Skip to main content

Cdc37 as a Co-chaperone to Hsp90

  • Chapter
  • First Online:
The Networking of Chaperones by Co-chaperones

Part of the book series: Subcellular Biochemistry ((SCBI,volume 78))

Abstract

The co-chaperone p50/Cdc37 is an important partner for Hsp90, assisting in molecular chaperone activities, particularly with regard to the regulation of protein kinases. The Hsp90/Cdc37complex controls the folding of a large proportion of protein kinases and thus stands at the hub of a multitude of intracellular signaling networks. Its effects thus reach beyond the housekeeping pathways of protein folding into regulation of a wide range of cellular processes. Due to its influence in cell growth pathways Cdc37 has attracted much attention as a potential intermediate in carcinogenesis. Cdc37 is an attractive potential target in cancer due to: (1) it may be expressed to high level in some types of cancer and (2) Cdc37 controls multiple signaling pathways. This indicates a potential for: (1) selectivity due to its elevated expression and (2) robustness as the co-chaperone may control multiple growth signaling pathways and thus be less prone to evolution of resistance than other oncoproteins. Cdc37 may also be involved in other aspects of pathophysiology. Protein aggregation disorders have been linked to molecular chaperones and to age related declines in molecular chaperones and co-chaperones. Cdc37 appears to be a potential agent in longevity due to its links to protein folding and autophagy and it will be informative to study the role of Cdc37 maintenance/decline in aging organisms.

This work was supported by NIH research grants RO-1CA047407, R01CA119045 and RO-1CA094397

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Bitting RL, Armstrong AJ (2013) Targeting the PI3K/Akt/mTOR pathway in castration-resistant prostate cancer. Endocr Relat Cancer 20:83–99

    Article  Google Scholar 

  • Boellmann F, Guettouche T, Guo Y, Fenna M, Mnayer L, Voellmy R (2004) DAXX interacts with heat shock factor 1 during stress activation and enhances its transcriptional activity. Proc Natl Acad Sci U S A 101:4100–4105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calderwood SK (2013) Molecular cochaperones: tumor growth and cancer treatment. Scientifica 2013:217513

    Google Scholar 

  • Calderwood SK, Gong J (2012) Molecular chaperones in mammary cancer growth and breast tumor therapy. J Cell Biochem 113:1096–1103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Calderwood SK, Khaleque MA, Sawyer DB, Ciocca DR (2006) Heat shock proteins in cancer: chaperones of tumorigenesis. Trends Biochem Sci 31:164–172

    Article  CAS  PubMed  Google Scholar 

  • Calderwood SK, Murshid A, Prince T (2009) The shock of aging: molecular chaperones and the heat shock response in longevity and aging-a mini-review. Gerontology 55:550–558

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Caplan AJ, Ma’ayan A, Willis IM (2007a) Multiple kinases and system robustness: a link between Cdc37 and genome integrity. Cell Cycle 6:3145–3147

    Google Scholar 

  • Caplan AJ, Mandal AK, Theodoraki MA (2007b) Molecular chaperones and protein kinase quality control. Trends Cell Biol 17:87–92

    Google Scholar 

  • Ciocca DR, Calderwood SK (2005) Heat shock proteins in cancer: diagnostic, prognostic, predictive, and treatment implications. Cell Stress Chaperones 10:86–103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ciocca DR, Arrigo AP, Calderwood SK (2013) Heat shock proteins and heat shock factor 1 in carcinogenesis and tumor development: an update. Arch Toxicol 87:19–48

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cox MB, Johnson JL (2011) The role of p23, Hop, immunophilins, and other co-chaperones in regulating Hsp90 function. Methods Mol Biol 787:45–66

    Article  CAS  PubMed  Google Scholar 

  • Dey B, Lightbody JJ, Boschelli F (1996) CDC37 is required for p60v-src activity in yeast. Mol Biol Cell 7:1405–1417

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ellis RJ (2007) Protein misassembly: macromolecular crowding and molecular chaperones. Adv Exp Med Biol 594:1–13

    Article  PubMed  Google Scholar 

  • Fliss AE, Fang Y, Boschelli F, Caplan AJ (1997) Differential in vivo regulation of steroid hormone receptor activation by Cdc37p. Mol Biol Cell 8:2501–2509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gray PJ Jr, Stevenson MA, Calderwood SK (2007) Targeting Cdc37 inhibits multiple signaling pathways and induces growth arrest in prostate cancer cells. Cancer Res 67:11942–11950

    Article  CAS  PubMed  Google Scholar 

  • Gray PJ Jr, Prince T, Cheng J, Stevenson MA, Calderwood SK (2008) Targeting the oncogene and kinome chaperone CDC37. Nat Rev Cancer 8:491–495

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Heinlein CA, Chang C (2004) Androgen receptor in prostate cancer. Endocr Rev 25:276–308

    Article  CAS  PubMed  Google Scholar 

  • Jinwal UK, Abisambra JF, Zhang J, Dharia S, O’Leary JC, Patel T, Braswell K, Jani T, Gestwicki JE, Dickey CA (2012) Cdc37/Hsp90 protein complex disruption triggers an autophagic clearance cascade for TDP-43 protein. J Biol Chem 287:24814–24820

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Joo JH, Dorsey FC, Joshi A, Hennessy-Walters KM, Rose KL, McCastlain K, Zhang J, Iyengar R, Jung CH, Suen DF et al (2011) Hsp90-Cdc37 chaperone complex regulates Ulk1- and Atg13-mediated mitophagy. Mol Cell 43:572–585

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Karnitz LM, Felts SJ (2007) Cdc37 regulation of the kinome: when to hold ’em and when to fold ’em. Sci STKE 2007:pe22

    Google Scholar 

  • Lavictoire SJ, Parolin DA, Klimowicz AC, Kelly JF, Lorimer IA (2003) Interaction of Hsp90 with the nascent form of the mutant epidermal growth factor receptor EGFRvIII. J Biol Chem 278:5292–5299

    Article  CAS  PubMed  Google Scholar 

  • MacLean M, Picard D (2003) Cdc37 goes beyond Hsp90 and kinases. Cell Stress Chaperones 8:114–119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Miyata Y, Nishida E (2005) CK2 binds, phosphorylates, and regulates its pivotal substrate Cdc37, an Hsp90-cochaperone. Mol Cell Biochem 274:171–179

    Article  CAS  PubMed  Google Scholar 

  • Mollapour M, Tsutsumi S, Truman AW, Xu W, Vaughan CK, Beebe K, Konstantinova A, Vourganti S, Panaretou B, Piper PW et al (2011) Threonine 22 phosphorylation attenuates Hsp90 interaction with cochaperones and affects its chaperone activity. Mol Cell 41:672–681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pearl LH (2005) Hsp90 and Cdc37- a chaperone cancer conspiracy. Curr Opin Gen Dev 15:55–61

    Article  CAS  Google Scholar 

  • Perdew GH, Wiegand H, Vanden Heuvel JP, Mitchell C, Singh SS (1997) A 50 kilodalton protein associated with raf and pp60(v-src) protein kinases is a mammalian homolog of the cell cycle control protein cdc37. Biochemistry 36:3600–3607

    Article  CAS  PubMed  Google Scholar 

  • Rao J, Lee P, Benzeno S, Cardozo C, Albertus J, Robins DM, Caplan AJ (2001) Functional interaction of human Cdc37 with the androgen receptor but not with the glucocorticoid receptor. J Biol Chem 276:5814–5820

    Article  CAS  PubMed  Google Scholar 

  • Reed SI (1980) The selection of amber mutations in genes required for completion of start, the controlling event of the cell division cycle of S. cerevisiae. Genetics 95:579–588

    CAS  PubMed Central  PubMed  Google Scholar 

  • Salminen A, Lehtonen M, Paimela T, Kaarniranta K (2010) Celastrol: molecular targets of Thunder God Vine. Biochem Biophys Res Commun 394:439–442

