Skip to main content

A Brief History of Blood Platelets: A Personal View

  • Chapter
  • First Online:
Platelets in Thrombotic and Non-Thrombotic Disorders

Abstract

A search on ‘platelets’ in Pubmed yields more than 100,000 publications indicating both the depth and interest. Platelets are small anucleate cells that circulate freely in the vasculature. In haemostasis, they adhere rapidly, become activated, spread and coat the damaged vasculature. Our understanding of platelet structure and function has advanced in waves, dependent upon the development of the next cutting-edge technology. This brief chapter describes the key historical events leading to our current understanding of platelet structure and function.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Addison W (1842) On the colourless corpuscles and on the molecules and cytoblasts in the blood. London Med Gaz 30:144–148

    Google Scholar 

  • Andrews RK, Berndt MC (2004) Platelet physiology and thrombosis. Thromb Res 114:447–453

    Article  CAS  PubMed  Google Scholar 

  • Andrews RK, Booth WJ, Gorman JJ, Castaldi PA, Berndt MC (1989a) Purification of botrocetin from Bothrops jararaca venom. Analysis of the botrocetin-mediated interaction between von Willebrand factor and the human platelet membrane glycoprotein Ib-IX complex. Biochemistry 28(21):8317–8326

    Article  CAS  PubMed  Google Scholar 

  • Andrews RK, Gorman JJ, Booth WJ, Corino GL, Castaldi PA, Berndt MC (1989b) Cross-linking of a monomeric 39/34-kDa fragment of von Willebrand factor (Leu-480/Val-481–Gly-718) to the N-terminal region of the α-chain of membrane glycoprotein Ib on intact platelets with bis(sulfosuccinimidyl) suberate. Biochemistry 28:8326–8336

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner HR (1973) The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc Res 5(2):167–179

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner HR, Haudenschild C (1972) Adhesion of platelets to subendothelium. Ann N Y Acad Sci 201:22–36

    Article  CAS  PubMed  Google Scholar 

  • Baumgartner HR, Sakariassen KS (1985) Factors controlling thrombus formation on arterial lesions. Ann N Y Acad Sci 454:162–177

    Article  CAS  PubMed  Google Scholar 

  • Beale LS (1864) On the germinal matter of the blood, with remarks upon the formation of fibrin. Trans Microsc Soc J 12(1):47–63

    Article  Google Scholar 

  • Berger S (1970) Platelet function: a review. I. Normal function. Can Med Assoc J 102(12):1271–1274

    CAS  PubMed  PubMed Central  Google Scholar 

  • Berndt MC, Gregory C, Chong BH, Zola H, Castaldi PA (1983) Additional glycoprotein defects in Bernard-Soulier’s syndrome: confirmation of genetic basis by parental analysis. Blood 62(4):800–807

    CAS  PubMed  Google Scholar 

  • Berndt MC, Ward CM, Booth WJ, Castaldi PA, Mazurov AV, Andrews RK (1992) Identification of aspartic acid 514 through glutamic acid 542 as a glycoprotein Ib-IX complex receptor recognition sequence in von Willebrand factor. Mechanism of modulation of von Willebrand factor by ristocetin and botrocetin. Biochemistry 31(45):11144–11151

    Article  CAS  PubMed  Google Scholar 

  • Bizzozero G (1881) Su di un nuovo elemento morfologico del sangue dei mammiferi e sulla sua importanza nella trombosi e nella coagulazione. Osservatore Gazetta delle Cliniche 17:785–787

    Google Scholar 

  • Bizzozero J (1882) Ueber einen neuen formbestandtheil des blutes und dessen rolle bei der thrombose und der blutgerinnung. Arch Pathol Anat Physiol Klin Med 90(2):261–332

    Article  Google Scholar 

  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, Lee DM (2010) Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science 327(5965):580–583

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Born GV (1962) Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 194:927–929

    Article  CAS  PubMed  Google Scholar 

  • Brewer DB (2006) Max Schultze (1865), G. Bizzozero (1882) and the discovery of the platelet. Br J Haematol 133(3):251–258

