scholar 

  181. Johnson KB, Syroid ND, Gupta DK, Manyam SC, Pace NL, LaPierre CD, Egan TD, White JL, Tyler D, Westenskow DR. An evaluation of remifentanil-sevoflurane response surface models in patients emerging from anesthesia: model improvement using effect-site sevoflurane concentrations. Anesth Analg. 2010;111(2):387–94.

    Article  CAS  PubMed  Google Scholar 

  182. Heyse B, Proost JH, Hannivoort LN, Eleveld DJ, Luginbühl M, Struys MMRF, Vereecke HEM. A response surface model approach for continuous measures of hypnotic and analgesic effect during sevoflurane-remifentanil interaction: quantifying the pharmacodynamic shift evoked by stimulation. Anesthesiology. 2014;120(6):1390–9.

    Article  CAS  PubMed  Google Scholar 

  183. Kazama T, Ikeda K, Morita K. The pharmacodynamic interaction between propofol and fentanyl with respect to the suppression of somatic or hemodynamic responses to skin incision, peritoneum incision, and abdominal wall retraction. Anesthesiology. 1998;89(4):894–906.

    Article  CAS  PubMed  Google Scholar 

  184. Smith C, McEwan AI, Jhaveri R, Wilkinson M, Goodman D, Smith LR, Canada AT, Glass PS. The interaction of fentanyl on the Cp50 of propofol for loss of consciousness and skin incision. Anesthesiology. 1994;81(4):820–8.

    Article  CAS  PubMed  Google Scholar 

  185. Schwilden H, Fechner J, Albrecht S, Hering W, Ihmsen H, Schuttler J. Testing and modelling the interaction of alfentanil and propofol on the EEG. Eur J Anaesthesiol. 2003;20(5):363–72.

    Article  CAS  PubMed  Google Scholar 

  186. Vuyk J, Lim T, Engbers FH, Burm AG, Vletter AA, Bovill JG. The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiology. 1995;83(1):8–22.

    Article  CAS  PubMed  Google Scholar 

  187. Bruhn J, Bouillon TW, Radulescu L, Hoeft A, Bertaccini E, Shafer SL. Correlation of approximate entropy, bispectral index, and spectral edge frequency 95 (SEF95) with clinical signs of “anesthetic depth” during coadministration of propofol and remifentanil. Anesthesiology. 2003;98(3):621–7.

    Article  CAS  PubMed  Google Scholar 

  188. Ropcke H, Konen-Bergmann M, Cuhls M, Bouillon T, Hoeft A. Propofol and remifentanil pharmacodynamic interaction during orthopedic surgical procedures as measured by effects on bispectral index. J Clin Anesth. 2001;13(3):198–207.

    Article  CAS  PubMed  Google Scholar 

  189. Vanluchene AL, Vereecke H, Thas O, Mortier EP, Shafer SL, Struys MM. Spectral entropy as an electroencephalographic measure of anesthetic drug effect: a comparison with bispectral index and processed midlatency auditory evoked response. Anesthesiology. 2004;101(1):34–42.

    Article  CAS  PubMed  Google Scholar 

  190. Bouillon T, Schmidt C, Garstka G, Heimbach D, Stafforst D, Schwilden H, Hoeft A. Pharmacokinetic-pharmacodynamic modeling of the respiratory depressant effect of alfentanil. Anesthesiology. 1999;91(1):144–55.

    Article  CAS  PubMed  Google Scholar 

  191. LaPierre CD, Johnson KB, Randall BR, Egan TD. A simulation study of common propofol and propofol-opioid dosing regimens for upper endoscopy: implications on the time course of recovery. Anesthesiology. 2012;117(2):252–62.

    Article  CAS  PubMed  Google Scholar 

  192. LaPierre CD, Johnson KB, Randall BR, White JL, Egan TD. An exploration of remifentanil-propofol combinations that lead to a loss of response to esophageal instrumentation, a loss of responsiveness, and/or onset of intolerable ventilatory depression. Anesth Analg. 2011;113(3):490–9.

    CAS  PubMed  Google Scholar 

  193. Nieuwenhuijs DJ, Olofsen E, Romberg RR, Sarton E, Ward D, Engbers F, Vuyk J, Mooren R, Teppema LJ, Dahan A. Response surface modeling of remifentanil-propofol interaction on cardiorespiratory control and bispectral index. Anesthesiology. 2003;98(2):312–22.

    Article  CAS  PubMed  Google Scholar 

  194. Johnson KB, Syroid ND, Gupta DK, Manyam SC, Egan TD, Huntington J, White JL, Tyler D, Westenskow DR. An evaluation of remifentanil propofol response surfaces for loss of responsiveness, loss of response to surrogates of painful stimuli and laryngoscopy in patients undergoing elective surgery. Anesth Analg. 2008;106(2):471–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Kern SE, Xie G, White JL, Egan TD. Opioid-hypnotic synergy: a response surface analysis of propofol-remifentanil pharmacodynamic interaction in volunteers. Anesthesiology. 2004;100(6):1373–81.

    Article  CAS  PubMed  Google Scholar 

  196. Mertens MJ, Olofsen E, Engbers FH, Burm AG, Bovill JG, Vuyk J. Propofol reduces perioperative remifentanil requirements in a synergistic manner: response surface modeling of perioperative remifentanil-propofol interactions. Anesthesiology. 2003;99(2):347–59.

    Article  CAS  PubMed  Google Scholar 

  197. Hannivoort LN, Vereecke HEM, Proost JH, Heyse BEK, Eleveld DJ, Bouillon TW, et al. Probability to tolerate laryngoscopy and noxious stimulation response index as general indicators of the anaesthetic potency of sevoflurane, propofol, and remifentanil. Br J Anaesth. 2016;116(5):624–31.

    Article  CAS  PubMed  Google Scholar 

  198. Zanderigo E, Sartori V, Sveticic G, Bouillon T, Schumacher P, Morari M, Curatolo M. The well-being model: a new drug interaction model for positive and negative effects. Anesthesiology. 2006;104(4):742–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes Hans Proost PharmD PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Proost, J.H. (2017). Pharmacokinetic–Pharmacodynamic Modelling of Anesthetic Drugs. In: Absalom, A., Mason, K. (eds) Total Intravenous Anesthesia and Target Controlled Infusions. Springer, Cham. https://doi.org/10.1007/978-3-319-47609-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-47609-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-47607-0

  • Online ISBN: 978-3-319-47609-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics