Skip to main content

Carotenoids in Microalgae

  • Chapter
  • First Online:
Carotenoids in Nature

Part of the book series: Subcellular Biochemistry ((SCBI,volume 79))

Abstract

Carotenoids are a class of isoprenoids synthesized by all photosynthetic organisms as well as by some non-photosynthetic bacteria and fungi with broad applications in food, feed and cosmetics, and also in the nutraceutical and pharmaceutical industries. Microalgae represent an important source of high-value products, which include carotenoids, among others. Carotenoids play key roles in light harvesting and energy transfer during photosynthesis and in the protection of the photosynthetic apparatus against photooxidative damage. Carotenoids are generally divided into carotenes and xanthophyls, but accumulation in microalgae can also be classified as primary (essential for survival) and secondary (by exposure to specific stimuli).

In this chapter, we outline the high value carotenoids produced by commercially important microalgae, their production pathways, the improved production rates that can be achieved by genetic engineering as well as their biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Baroli I, Niyogi KK (2000) Molecular genetics of xanthophylls-dependent photoprotection in green algae and plants. PhilosTrans R Soc Lond B 355:1385–1394

    Article  CAS  Google Scholar 

  • Barrera D, Gimpel J, Mayfield S (2014) Rapid screening for the robust expression of recombinant proteins in algal plastids. In: Maliga P (ed) Chloroplast biotechnology: methods and protocols. Springer

    Google Scholar 

  • Batista AP, Nunes MC, Fradinho P, Gouveia L, Raymundo A, Franco JM (2011) Novel foods with microalgal ingredients – effect of gel setting conditions on the linear viscoelasticity of Spirulina and Haematococcus gels. J Food Eng 110:182–189

    Article  Google Scholar 

  • Borowitzka MA, Borowitzka LJ (1987) Vitamins and fine chemicals from micro-algae. In: Borowitzka MA, Borowitzka LJ (eds) Micro-algal biotechnology. Cambridge University Press, New York

    Google Scholar 

  • Borowitzka MA (2013) High-value products from microalgae-their development and commercialization. J Appl Phycol 25(3):743–756

    Article  CAS  Google Scholar 

  • Boussiba S (2000) Carotenogenesis in the green alga Haematococcus pluvialis: cellular physiology and stress response. Physiol Plant 108:111–117

    Article  CAS  Google Scholar 

  • Breithaupt DE (2007) Modern application of xanthophylls in animal feeding – a review. Trends Food SciTechnol 18:501–506

    Article  CAS  Google Scholar 

  • Cadoret JP, Bardor M, Lerouge P, Cabigliera M, Henríquez V, Carlier A (2008) Microalgae as cell factories producing recombinant commercial proteins. Med Sci (Paris) 24:375–382

    Article  Google Scholar 

  • Cadoret JP, Garnier M, Saint-Jean B (2012) Microalgae, functional genomics and biotech. Adv Bot Res 64:285–341

    Article  Google Scholar 

  • Camacho JE, González G, Klotz B (2013) Producción de Astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés. Scielo 11(19):92–104

    Google Scholar 

  • Campenni L, Nobre BP, Santos CA, Oliveira AC, Aires-Barros MR, Palabra MF, Gouveia L (2013) Carotenoid and lipid production by the autotrophic microalga Chlorella protothecoides under nutritional, salinity, and luminosity stress conditions. Appl Microbiol Biotechnol 97:1383–1393

    Article  CAS  PubMed  Google Scholar 

  • Chacón-Lee TL, González-Mariño GE (2010) Microalgae for “healthy” foods – possibilities and challenges. Compr Rev Food Sci Food 9(6):655–675

    Article  Google Scholar 

  • Chana MC, Hoa SH, Lee DJ, Chenc CY, Huang CC, Chang JS (2013) Characterization, extraction and purification of lutein produced by an indigenous microalga Scenedesmus obliquus CNW-N. Biochem Eng J 78:24–31