    Article  PubMed  Google Scholar 

  • Brinkhous KM, Read MS, Fricke WA, Wagner RH (1983) Botrocetin (venom coagglutinin): reaction with a broad spectrum of multimeric forms of factor VIII macromolecular complex. Proc Natl Acad Sci U S A 80(5):1463–1466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carrim N, Arthur JF, Hamilton JR, Gardiner EE, Andrews RK, Moran N, Berndt MC, Metharom P (2015) Thrombin-induced reactive oxygen species generation in platelets: a novel role for protease-activated receptor 4 and GPIbα. Redox Biol 6:640–647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark SR, Ma AC, Tavener SA, McDonald B, Goodarzi Z, Kelly MM, Patel KD, Chakrabarti S, McAvoy E, Sinclair GD, Keys EM, Allen-Vercoe E, Devinney R, Doig CJ, Green FH, Kubes P (2007) Platelet TLR4 activates neutrophil extracellular traps to ensnare bacteria in septic blood. Nat Med 13(4):463–469

    Article  CAS  PubMed  Google Scholar 

  • Clemetson KJ, McGregor JL, James E, Dechavanne M, Lüscher EF (1982) Characterization of the platelet membrane glycoprotein abnormalities in Bernard-Soulier syndrome and comparison with normal by surface-labeling techniques and high-resolution two-dimensional gel electrophoresis. J Clin Invest 70(2):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clemetson JM, Polgar J, Magnenat E, Wells TN, Clemetson KJ (1999) The platelet collagen receptor glycoprotein VI is a member of the immunoglobulin superfamily closely related to FcαR and the natural killer receptors. J Biol Chem 274(41):29019–29024

    Article  CAS  PubMed  Google Scholar 

  • Coller BS (1980) Interaction of normal, thrombasthenic, and Bernard-Soulier platelets with immobilized fibrinogen: defective platelet-fibrinogen interaction in thrombasthenia. Blood 55(2):169–178

    CAS  PubMed  Google Scholar 

  • Coller BS (2011) Historical perspective and future directions in platelet research. J Thromb Haemost 9(Suppl 1):374–95

    Article  PubMed  PubMed Central  Google Scholar 

  • Coller BS (2015) αIIbβ3: structure and function. J Thromb Haemost 13(Suppl 1):S17–S25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coller BS, Peerschke EI, Scudder LE, Sullivan CA (1983) Studies with a murine monoclonal antibody that abolishes ristocetin-induced binding of von Willebrand factor to platelets: additional evidence in support of GPIb as a platelet receptor for von Willebrand factor. Blood 61(1):99–110

    CAS  PubMed  Google Scholar 

  • De Luca M, Dunlop LC, Andrews RK, Flannery JV Jr, Ettling R, Cumming DA, Veldman GM, Berndt MC (1995) A novel cobra venom metalloproteinase, mocarhagin, cleaves a 10-amino acid peptide from the mature N terminus of P-selectin glycoprotein ligand receptor, PSGL-1, and abolishes P-selectin binding. J Biol Chem 270(45):26734–26737

    Article  PubMed  Google Scholar 

  • De Marco L, Mazzucato M, Masotti A, Ruggeri ZM (1994) Localization and characterization of an α-thrombin-binding site on platelet glycoprotein Ibα. J Biol Chem 269(9):6478–6484

    PubMed  Google Scholar 

  • Donné A (1842) De I’origine des globules du sang, de leur mode de formation et de leur fin. C R Hebd Seances Acad Sci 14:366–368

    Google Scholar 

  • Erpenbeck L, Schön MP (2010) Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 115(17):3427–3436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fitzgerald LA, Poncz M, Steiner B, Rall SC Jr, Bennett JS, Phillips DR (1987) Comparison of cDNA-derived protein sequences of the human fibronectin and vitronectin receptor alpha-subunits and platelet glycoprotein IIb. Biochemistry 26(25):8158–8165

    Article  CAS  PubMed  Google Scholar 

  • Fressinaud E, Baruch D, Girma JP, Sakariassen KS, Baumgartner HR, Meyer D (1988) von Willebrand factor-mediated platelet adhesion to collagen involves platelet membrane glycoprotein IIb-IIIa as well as glycoprotein Ib. J Lab Clin Med 112(1):58–67

    CAS  PubMed  Google Scholar 

  • Fujimura Y, Titani K, Holland LZ, Russell SR, Roberts JR, Elder JH, Ruggeri ZM, Zimmerman TS (1986) von Willebrand factor. A reduced and alkylated 52/48-kDa fragment beginning at amino acid residue 449 contains the domain interacting with platelet glycoprotein Ib. J Biol Chem 261(1):381–385

    CAS  PubMed  Google Scholar 

  • Fujimura Y, Titani K, Usami Y, Suzuki M, Oyama R, Matsui T, Fukui H, Sugimoto M, Ruggeri ZM (1991) Isolation and chemical characterization of two structurally and functionally distinct forms of botrocetin, the platelet coagglutinin isolated from the venom of Bothrops jararaca. Biochemistry 30(7):1957–1964

    Article  CAS  PubMed  Google Scholar 

  • Gerber F, Gulliver G (1842) Elements of the general and minute anatomy of man and the mammalia, chiefly after original researches/by Fr. Gerber; to which are added, notes and an appendix, comprising researches on the anatomy of the blood, chyle, lymph, thymous fluid, tubercle, etc./by George Gulliver. H. Bailliere, London, p 2

    Google Scholar 

  • Hamberg M, Svensson J, Samuelsson B (1975) Thromboxanes: a new group of biologically active compounds derived from prostaglandin endoperoxides. Proc Natl Acad Sci U S A 72(8):2994–2998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harvey W, Leake CD (1928) Exercitatio anatomica de motu cordis et sanguinis in animalibus/by William Harvey; with an English translation and annotations by Chauncey D. Leake. Thomas, Springfield

    Book  Google Scholar 

  • Hellem A, Owren PA (1964) The mechanism of the hemostatic function of blood platelets. Acta Haematol 31:230–238

    Article  CAS  PubMed  Google Scholar 

  • Hewson W (1771) An experimental inquiry into the properties of the blood [microform]: with remarks on some of its morbid appearances: and an appendix relating to the discovery of the lymphatic system in birds, fish, and the animals called amphibious/by William Hewson. T. Cadell, London

    Google Scholar 

  • Hodgkin T, Lister JJ (1827) Notice of some microscopic observations of the blood and animal tissues. R. Taylor, London

    Google Scholar 

  • Hooke R (1665) Micrographia, or, some physiological descriptions of minute bodies made by magnifying glasses: with observations and inquiries thereupon. Jo. Martyn and Ja. Allestry, The Royal Society, London

    Google Scholar 

  • Howard MA, Perkin J, Salem HH, Firkin BG (1984) The agglutination of human platelets by botrocetin: evidence that botrocetin and ristocetin act at different sites on the factor VIII molecule and platelet membrane. Br J Haematol 57(1):25–35

    Article  CAS  PubMed  Google Scholar 

  • Kilgour FG (1961) William Harvey and his contributions. Circulation 23(2):286–296

    Article  CAS  PubMed  Google Scholar 

  • Klement GL, Yip TT, Cassiola F, Kikuchi L, Cervi D, Podust V, Italiano JE, Wheatley E, Abou-Slaybi A, Bender E, Almog N, Kieran MW, Folkman J (2009) Platelets actively sequester angiogenesis regulators. Blood 113(12):2835–2842

    Article  CAS  PubMed  Google Scholar 

  • Leeuwenhoeck M (1674) Microscopical observations from Mr. Leeuwenhoeck, about blood, milk, bones, the brain, spitle, cuticula, sweat, fatt, teares; communicated in two letters to the publisher. Philos Trans 9(101–111):121–131

    Article  Google Scholar 

  • Loftus JC, Plow EF, Frelinger AL III, D’Souza SE, Dixon D, Lacy J, Sorge J, Ginsberg MH (1987) Molecular cloning and chemical synthesis of a region of platelet glycoprotein IIb involved in adhesive function. Proc Natl Acad Sci U S A 84(20):7114–7118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JA, Chung DW, Fujikawa K, Hagen FS, Papayannopoulou T, Roth GJ (1987) Cloning of the alpha chain of human platelet glycoprotein Ib: a transmembrane protein with homology to leucine-rich alpha 2-glycoprotein. Proc Natl Acad Sci U S A 84(16):5615–5619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez JA, Chung DW, Fujikawa K, Hagen FS, Davie EW, Roth GJ (1988) The alpha and beta chains of human platelet glycoprotein Ib are both transmembrane proteins containing a leucine-rich amino acid sequence. Proc Natl Acad Sci U S A 85(7):2135–2139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • López JA, del Conde I, Shrimpton CN (2005) Receptors, rafts, and microvesicles in thrombosis and inflammation. J Thromb Haemost 3(8):1737–1744

    Article  PubMed  Google Scholar 

  • McEver RP, Bennett EM, Martin MN (1983) Identification of two structurally and functionally distinct sites on human platelet membrane glycoprotein IIb-IIIa using monoclonal antibodies. J Biol Chem 258(8):5269–5275

    CAS  PubMed  Google Scholar 

  • McMorran BJ, Marshall VM, de Graaf C, Drysdale KE, Shabbar M, Smyth GK, Corbin JE, Alexander WS, Foote SJ (2009) Platelets kill intraerythrocytic malarial parasites and mediate survival to infection. Science 323(5915):797–800

    Article  CAS  PubMed  Google Scholar 

  • Mellion BT, Ignarro LJ, Ohlstein EH, Pontecorvo EG, Hyman AL, Kadowitz PJ (1981) Evidence for the inhibitory role of guanosine 3′,5′-monophosphate in ADP-induced human platelet aggregation in the presence of nitric oxide and related vasodilators. Blood 57(5):946–955

    CAS  PubMed  Google Scholar 

  • Moncada S, Gryglewski R, Bunting S, Vane JR (1976) An enzyme isolated from arteries transforms prostaglandin endoperoxides to an unstable substance that inhibits platelet aggregation. Nature 263(5579):663–665

    Article  CAS  PubMed  Google Scholar 

  • Niewiarowski S, McLane MA, Kloczewiak M, Stewart GJ (1994) Disintegrins and other naturally occurring antagonists of platelet fibrinogen receptors. Semin Hematol 31(4):289–300

    CAS  PubMed  Google Scholar 

  • Nurden AT (1974) Platelet macroglycopeptide. Nature 251(5471):151–153

    Article  CAS  PubMed  Google Scholar 

  • Nurden AT, Caen JP (1974) An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 28(2):253–260

    Article  CAS  PubMed  Google Scholar 

  • Nurden AT, Caen JP (1975) Specific roles for platelet surface glycoproteins in platelet function. Nature 255(5511):720–722

    Article  CAS  PubMed  Google Scholar 

  • Nurden AT, Dupuis D, Kunicki TJ, Caen JP (1981) Analysis of the glycoprotein and protein composition of Bernard-Soulier platelets by single and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. J Clin Invest 67(5):1431–1440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Brien JR (1962) Platelet aggregation: Part I Some effects of the adenosine phosphates, thrombin, and cocaine upon platelet adhesiveness. J Clin Pathol 15(5):446–452

    Article  PubMed  PubMed Central  Google Scholar 

  • Osler W (1873) An account of certain organisms occurring in the liquor sanguinis. Proc R Soc Lond 22(148–155):391–398

    Article  Google Scholar 

  • Palmer RM, Ferrige AG, Moncada S (1987) Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327(6122):524–526

    Article  CAS  PubMed  Google Scholar 

  • Peerschke EI, Zucker MB, Grant RA, Egan JJ, Johnson MM (1980) Correlation between fibrinogen binding to human platelets and platelet aggregability. Blood 55(5):841–847

    CAS  PubMed  Google Scholar 

  • Phillips DR, Agin PP (1977) Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest 60:535–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polgár J, Clemetson JM, Kehrel BE, Wiedemann M, Magnenat EM, Wells TN, Clemetson KJ (1997) Platelet activation and signal transduction by convulxin, a C-type lectin from Crotalus durissus terrificus (tropical rattlesnake) venom via the p62/GPVI collagen receptor. J Biol Chem 272(21):13576–13583

    Article  PubMed  Google Scholar 

  • Poncz M, Eisman R, Heidenreich R, Silver SM, Vilaire G, Surrey S, Schwartz E, Bennett JS (1987) Structure of the platelet membrane glycoprotein IIb. Homology to the alpha subunits of the vitronectin and fibronectin membrane receptors. J Biol Chem 262(18):8476–8482

    CAS  PubMed  Google Scholar 

  • Prentice CR, McNicol GP, Douglas AS (1966) Effect of normal and atheromatous aortic tissue on platelet aggregation in vitro. J Clin Pathol 19(4):343–347

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ravanat C, Strassel C, Hechler B, Schuhler S, Chicanne G, Payrastre B, Gachet C, Lanza F (2010) A central role of GPIb-IX in the procoagulant function of platelets that is independent of the 45-kDa GPIbα N-terminal extracellular domain. Blood 116(7):1157–1164

    Article  CAS  PubMed  Google Scholar 

  • Romo GM, Dong JF, Schade AJ, Gardiner EE, Kansas GS, Li CQ, McIntire LV, Berndt MC, López JA (1999) The glycoprotein Ib-IX-V complex is a platelet counterreceptor for P-selectin. J Exp Med 190(6):803–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosa JP, Bray PF, Gayet O, Johnston GI, Cook RG, Jackson KW, Shuman MA, McEver RP (1988) Cloning of glycoprotein IIIa cDNA from human erythroleukemia cells and localization of the gene to chromosome 17. Blood 72(2):593–600

    CAS  PubMed  Google Scholar 

  • Ruan C, Tobelem G, McMichael AJ, Drouet L, Legrand Y, Degos L, Kieffer N, Lee H, Caen JP (1981) Monoclonal antibody to human platelet glycoprotein I. II. Effects on human platelet function. Br J Haematol 49(4):511–519

    Article  CAS  PubMed  Google Scholar 

  • Sakariassen KS, Fressinaud E, Girma JP, Meyer D, Baumgartner HR (1987) Role of platelet membrane glycoproteins and von Willebrand factor in adhesion of platelets to subendothelium and collagen. Ann N Y Acad Sci 516:52–65

    Article  CAS  PubMed  Google Scholar 

  • Scarborough RM, Rose JW, Hsu MA, Phillips DR, Fried VA, Campbell AM, Nannizzi L, Charo IF (1991) Barbourin. A GPIIb-IIIa-specific integrin antagonist from the venom of Sistrurus m. barbouri. J Biol Chem 266(15):9359–9362

    CAS  PubMed  Google Scholar 

  • Scarborough RM, Naughton MA, Teng W, Rose JW, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF (1993a) Design of potent and specific integrin antagonists. Peptide antagonists with high specificity for glycoprotein IIb-IIIa. J Biol Chem 268(2):1066–1073

    CAS  PubMed  Google Scholar 

  • Scarborough RM, Rose JW, Naughton MA, Phillips DR, Nannizzi L, Arfsten A, Campbell AM, Charo IF (1993b) Characterization of the integrin specificities of disintegrins isolated from American pit viper venoms. J Biol Chem 268(2):1058–1065

    CAS  PubMed  Google Scholar 

  • Scarborough RM, Kleiman NS, Phillips DR (1999) Platelet glycoprotein IIb/IIIa antagonists. What are the relevant issues concerning their pharmacology and clinical use? Circulation 100(4):437–444

    Article  CAS  PubMed  Google Scholar 

  • Schultze M (1865) Ein heizbarer Objecttisch und seine verwendung bei untersuchungen des blutes. Arch Mikrosk Anat 1(1):1–42

