Skip to main content

Role of Migratory Birds in Spreading Influenza Viruses

  • Chapter
  • First Online:
Insight into Influenza Viruses of Animals and Humans

Abstract

The major source of several influenza viruses in other species are aquatic birds. Long distances travel is carried out by many migratory bird species between their breeding grounds and non-breeding areas. These migratory birds as well as wild birds are considered as reservoirs of majority of influenza A viruses. The geospatial analysis of the pathways of migratory birds present in different geographical locations will throw further light on their role in influenza virus epidemiology. The influenza virus dynamics among migratory wild birds and mammals including humans are closely linked as is evident from H1N1 spread. It is important to note that the migratory water fowls play a negative role as far as the economic benefit out of poultry industry is concerned and imposes threat to lives of human as well, because of their capability to transmit the highly pathogenic avian influenza (HPAI) virus across the continents. Interestingly, several species of familiar songbirds or perching birds act as bridge species and has a possible role in transmitting the H5N1 AI to or from wild habitat. Surveillance and tracking of migratory and resident wild birds, utilisation of ornithological expertise, and analysis of the H5N1 ecology are needed for increasing our knowledge about strain- or host-specific pathogenecity, degree of shedding of virus and the routes of transmission between wild birds. In this aspect, it is quiet noteworthy that 13 membered International Scientific Task Force including UN bodies, wildlife treaties and specialist intergovernmental as well as non-governmental organizations have been created on the ground of various scientific studies concerning the role of migratory birds as potential transmitter of H5N1 subtype of Highly Pathogenic Avian Influenza (HPAI) virus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbas T, Wilking H, Staubach C et al (2011) Priority areas for surveillance and prevention of avian influenza during the water-bird migration season in Pakistan. Geospat Health 6(1):107–116

    PubMed  Google Scholar 

  • Ahmed SS, Ersbøll AK, Biswas PK et al (2012) Ecological determinants of highly pathogenic avian influenza (H5N1) outbreaks in Bangladesh. PLoS ONE 7(3):e33938

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alba A, Bicout DJ, Vidal F et al (2012) Model to track wild birds for avian influenza by means of population dynamics and surveillance information. PLoS ONE 7(8):e44354

    PubMed Central  PubMed  CAS  Google Scholar 

  • Alexander DJ (2000) A review of avian influenza in different bird species. Vet Microbiol 74:3–13

    PubMed  CAS  Google Scholar 

  • Amonsin A, Choatrakol C, Lapkuntod J et al (2008) Influenza virus (H5N1) in live bird markets and food markets, Thailand. Emerg Infect Dis 14:1739–1742

    PubMed Central  PubMed  Google Scholar 

  • Artois M, Bicout D, Doctririal D et al (2009) Outbreaks of highly pathogenic avian influenza in Europe: the risks associated with wild birds. Rev sci Tech Off int Epiz 28:69–92

    CAS  Google Scholar 

  • Bahl J, Krauss S, Kühnert D et al (2013) Influenza A virus migration and persistence in North American wild birds. PLoS Pathog 9(8):e1003570

    PubMed Central  PubMed  CAS  Google Scholar 

  • Belser JA, Davis CT, Balish A et al (2013) Pathogenesis, transmissibility, and ocular tropism of a highly pathogenic avian influenza A (H7N3) virus associated with human conjunctivitis. J Virol Mar PubMed PMID: 23487452. Epub 2013/03/15. Eng

    Google Scholar 

  • Boon AC, Sandbulte MR, Seiler P et al (2007) Role of terrestrial wild birds in ecology of influenza A virus (H5N1). Emerg Infect Dis 13(11):1720–1724

    PubMed Central  PubMed  Google Scholar 

  • Bourouiba L, Gourley SA, Liu R et al (2011) The interaction of migratory birds and domestic poultry and its role in sustaining avian influenza. SIAM J Appl Math 71(2):487. doi:10.1137/100803110

    Google Scholar 

  • Breed AC, Harris K, Hesterberg U et al (2010) Surveillance for avian influenza in wild birds in the European union in 2007. Avian Dis 54(1):399–404

    PubMed  Google Scholar 

  • Breed AC, Irvine RM, Duncan D et al (2012) An evaluation of wild bird avian influenza surveillance in Great Britain. Avian Diseases 56(4s1): 986–991

    Google Scholar 

  • Brown JD, Berghaus RD, Costa TP et al (2012) Intestinal excretion of a wild bird-origin H3N8 low pathogenic avian influenza virus in Mallards (Anas Platyrhynchos). J Wildl Dis 48(4):991–998

    PubMed  Google Scholar 

  • Cameron KR, Gregory V, Banks JI et al (2000) H9N2 subtype influenza A viruses in poultry in Pakistan are closely related to the H9N2 viruses responsible for human infection in Hong Kong. Virol 278:37–41

    Google Scholar 

  • Cappelle J, Servan de, Almeida R et al (2012) Circulation of avian influenza viruses in wild birds in Inner Niger Delta, Mali. Influenza Other Respi Viruses 6(4):240–244

    Google Scholar 

  • Caron A, Gaidet N, de Garine-Wichatitsky M et al (2009) Evolutionary biology, community ecology and avian influenza research. Infect Genet Evol 9(2):298–303

    PubMed  Google Scholar 

  • Caron A, Abolnik C, Mundava J et al (2011) Persistence of low pathogenic avian influenza virus in waterfowl in a Southern African ecosystem. Eco Health 8:109–115