    Article  CAS  Google Scholar 

  • Chen H, Lao YM, Jiang JG (2011) Effects of salinities on the gene expression of a NAD+) -dependent glycerol-3-phosphate dehydrogenase in Dunaliella salina. Sci Total Environ 409:1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A (2014) Accumulation of Astaxanthin by a New Haematococcus pluvialis Strain BM1 from the White Sea Coastal Rocks (Russia). Mar Drugs 12:4504–4520

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Chiu CJ, Taylor A (2007) Nutritional antioxidants and age-related cataract and maculopathy. Exp Eye Res 84(2):229–245

    Article  CAS  PubMed  Google Scholar 

  • Ciccone MM, Cortese F, Gesualdo M, Carbonara S, Zito A, Ricci G, De Pascalis F, Scicchitano P, Riccioni G (2013) Dietary intake of carotenoids and their antioxidant and anti-inflammatory effects in cardiovascular care. Mediat Inflamm. doi.org/101155/2013/78237

    Google Scholar 

  • Coesel SN, Baumgartner AC, Teles LM, Ramos AA, Henriques NM, Cancela L, Varela JCS (2008a) Nutrient limitation is the main regulatory factor for carotenoid accumulation and for psy and pds steady state transcript levels in Dunaliella salina (Chlorophyta) exposed to high light and salt stress. Mar Biotechnol 10:602–611

    Article  CAS  PubMed  Google Scholar 

  • Coesel S, Oborník M, Varela J, Falciatore A, Bowler C (2008b) Evolutionary Origins and Functions of the Carotenoid Biosynthetic Pathway in Marine Diatoms. PLoS One 3(8):e2896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cerón MC, Campos I, Sánchez JF, Acien FG, Molina E, Fernandez-Sevilla JM (2008) Recovery of lutein from microalgae biomass: development of a process for Scenedesmus almeriensis. J Agric Food Chem 56:11761–11766

    Article  PubMed  CAS  Google Scholar 

  • Cordero BF, Couso I, Leon R, Rodríguez H, Vargas MA (2012) Isolation and characterization of a lycopene epsilon-cyclase gene of Chlorella (Chromochloris) zofingiensis: regulation of the carotenogenic pathway by nitrogen and light. Mar Drugs 10:2069–2088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cordero BF, Couso I, Leon R, Rodríguez H, Vargas M (2011) Enhancement of carotenoids biosynthesis in Chlamydomonas reinhardtii by nuclear transformation using a phytoene synthase gene isolated from Chlorella zofingiensis. App Microbiol Biotechnol 91:341–351

    Article  CAS  Google Scholar 

  • Cordero BF, Obraztsova I, Martin L, Couso I, Leon R, Vargas MA, Rodriguez H (2010) Isolation and characterization of a lycopene beta-cyclase gene from the astaxanthin-producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 46:229–1238

    Article  CAS  Google Scholar 

  • Couso I, Vila M, Rodríguez H, Vargas M, Leon R (2011) Overexpression of an Exogenous Phytoene Synthase Gene in the Unicellular Alga Chlamydomonas reinhardtii Leads to an Increase in the Content of Carotenoids. Biotechnol Prog 27(1):54–60

    Article  CAS  PubMed  Google Scholar 

  • Cui H, Wang Y, Qin S (2012) Genome wide analysis of carotenoid cleavage dioxygenase in unicellular and filamentous cyanobacteria. Comp Funct Genomics ID 164690:13

    Google Scholar 

  • Cunningham FX, Gantt E (1998) Genes and enzymes of carotenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 49:557–583

    Article  CAS  PubMed  Google Scholar 

  • Davies FK, Jinkerson RE, POsewitz MC (2015) Toward a photosynthetic microbial platform for terpenoid engineering. Photosynth Res 123(3):265–284

    Article  CAS  PubMed  Google Scholar 

  • Del Campo JA, Garcia-González M, Guerrero MG (2007) Outdoor cuktivation of microalgae for carotenoid production: current state and perspectives. Appl Microbiol Biotechnol 74:1163–1174

