Skip to main content

Theory of Quantitative Raman Spectroscopy

  • Chapter
  • First Online:
Accurate Calibration of Raman Systems

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The intention of this chapter is to provide a sufficient theoretical science base for the reader to follow the content of this thesis. It starts with an introduction to properties of the excited states in diatomic molecules and to the Raman effect. The focus will then be directed onto Raman intensities and the special features of Raman spectroscopy when all hydrogen isotopologues are included. Subsequently, a summary is given of the research and development (R&D) activities and milestones related to Raman spectroscopy of tritium containing gas samples by external groups and groups at the Tritium Laboratory Karlsruhe (TLK). Finally, the important issue of calibration is discussed and various possible realizations are presented. The chapter concludes with the calibration strategy adapted for the Laser Raman system of KATRIN.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In this semi-classical approach only vibration around the equilibrium is considered.

  2. 2.

    Note that these function play an important role in Chap. 5.

  3. 3.

    At this time it was named as national research center KfK (Kernforschungszentrum Karlsruhe).

  4. 4.

    Relative Raman signal amplitudes are in general not prone to fluctuation in the irradiance of the excitation beam.

References

  1. Atkins PW, de Paula J (2006) Physikalische chemie (v. 4), German Edn. Wiley, Germany

    Google Scholar 

  2. Demange D et al (2012) Overview of r&d at tlk for process and analytical issues on tritium management in breeder blankets of iter and demo. Fusion Eng Des 87(7–8):1206–1213

    Article  Google Scholar 

  3. Dörr L, Besserer U, Glugla M, Hellriegel G, Hellriegel W, Schäfer P, Wendel J (2005) The closed tritium cycle of the tritium laboratory karlsruhe. Fusion Sci Technol 48(1):262–267

    Google Scholar 

  4. Edwards HGM, Long DA, Mansour HR (1978) Pure rotational and vibration-rotational raman spectra of tritium, 3h2. J Chem Soc Faraday Trans 2(74):1203–1207

    Article  Google Scholar 

  5. Engelmann U (1992) Ramanspektroskopische und massenspektroskopische Untersuchungen der Wasserstoffisotope und isotop substituierter Methane. Ph.D. thesis, Kernforschungszentrum Karlsruhe

    Google Scholar 

  6. Fischer S (2010) Investigations of laser stability in the KATRIN raman setup and first depolarisation measurements with tritium at TLK. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  7. Fischer S, Sturm M, Schlösser M, Bornschein B, Drexlin G, Priester F, Lewis RJ, Telle HH (2011) Monitoring of tritium purity during long-term circulation in the katrin test experiment loopino using laser raman spectroscopy. Fusion Sci Technol 60(3):925–930

    Google Scholar 

  8. Fischer S (2013) In preparation. Ph.D thesis, Karlsruhe Institute of Technology

    Google Scholar 

  9. Haken H, Wolf HC (2006) MolekĂĽlphysik und quantenchemie: einfĂĽhrung in die experimentellen und theoretischen grundlagen (Springer-Lehrbuch) (German Edition). Springer, Germany

    Google Scholar 

  10. Herzberg G (1963) Molecular spectra and molecular structure: I. Spectra of diatomic molecules. D. Van Nostrand Company Inc, Princeton, New Jeresy

    Google Scholar 

  11. Hunt JL, Poll JD, Wolniewicz L (1984) Ab initio calculation of properties of the neutral diatomic hydrogen molecules \({\rm {H}}_2\), \({\rm {HD}}\), \(\rm {D_2}\), \({\rm {HT}}\), \({\rm {DT}}\), and \({\rm {T}}2\). Can J Phys 62(12):1719–1723

    Google Scholar 

  12. Ishiguro E, Arai T, Mizushima M, Kotani M (1952) On the polarizability of the hydrogen molecule. Proc Phys Soc A 65(3):178–187

    Article  ADS  Google Scholar 

  13. International Organization for Standardization (2001) ISO 6142, gas analysis—Preparation of calibration gas mixtures—Gravimetric method

    Google Scholar 

  14. Kolos W, Wolniewicz L (1963) Nonadiabatic theory for diatomic molecules and its application to the hydrogen molecule. Rev Mod Phys 35(3):473–483

    Article  ADS  Google Scholar 

  15. Kolos W, Wolniewicz L (1964) Accurate adiabatic treatment of the ground state of the hydrogen molecule. J Chem Phys 41(12):3663–3673

    Article  ADS  Google Scholar 

  16. Kolos W, Wolniewicz L (1968) Improved theoretical ground-state energy of the hydrogen molecule. J Chem Phys 49(1):465–466

    Article  Google Scholar 

  17. Kolos W, Szalewicz K, Monkhorst HJ (1986) New born-oppenheimer potential energy curve and vibrational energies for the electronic ground state of the hydrogen molecule. J Chem Phys 84(6):3278–3283

    Article  ADS  Google Scholar 

  18. Lee S-Y, Heller EJ (1979) Time-dependent theory of raman scattering. J Chem Phys 71(12):4777–4788

    Article  ADS  Google Scholar 

  19. LeRoy RJ (2011) Recalculation of raman transition matrix elements of all hydrogen isotopologues for 532nm laser excitation. Private communication

    Google Scholar 

  20. Lewis RJ (2007) Development of a Raman system for in-line monitoring of tritium at the karlsruhe tritium neutrino (KATRIN) experiment. Ph.D thesis, Swansea University

    Google Scholar 

  21. Lewis RJ, Telle HH, Bornschein B, Kazachenko O, Kernert N, Sturm M (2008) Dynamic raman spectroscopy of hydrogen isotopomer mixtures in-line at tilo. Laser Phys Lett 5(7):522–531

    Article  ADS  Google Scholar 

  22. Long DA (2002) The Raman effect: a unified treatment of the theory of raman scattering by molecules. Wiley, Chichester

    Google Scholar 

  23. Lyon LA, Keating CD, Fox AP, Baker BE, He L, Nicewarner SR, Mulvaney SP, Natan MJ (1998) Raman spectroscopy. Anal Chem 70(12):341–362

    Article  Google Scholar 

  24. McCreery RL (2006) Photometric standards for Raman spectroscopy. Wiley, New York

    Google Scholar 

  25. Mrowka B (1932) Wellenmechanische berechnung der polarisierbarkeit des wasserstoffmoleküls. Z Phys 76(5–6):300–308

    Article  ADS  MATH  Google Scholar 

  26. Nishi M, Yamanishi T, Hayashi T (2006) Study on tritium accountancy in fusion demo plant at jaeri. Fusion Eng Des 81(1–7):745–751

    Article  Google Scholar 

  27. O’hira S, Hayashi T, Nakamura H, Kobayashi K, Tadokoro T, Nakamura H, Itoh T, Yamanishi T, Kawamura Y, Iwai Y, Arita T, Maruyama T, Kakuta T, Konishi S, Enoeda M, Yamada M, Suzuki T, Nishi M, Nagashima T, Ohta M (2000) Improvement of tritium accountancy technology for iter fuel cycle safety enhancement. Nucl Fusion 40(3Y):519

    Article  ADS  Google Scholar 

  28. O’hira S, Nakamura H, Konishi S, Okuno K, Hayashi T, Naruse Y, Sherman RH, King MA, Bartilt JR, Taylor DJ, Anderson JL (1992) On-line tritium process gas analysis by laser raman spectroscopy at tsta. Fusion Technol 21(2):465–470

    Google Scholar 

  29. O’hira S, Okuno K (1996) Development of real-time and remote fuel process gas analysis system using laser raman spectroscopy. Fusion Technol 30(3):869–873

    Google Scholar 

  30. Pelletier MJ (2003) Quantitative analysis using raman spectrometry. Appl Spectrosc 57(1):20A–42A

    Article  ADS  Google Scholar 

  31. Petry R, Schmitt M, Popp J (2003) Raman spectroscopy—a prospective tool in the life sciences. ChemPhysChem 4(1):14–30

    Article  Google Scholar 

  32. Raman CV, Krishnan KS (1928) A new type of secondary radiation. Nature 121:501–502

    Article  ADS  Google Scholar 

  33. Rychlewski J (1982) Frequency dependent polarizabilities for the ground state of \({\rm {H}}_2\), \({\rm {HD}}\), and \({\rm {D}}_2\). J Chem Phys 78(12):7252–7259

    Google Scholar 

  34. Schrötter HW (2003) Update of reviews on raman spectra of gases i linear Raman spectroscopy. J Mol Struct 661–662:465–468

    Article  Google Scholar 

  35. Schlösser M (2009) First laser Raman measurements with tritium for KATRIN and studies of systematic effects of the LARA-setup. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  36. Schönung K (2011) Test von anti-reflexionsbeschichtungen unter Tritiumatmosphäre für KATRIN. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  37. Schäfer V (2013) Charakterisierung des coating test experiments zur verbesserung der langzeitstabilität und der reproduzierbarkeit. Diploma thesis, Karlsruhe Institute of Technology

    Google Scholar 

  38. Schwartz C, Le Roy RJ (1987) Nonadiabatic eigenvalues and adiabatic matrix elements for all isotopes of diatomic hydrogen. J Mol Spectrosc 121:420–439

    Article  ADS  Google Scholar 

  39. Smekal A (1923) Zur quantentheorie derd dispersion. Naturwissenschaften 11:873–875

    Article  ADS  Google Scholar 

  40. Sneep M, Ubachs W (2005) Direct measurement of the rayleigh scattering cross section in various gases. J Quant Spectrosc Rad Transfer 92(3):293–310

    Article  ADS  Google Scholar 

  41. Souers PC (1986) Hydrogen properties for fusion energy. Univ of California Pr, California

    Google Scholar 

  42. Sturm M (2010) Aufbau und test des inner-loop-systems der tritiumquelle von KATRIN. Ph.D thesis, Karlsruhe Institute of Technology

    Google Scholar 

  43. Taylor DJ, Glugla M, Penzhorn R-D (2001) Enhanced raman sensitivity using an actively stabilized external resonator. Rev Sci Instrum 72(4):1970–1976

    Article  ADS  Google Scholar 

  44. Telle HH, Ureña AG, Donovan RJ (2007) Laser chemistry: spectroscopy, dynamics and applications. Wiley, Chichester

    Google Scholar 

  45. Veirs DK, Rosenblatt GM (1987) Raman line positions in molecular hydrogen: H\(_{2}\), HD, HT, D\(_{2}\), DT, and T\(_{2}\). J Mol Spectrosc 121:401–419

    Google Scholar 

  46. Walrafen GE, Krishnan PN (1982) Model analysis of the raman spectrum from fused silica optical fibers. Appl Opt 21(3):359–360

    Article  ADS  Google Scholar 

  47. Weber WH, Merlin R (eds) (2000) Raman scattering in materials science (Springer series in materials science). Springer, Berlin

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Schlösser .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Schlösser, M. (2014). Theory of Quantitative Raman Spectroscopy. In: Accurate Calibration of Raman Systems. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-319-06221-1_3

Download citation

Publish with us

Policies and ethics