    Article  Google Scholar 

  • Simon DI, Chen Z, Xu H, Li CQ, Dong J, McIntire LV, Ballantyne CM, Zhang L, Furman MI, Berndt MC, López JA (2000) Platelet glycoprotein Ibα is a counterreceptor for the leukocyte integrin Mac-1 (CD11b/CD18). J Exp Med 192(2):193–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Spencer Lens Company Buffalo (1937) The evolution of the microscope; important names and contributions aiding the progressive development (Buffalo). American Optical Company, New York, p 23

    Google Scholar 

  • Stone MJ (2003) William Osler’s legacy and his contribution to haematology. Br J Haematol 123(1):3–18

    Article  PubMed  Google Scholar 

  • Sugimoto M, Mohri H, McClintock RA, Ruggeri ZM (1991) Identification of discontinuous von Willebrand factor sequences involved in complex formation with botrocetin. A model for the regulation of von Willebrand factor binding to platelet glycoprotein Ib. J Biol Chem 266(27):18172–18178

    CAS  PubMed  Google Scholar 

  • Suzuki-Inoue K, Inoue O, Ding G, Nishimura S, Hokamura K, Eto K, Kashiwagi H, Tomiyama Y, Yatomi Y, Umemura K, Shin Y, Hirashima M, Ozaki Y (2010) Essential in vivo roles of the C-type lectin receptor CLEC-2: embryonic/neonatal lethality of CLEC-2-deficient mice by blood/lymphatic misconnections and impaired thrombus formation of CLEC-2-deficient platelets. J Biol Chem 285(32):24494–24507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tobelem G, Levy-Toledano S, Bredoux R, Michel H, Nurden A, Caen JP, Degos L (1976) New approach to determination of specific functions of platelet membrane sites. Nature 263:427–428

    Article  CAS  PubMed  Google Scholar 

  • Ward CM, Andrews RK, Smith AI, Berndt MC (1996) Mocarhagin, a novel cobra venom metalloproteinase, cleaves the platelet von Willebrand factor receptor glycoprotein Ibα. Identification of the sulfated tyrosine/anionic sequence Tyr-276-Glu-282 of glycoprotein Ibα as a binding site for von Willebrand factor and α-thrombin. Biochemistry 35(15):4929–4938

    Article  CAS  PubMed  Google Scholar 

  • Weiss HJ, Tschopp TB, Baumgartner HR, Sussman II, Johnson MM, Egan JJ (1974) Decreased adhesion of giant (Bernard-Soulier) platelets to subendothelium. Further implications on the role of the von Willebrand factor in hemostasis. Am J Med 57(6):920–925

    Article  CAS  PubMed  Google Scholar 

  • Weiss HJ, Turitto VT, Baumgartner HR (1978) Effect of shear rate on platelet interaction with subendothelium in citrated and native blood. I. Shear rate-dependent decrease of adhesion in von Willebrand’s disease and the Bernard-Soulier syndrome. J Lab Clin Med 92(5):750–764

    CAS  PubMed  Google Scholar 

  • Wijeyewickrema LC, Gardiner EE, Shen Y, Berndt MC, Andrews RK (2007) Fractionation of snake venom metalloproteinases by metal ion affinity: a purified cobra metalloproteinase, Nk, from Naja kaouthia binds Ni2+-agarose. Toxicon 50(8):1064–1072

    Article  CAS  PubMed  Google Scholar 

  • Wright JH (1906) The origin and nature of the blood plates. Boston Med Surg J 154(23):643–645

    Article  Google Scholar 

  • Zucker MB, Pert JH, Hilgartner MW (1966) Platelet function in a patient with thrombasthenia. Blood 28(4):524–534

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Michael C. Berndt Ph.D. or Robert K. Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Berndt, M.C., Metharom, P., Andrews, R.K. (2017). A Brief History of Blood Platelets: A Personal View. In: Gresele, P., Kleiman, N., Lopez, J., Page, C. (eds) Platelets in Thrombotic and Non-Thrombotic Disorders. Springer, Cham. https://doi.org/10.1007/978-3-319-47462-5_1

Download citation

Publish with us

Policies and ethics