    Article  CAS  PubMed  Google Scholar 

  • Disch A, Schwender J, Müller C, Lichtenthaler HK, Rohmer M (1998) Distribution of the mevalonate and glyceraldehyde phosphate/pyruvate pathways for isoprenoid biosynthesis in unicellular algae and the cyanobacterium Synechocystis PCC 6714. Biochem J 333(Pt 2):381–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dwyer JH, Navab M, Dwyer KM, Hassan K, Sun P, Shircore A, Hama-Levy S, Hough G, Wang X, Drake T, Merz CN, Fogelman AM (2001) Oxygenated carotenoid lutein and progression of early atherosclerosis: the Los Angeles atherosclerosis study. Circulation 103:2922–2927

    Article  CAS  PubMed  Google Scholar 

  • Emeish S (2012) Production of Natural β-Carotene from Dunaliella Living in the Dead Sea. Jordan J Environ Earth Sci 4(12):23–27

    Google Scholar 

  • Frank HA, Cogdell RJ (1996) Carotenoids in photosynthesis. Photochem Photobiol 63(3):257–264

    Article  CAS  PubMed  Google Scholar 

  • Dufosse L, Galaup P, Yaron A, Arad SM, Blanc P, Murthy KNC, Ravishankar GA (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality. Trends Food Sci Technol 16:389–406

    Article  CAS  Google Scholar 

  • Fassett R, Coombes J (2011) Astaxanthin: a potential therapeutic agent in cardiovascular disease. Mar Drugs 9(3):447–465

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernández-Sevilla JM, Acién Fernández FG, Molina Grima E (2010) Biotechnological production of lutein and its applications. Appl Microbiol Biotechnol 86:27–40

    Article  PubMed  CAS  Google Scholar 

  • Fukusaki E-I, Nishikawa T, Kato K, Shinmyo A, Hemmi H, Nishino T, Kobayashi A (2003) Introduction of the archaebacterial geranylgeranyl pyrophosphate synthase gene into Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng 95(3):283–287

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Meng C, Zhang X, Xu D, Miao X, Wang Y, Yang L, Chen L, Ye N (2012) Induction of salicylic acid (SA) on transcriptional expression of eight carotenoid genes and astaxanthin accumulation in Haematococcus pluvialis. Enzyme Microb Technol 51:225–230

    Article  CAS  PubMed  Google Scholar 

  • García-Chavarría M, Lara-Flores M (2013) The use of carotenoid in aquaculture. Res J Fisher Hydrobiol 8(2):38–49

    Google Scholar 

  • García-González M, Moreno J, Manzano JC, Florêncio FJ, Guerrero MG (2005) Production of Dunaliella salina biomass rich in 9-cis-β-carotene and lutein in a closed tubular photobioreactor. J Biotechnol 115:81–90

    Article  PubMed  CAS  Google Scholar 

  • Giannelli L, Yamada L, Katsuda T, Yamaji H (2015) Effects of temperature on the astaxanthin productivity and light harvesting characteristics of the green alga Haematococcus pluvialis. J Biosci Bioeng 119(3):345–350

    Article  CAS  PubMed  Google Scholar 

  • Giuliano G, Tavazza R, Diretto G, Beyer P, Taylor MA (2008) Metabolic engineering of carotenoid biosynthesis in plants. Trends Biotechnol 26:139–145

    Article  CAS  PubMed  Google Scholar 

  • Gong Y, Hu H, Gao Y, Xu X, Gao H (2011) Microalgae as platforms for production of recombinant proteins and valuable compounds: Progress and prospects. J Ind Microbiol Biotechnol 38:1879–1890

    Article  CAS  PubMed  Google Scholar 

  • Grossman AR, Lohr M, Im CS (2004) Chlamydomonas reinhardtii in the landscape of pigments. Annu Rev Genet 38:119–173

    Article  CAS  PubMed  Google Scholar 

  • Grünewald K, Hagen C (2000) Extrusion of secondary carotenoid containing vesicles from flagellates of Haematococcus pluvialis (Volvocales; Chlorophyceae). J Appl Bot 74:141–144

    Google Scholar 

  • Grünewald K, Hirschberg J, Hagen C (2001) Ketocarotenoid biosynthesis outside of plastids in the unicellular green alga Haematococcus pluvialis. J Biol Chem 276:6023–6029

    Article  PubMed  Google Scholar 

  • Guedes A, Amaro H, Malcata F (2011) Microalgae as Sources of Carotenoids. Mar Drugs 9:625–644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guerin M, Huntley ME, Olaizola M (2003) Haematococcus astaxanthin: applications for human health and nutrition. Trends Biotechnol 21:210–216

    Article  CAS  PubMed  Google Scholar 

  • Han D, Li YT, Hu Q (2013) Astaxanthin in microalgae: pathways, functions and biotechnological implications. Algae 28:131–147

    Article  CAS  Google Scholar 

  • Heider SA, Peters-Wendisch P, Wendisch VF, Beekwilder J, Brautaset T (2014) Metabolic engineering for the microbial production of carotenoids and related products with a focus on the rare C50 carotenoids. Appl Microbiol Biotechnol 98(10):4355–4368

    Article  CAS  PubMed  Google Scholar 

  • Hirschberg J (2001) Carotenoid biosynthesis in flowering plants. Curr Opin Plant Biol 4:210–218

    Article  CAS  PubMed  Google Scholar 

  • Ho SH, Chan MC, Liu CC, Chen CY, Lee WL, Lee DJ, Chang JS (2014) Enhancing lutein productivity of an indigenous microalga Scenedesmus obliquus FSP-3 using light-related strategies. Bioresour Technol 152:275–282

    Article  CAS  PubMed  Google Scholar 

  • Hong M, Hwang SK, Chang WC, Kim BW, Lee J, Sim SJ (2015) Enhanced autotrophic astaxanthin production from Haematococcus pluvialis under high temperature via heat stress-driven Haber–Weiss reaction. Appl Microbiol Biotechnol doi:10.1007/s00253-015-6440-6445

  • Houille-Vernes L, Rappaport F, Wollman FA, Alric J, Johnson X (2011) Plastid terminal oxidase 2 (PTOX2) is the major oxidase involved in chlororespiration in Chlamydomonas. Proc Natl Acad Sci U S A 108:20820–20825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang JC, Liu J, Li Y, Chen F (2008) Isolation and characterization of the phytoene desaturase gene as a potential selective marker for genetic engineering of the astaxanthin producing green alga Chlorella zofingiensis (Chlorophyta). J Phycol 44:684–690

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Wang Y, Sandmann G, Chen F (2006) Isolation and characterization of a carotenoid oxygenase gene from Chlorella zofingiensis (Chlorophyta). Appl Microbiol Biotechnol 71:473–479

    Article  CAS  PubMed  Google Scholar 

  • Kathiresan S, Arun C, Ravishankar GA, Sarada R (2015) Regulation of astaxanthin and its intermediates through cloning andgenetic transformation of β-carotene ketolase in Haematococcus pluvialis. J Biotechnol 196–197:33–41

    Article  PubMed  CAS  Google Scholar 

  • Kempinski C, Jiang Z, Bell S, Chappell J (2015) Metabolic engineering of higher plants and algae for isoprenoid production. Adv Biochem Eng Biotechnol. doi:10.1007/10_2014_290

    Google Scholar 

  • Krishna KB, Mohanty P (1998) J Sci Ind Res (India) 57:51–63

    CAS  Google Scholar 

  • Ladygin VG (2000) Biosynthesis of carotenoids in the chloroplasts of the green alga Haematococcus pluvialis. Russ J Plant Physiol 47:796–814

    Article  CAS  Google Scholar 

  • Lamers P, Janssen M, De Vos R, Bino R, Wijffels R (2008) Exploring and exploiting carotenoid accumulation in Dunaliella salina for cell-factory applications. Trends Biotechnol 26(11):631–638

    Article  CAS  PubMed  Google Scholar 

  • Leon R, Couso I, Fernandez E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicelullar microalga Chlamydomonas reinhardtii. J Biotechnol 130:143–152

    Article  CAS  PubMed  Google Scholar 

  • Leu S, Boussiba S (2014) Advances in the Production of High-Value Products by Microalgae. Indust Biotechnol 10(3):169–183

    Article  CAS  Google Scholar 

  • Lemoine Y, Schoefs B (2010) Secondary ketocarotenoid astaxanthin biosynthesis in algae: a multifunctional response to stress. Photosynth Res 106:155–177

    Article  CAS  PubMed  Google Scholar 

  • Lemoine Y, Rmiki NE, Creach A, Rachidi J, Schoefs B (2008) Cytoplasmic accumulation of astaxanthin by the green alga Haematococcus pluvialis (flotow). In: Schoefs B (ed) Plant Cell Organelles-Selected topics. Research Signpost, Trivandrum, pp 251–284

    Google Scholar 

  • Li M, Zhibing G, Yan C, Chunlei SX (2013) Structure and function characterization of the phytoene desaturase related to the lutein biosynthesis in Chlorella protothecoides CS-41. Mol Biol Rep 40:3351–3361

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang JL, Sandmann G, Chen F (2008) Glucose sensing and the mitochondria alternative pathway are involved in the regulation of astaxanthin biosynthesis in the dark-grown Chlorella zofingiensis (Chlorophyceae). Planta 228:735–743

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Huang J, Sandmann G, Chen F (2009) High-light and sodium chloride stress differentially regulate the biosynthesis of astaxanthin in Chlorella zofingiensis (Chlorophyceae). J Phycol 45:635–641

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Sommerfeld M, Chen F, Hu Q (2010) Effect of photon flux densities on regulation of carotenogenesis and cell viability of Haematococcus pluvialis (Chlorophyceae). J Appl Phycol 22:253–263

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK (1999) The 1-deoxy-D-xylulose-5-phosphate pathway of isoprenoid biosynthesis in plants. Annu Rev Plant Physiol Plant Mol Biol 50:47–65

    Article  CAS  PubMed  Google Scholar 

  • Lichtenthaler HK, Rohmer M, Schwender J (1997) Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol Plant 101:643–652

    Article  CAS  Google Scholar 

  • Lin JH, Lee DJ, Chang JS (2014) Lutein production from biomass: Marigold flowers versus microalgae. Bioresour Technol 184:421–428

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Sun Z, Gerken H, Huang J, Jiang Y, Chen F (2014) Genetic engineering of the green alga Chlorella zofingiensis: a modified norflurazon-resistant phytoene desaturase gene as a dominant selectable marker. Appl Microbiol Biotechnol 98:5069–5079

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sun Z, Zhong Y, Gerken H, Huang J, Chen F (2013) Utilization of cane molasses towards cost-saving astaxanthin production by a Chlorella zofingiensis mutant. J Appl Phycol 25:1447–1456

    Article  CAS  Google Scholar 

  • Liu J, Zhong Y, Sun Z, Huang J, Sandmann G, Chen F (2010) One amino acid substitution in phytoene desaturase makes Chlorella zofingiensis resistant to norflurazon and enhances the biosynthesis of astaxanthin. Planta 232:61–67

    Article  CAS  PubMed  Google Scholar 

  • Lohr M, Wilhelm C (1999) Algae displaying the diadinoxanthin cycle also possess the violaxanthin cycle. Proc Natl Acad Sci U S A 96:8784–8789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lohr M, Wilhelm C (2001) Xanthophyll synthesis in diatoms: Quantifications of putative intermediate and comparison of pigment conversion kinetics with rate constants derive form a model. Planta 212:382–391

    Article  CAS  PubMed  Google Scholar 

  • Lopez J, Fimbres D, Medina LA, Miranda A, Martínez LR, Molina DM (2013) Production of biomass and carotenoids of Dunaliella tertiolecta in nitrogen-limited cultures. Fyton ISSN 0031 9457 (2013) 82:23–30

    Google Scholar 

  • Lorenz TR, Cysewski GR (2000) Commercial potential for Haematococcus microalgae as a natural source of astaxanthin. Trends Biotechnol 18:160–167