    Article  CAS  PubMed  Google Scholar 

  • Santagata S, Hu R, Lin NU, Mendillo ML, Collins LC, Hankinson SE, Schnitt SJ, Whitesell L, Tamimi RM, Lindquist S et al (2011) High levels of nuclear heat-shock factor 1 (HSF1) are associated with poor prognosis in breast cancer. Proc Natl Acad Sci U S A 108:18378–18383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Smith JR, Workman P (2009) Targeting CDC37: an alternative, kinase-directed strategy for disruption of oncogenic chaperoning. Cell Cycle 8:362–372

    Article  CAS  PubMed  Google Scholar 

  • Stepanova L, Finegold M, DeMayo F, Schmidt EV, Harper JW (2000a) The oncoprotein kinase chaperone CDC37 functions as an oncogene in mice and collaborates with both c-myc and cyclin D1 in transformation of multiple tissues. Mol Cell Biol 20:4462–4473

    Google Scholar 

  • Stepanova L, Yang G, DeMayo F, Wheeler TM, Finegold M, Thompson TC, Harper JW (2000b) Induction of human Cdc37 in prostate cancer correlates with the ability of targeted Cdc37 expression to promote prostatic hyperplasia. Oncogene 19:2186–2193

    Google Scholar 

  • Summy JM, Sudol M, Eck MJ, Monteiro AN, Gatesman A, Flynn DC (2003) Specificity in signaling by c-Yes. Front Biosci 8:185–205

    Article  Google Scholar 

  • Taipale M, Jarosz DF, Lindquist S (2010) HSP90 at the hub of protein homeostasis: emerging mechanistic insights. Nat Rev Mol Cell Biol 11:515–528

    Article  CAS  PubMed  Google Scholar 

  • Taipale M, Krykbaeva I, Koeva M, Kayatekin C, Westover KD, Karras GI, Lindquist S (2012) Quantitative analysis of HSP90-client interactions reveals principles of substrate recognition. Cell 150:987–1001

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Turnbull EL, Martin IV, Fantes PA (2005) Cdc37 maintains cellular viability in Schizosaccharomyces pombe independently of interactions with heat-shock protein 90. FEBS J 272:4129–4140

    Article  CAS  PubMed  Google Scholar 

  • Vaughan CK, Gohlke U, Sobott F, Good VM, Ali MM, Prodromou C, Robinson CV, Saibil HR, Pearl LH (2006) Structure of an Hsp90-Cdc37-Cdk4 complex. Mol Cell 23:697–707

    Article  CAS  PubMed  Google Scholar 

  • Wu F, Peacock SO, Rao S, Lemmon SK, Burnstein KL (2013) Novel interaction between the co-chaperone Cdc37 and Rho GTPase exchange factor Vav3 promotes androgen receptor activity and prostate cancer growth. J Biol Cell 288:5463–5474

    CAS  Google Scholar 

  • Xu W, Neckers L (2012) The double edge of the HSP90-CDC37 chaperone machinery: opposing determinants of kinase stability and activity. Future Oncol 8:939–942

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Xu W, Mollapour M, Prodromou C, Wang S, Scroggins BT, Palchick Z, Beebe K, Siderius M, Lee MJ, Couvillon A et al (2012). Dynamic tyrosine phosphorylation modulates cycling of the HSP90-P50(CDC37)-AHA1 chaperone machine. Mol Cell 47:434–443

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zou J, Guo Y, Guettouche T, Smith DF, Voellmy R (1998) Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stuart K. Calderwood .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Calderwood, S. (2015). Cdc37 as a Co-chaperone to Hsp90. In: Blatch, G., Edkins, A. (eds) The Networking of Chaperones by Co-chaperones. Subcellular Biochemistry, vol 78. Springer, Cham. https://doi.org/10.1007/978-3-319-11731-7_5

Download citation

Publish with us

Policies and ethics