    Article  CAS  PubMed  Google Scholar 

  • Macias-Sanchez MD, Fernández-Sevilla M, Acién-Fernández FG, Cerón-García MC, Molina-Grima E (2010) Supercritical fluid extraction of carotenoids from Scenedesmus almeriensis. Food Chem 123:928–935

    Article  CAS  Google Scholar 

  • Matsuno T (2001) Aquatic animal carotenoids. Fish Sci 67:771–783. doi:10.1046/j.1444-2906.2001.00323.x

    Article  CAS  Google Scholar 

  • Miki W (1991) Biological functions and activities of animal carotenoids. Pure Appl Chem 63:141–146

    Article  CAS  Google Scholar 

  • Moulin P, Lemoine Y, Schoefs B (2010) Carotenoids and stress in higher plants and algae. In: Pessarakli M (ed) Handbook of plant and crop stress, 3rd edn. Taylor and Francis, New York

    Google Scholar 

  • Mulders K, Lamers PP, Martens DE, Wijffels RH (2014) Phototrophic pigment production with microalgae: biological constraints and opportunities. J Phycol 50:229–242

    Article  CAS  PubMed  Google Scholar 

  • Naik PS, Chanemougasoundharam A, Paul Khurana SM, Kalloo G (2003) Genetic manipulation of carotenoid pathway in higher plants. Curr Sci 85:1423–1430

    CAS  Google Scholar 

  • Nunes M, Henriques AA, Pinto E, Leal R, Monteiro AC (2013) Carotenogênese em celulas de Haematococcus pluvialis induzidas pelos estresses luminoso e nutricional. Pesq Agropec Bras Brasilia 48(8):825–832

    Article  Google Scholar 

  • Olaizola M (2003) Commercial development of microalgal biotechnology: from the test tube to the marketplace. Biomol Eng 20:459–466

    Article  CAS  PubMed  Google Scholar 

  • Oren A (2005) A hundred years of Dunaliella research: 1905–2005. Saline Syst 1:2

    Article  PubMed  PubMed Central  Google Scholar 

  • Onogi N, Okuno M, Matsushima-Nishiwaki R, Fukutomi Y, Moriwaki H, Muto Y (1998) Antiproliferative effect of carotenoids on human colon cancer cells without conversion to retinoic acid. Nutr Cancer 32:20–24

    Article  CAS  PubMed  Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic Insights into Marine Microalgae. Annu Rev Genet 42:619–645

    Article  CAS  PubMed  Google Scholar 

  • Perusek L, Maeda T (2013) Vitamin A derivatives as treatment options for retinal degenerative diseases. Nutrients 5:2646–2666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prieto A, Canavate JP, Garcia-Gonzalez M (2011) Assessment of carotenoid production by Dunaliella salina in different culture systems and operation regimes. J Biotechnol 151:180–185

    Article  CAS  PubMed  Google Scholar 

  • Priyadarshani I, Biswajit R (2012) Commercial and industrial applications of micro algae – a review. J Algal Biomass Utln 3(4):89–100

    Google Scholar 

  • Pogson BJ, McDonald KA, Truong M, Britton G, DellaPenna D (1996) Arabidopsis carotenoid mutants demonstrate that lutein is not essential for photosynthesis in higher plants. Plant Cell 8:1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pogson BJ, Niyogi KK, Björkman O, DellaPenna D (1998) Altered xanthophyll compositions adversely affect chlorophyll accumulation and non-photochemical quenching in Arabidopsis mutants. Proc Natl Acad Sci U S A 95:13324–13329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol 65(6):635–648

    Article  CAS  PubMed  Google Scholar 

  • Rabbani S, Beyer P, Von Lintig J, Hugueney P, Kleinig H (1998) Induced beta-carotene synthesis driven by triacylglycerol deposition in the unicellular alga Dunaliella bardawil. Plant Physiol 116:1239–1248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos A, Marques R, Rodrigues M, Henriques N, Baumgartner A, Castilho R, Brenig B, Varela JC (2009) Molecular and functional characterization of a cDNA encoding 4 hydroxy-3-methylbut-2-enyl diphosphate reductase from Dunaliella salina. J Plant Physiol 166:968–977

    Article  CAS  PubMed  Google Scholar 

  • Ranga Rao A, Phang SM, Sarada R, Ravishankar GA (2014) Astaxanthin: sources, extraction, stability, biological activities and its commercial applications—a review. Mar Drugs 12:128–152

    Article  CAS  Google Scholar 

  • Rohdich F, Zepeck F, Adam P, Hecht S, Kaiser J (2003) The deoxyxylulose phosphate pathway of isoprenoid biosynthesis: studies on the mechanisms of the reactions catalyzed by IspG and IspH protein. Proc Natl Acad Sci U S A 100:1586–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rohmer M (2010) Methylerythritol phosphate pathway. In: Mander L, Lui H-W (eds) Comprehensive natural products II chemistry and biology, vol 1. Elsevier, Oxford

    Google Scholar 

  • Rohmer M (2007) Diversity in isoprene unit biosynthesis: the methylerythritol phosphate pathway in bacteria and plastids. Pure Appl Chem 79:739–751

    Article  CAS  Google Scholar 

  • Sanchez JF, Fernandez JM, Acien FG, Ceron MC, Perez J, Molina E (2008) Biomass and lutein productivity of Scenedesmus almeriensis: influence of irradiance, dilution rate and temperature. Appl Microbiol Biotechnol 79:719–729

    Article  CAS  PubMed  Google Scholar 

  • Sanchez JF, Fernandez JM, Acien FG, Perez J, Molina E (2007) Influence of culture conditions in the productivity and lutein content of the new strain Scenedesmus almeriensis. Process Biochem 43(4):398–405

    Article  CAS  Google Scholar 

  • Sanchez-Estudillo L, Freile-Pelegrin Y, Rivera-Madrid R, Robledo D, Narvaez-Zapata JA (2006) Regulation of two photosynthetic pigment-related genes during stress-induced pigment formation in the green alga, Dunaliella salina. Biotechnol Lett 28:787–791

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G (2009) Evolution of carotene desaturation: the complication of a simple pathway. Arch Biochem Biophys 483:169–174

    Article  CAS  PubMed  Google Scholar 

  • Sandmann G, Rohmer S, Fraser PD (2006) Understanding carotenoid metabolism as a necessity for genetic engineering of crop plants. Metab Eng 8:291–302

    Article  CAS  PubMed  Google Scholar 

  • Shi XM, Jiang Y, Chen F (2002) High-yield production of lutein by the green microalgae Chlorella protothecoides in heterotrophic fedbatch culture. Biotechnol Prog 18:723–727

    Article  CAS  PubMed  Google Scholar 

  • Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Biotech 72(12):7477

    CAS  Google Scholar 

  • Steinbrenner J, Linden H (2001) Regulation of two carotenoid biosynthesis genes coding for phytoene synthase and carotenoid hydroxylase during stress-induced astaxanthin formation in the green alga Haematococcus pluvialis. Plant Physiol 125:810–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun Z, Cunningham FX, Gantt E (1998) Differential expression of two isopentenyl pyrophosphate isomerases and enhanced carotenoid accumulation in a unicellular Chlorophyte. Proc Natl Acad Sci U S A 95:11482–11488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun N, Wang Y, Li YT, Huang JC, Chen F (2008a) Sugar-based growth, astaxanthin accumulation and carotenogenesis transcription of heterotrophic Chlorella zofingiensis (Chlorophyceae). Process Biochem 43:1288–1292

    Article  CAS  Google Scholar 

  • Sun G, Zhang X, Sui Z, Mao Y (2008b) Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta). Mar Biotechnol (NY) 10(3):219–226

    Article  CAS  Google Scholar 

  • Sun Z, Liu J, Bi1 Y, Zhou Z (2014) Microalgae as the Production Platform for Carotenoids In: Liu J, Sun Z, Gerken H (eds) Recent advances in microalgal biotechnology, OMICS Group eBooks, Foster City

    Google Scholar 

  • Telfer A (2005) Too much light? How beta-carotene protects the photosystem II reaction centre. Photochem Photobiol Sci 4(12):950–956

    Article  CAS  PubMed  Google Scholar 

  • Tran D, Haven J, Qiu W, Polle JE (2009) An update on carotenoid biosynthesis in algae: phylogenetic evidence for the existence of two classes of phytoene synthase. Planta 229:723–729

    Article  CAS  PubMed  Google Scholar 

  • Vidhyavathi R, Venkatachalam L, Sarada R, Ravishankar GA (2008) Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J Exp Bot 59:1409–1418

    Article  CAS  PubMed  Google Scholar 

  • Vila M, Couso I, Leon R (2008) Carotenoid content in mutants of the chlorophyte Chlamydomonas reinhardtii with low expression levels of phytoene desaturase. Process Biochem 43(10):1147–1152

    Article  CAS  Google Scholar 

  • Wan M, Hou D, Ya L, Fan J, Huang J, Liang S, Wang W, Pan R, Wang J, Li S (2014) The effective photoinduction of Haematococcus pluvialis for accumulating astaxanthin with attached cultivation. Biores Technol 163:26–32

    Article  CAS  Google Scholar 

  • Wang JX, Sommerfeld M, Hu Q (2009) Occurence and environmental stress responses of two plastid terminal oxidases in Haematococcus pluvialis (Chlorophyceae). Planta 230:191–203

    Article  CAS  PubMed  Google Scholar 

  • Wei D, Chen F, Chen G, Zhang X, Liu L, Zhang H (2008) Enhanced production of lutein in heterotrophic Chlorella protothecoides by oxidative stress. Sci China Ser C Life Sci 51:1088–1093

    Article  CAS  Google Scholar 

  • Wong KH (2006) Transgenic Chlamydomonas reinhardtii as an experimental system to study the regulation of carotenoid biosynthesis in green microalgae. Thesis. The University of Hong Kong

    Google Scholar 

  • Wu DY, Wright DA, Wetzel C, Voytas DF, Rodermel S (1999) The immutans variegation locus of Arabidopsis defines a mitochondrial alternative oxidase homolog that functions during early chloroplast biogenesis. Plant Cell 11:43–55

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yaakob Z, Ali E, Zainal A, Mohamad M, Takrif MS (2014) An overview: biomolecules from microalgae for animal feed and aquaculture. J Biol Res-Thessaloniki 21:6

    Article  Google Scholar 

  • Yan Y, Zhu YH, Jiang JG, Song DL (2005) Cloning and sequence analysis of the phytoene synthase gene from a unicellular chlorophyte, Dunaliella salina. J Agric Food Chem 53:1466–1469

    Article  CAS  PubMed  Google Scholar 

  • Ye ZW, Jiang JG, Wu GH (2008) Biosynthesis and regulation of carotenoids in Dunaliella: progresses and prospects. Biotechnol Adv 26:352–360

    Article  CAS  PubMed  Google Scholar 

  • Ye ZW, Jiang JG (2010) Analysis of an Essential Carotenogenic Enzyme: ζ-Carotene Desaturase from Unicellular Alga Dunaliella salina. J Agric Food Chem 58:11477–11482

    Article  CAS  PubMed  Google Scholar 

  • Zheng KJ, Wang CG, Xiao M, Chen J, Li JC, Hu ZL (2014) Expression of bkt and bch genes from Haematococcus pluvialis in transgenic Chlamydomonas. Sci China Life Sci 57(10):1028–1033

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitalia Henríquez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Henríquez, V., Escobar, C., Galarza, J., Gimpel, J. (2016). Carotenoids in Microalgae. In: Stange, C. (eds) Carotenoids in Nature. Subcellular Biochemistry, vol 79. Springer, Cham. https://doi.org/10.1007/978-3-319-39126-7_8

Download citation

Publish with us

Policies and ethics