    PubMed  Google Scholar 

  • Chen H, Smith GJD, Zhang SY et al (2005) H5N1 virus outbreak in migratory waterfowl. Nature 436:191–192

    PubMed  CAS  Google Scholar 

  • Chen H, Smith G, Li K et al (2006) Establishment of multiple sublineages of H5N1 influenza virus in Asia: Implications for pandemic control. Proc Natl Acad Sci U. S. A. 103:2845–2850

    PubMed Central  PubMed  CAS  Google Scholar 

  • Chen Y, Liang W, Yang S et al (2013) Human infections with the emerging avian influenza A H7N9 virus from wet market poultry: clinical analysis and characterisation of viral genome. Lancet 381:1916–1925

    PubMed  CAS  Google Scholar 

  • Choi JG, Kang HM, Jeon WJ et al (2013) Characterization of clade 2.3. 2.1 H5N1 highly pathogenic avian influenza viruses isolated from wild birds (Mandarin Duck and Eurasian Eagle Owl) in 2010 in Korea. Viruses 5(4):1153–1174

    Google Scholar 

  • Clark KE, Niles LJ, Burger J (1993) Abundance and distribution of migrant shorebirds in Delaware Bay. Condor 95:694–705

    Google Scholar 

  • Columba Teru V, Manu SA, Ahmed GI et al (2012) Situation-based survey of avian influenza viruses in possible “Bridge” species of wild and domestic birds in Nigeria. Influenza Res Treat 2012:567601

    Google Scholar 

  • Costa TP, Brown JD, Howerth EW et al (2011) Variation in viral shedding patterns between different wild bird species infected experimentally with low-pathogenicity avian influenza viruses that originated from wild birds. Avian Pathology 40(2):119–124

    PubMed  Google Scholar 

  • Cowling BJ, Jin L, Lau EH et al (2013) Comparative epidemiology of human infections with avian influenza A H7N9 and H5N1 viruses in China: a population-based study of laboratory-confirmed cases. Lancet 382:129–137

    PubMed  Google Scholar 

  • Dhama K, Chauhan RS, Kataria JM et al (2005) Avian influeanza: the current perspective. J Immunol Immunopathol 7:1–33

    Google Scholar 

  • Dhama K, Mahendran M, Tomar S (2008) Pathogens transmitted by migratory birds: threat perceptions to poultry health and production. Int J Poult Sci 7(6):516–525

    Google Scholar 

  • Dhama K, Tiwari R, Singh SD (2012) Biosecurity measures at poultry farms and thumb rules to avoid developing a serious zoonotic illness from birds. Poult Punch 28:30–51

    Google Scholar 

  • Dugan VG (2012) A robust tool highlights the influence of bird migration on influenza A virus evolution. Mol Ecol 21(24):5905–5907

    PubMed  Google Scholar 

  • Ely CR, Hall JS, Schmutz JA et al (2013) Evidence that life history characteristics of wild birds influence infection and exposure to influenza A viruses. PLoS ONE 8(3):e57614

    PubMed Central  PubMed  CAS  Google Scholar 

  • Feare CJ (2010) Role of wild birds in the spread of highly pathogenic avian influenza virus H5N1 and implications for global surveillance. Avian Dis 54(1):201–212

    PubMed  Google Scholar 

  • Food and Agricultural Organization of the United Nations (2006) Animal health special report, wild birds and avian influenza. pp 1–5 http://www.fao.org/ag/againfo/subjects/en/health/diseases-cards/avian_HPAIrisk.html

  • FAO (2007) Wild birds and avian influenza. In: Whitworth D, Newman S, Mundkur T, Harris P (eds) Wild birds and avian influenza: an introduction to applied field research and disease sampling techniques. Rome, Italy, pp 13–32

    Google Scholar 

  • Fouchier RAM, Munster VJ (2009) Epidemiology of low pathogenic avian influenza viruses in wild birds. OIE Revue Scientifique et Technique 28(1):49–58

    CAS  Google Scholar 

  • França M, Stallknecht DE, Howerth EW (2013) Expression and distribution of sialic acid influenza virus receptors in wild birds. Avian Pathol 42(1):60–71

    PubMed Central  PubMed  Google Scholar 

  • Fraser C, Donnelly CA, Cauchemez S et al (2009) The WHO rapid pandemic assessment collaboration: pandemic potential of a strain of influenza A (H1N1): early findings. Science 324:1557–1561

    PubMed Central  PubMed  CAS  Google Scholar 

  • Friend M, Franson CJ (1999) Avian influenza. In: field manual of wildlife diseases: general field procedures and diseases of birds. U.S. Department of the Interior, U.S. Geological survey, Washington. pp 181–184

    Google Scholar 

  • Gaidet N, Dodman T, Caron A et al (2007) Influenza surveillance in wild birds in Eastern Europe, the Middle East, and Africa: preliminary results from an ongoing FAO-led survey. J Wildl Dis 43(3, supplement):S22–S28

    Google Scholar 

  • Gaidet N, Ould EL, Mamy AB et al (2012a) Investigating avian influenza infection hotspots in old-world shorebirds. PLoS ONE 7(9):e46049

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gaidet N, Caron A, Cappelle J et al (2012b) Understanding the ecological drivers of avian influenza virus infection in wildfowl: a continental-scale study across Africa. Proc R Soc B: Biol Sci 279(1731): 1131–1141

    Google Scholar 

  • Gaidet N, Cattoli G, Hammoumi S et al (2008) Evidence of infection by H5N2 highly pathogenic avian influenza viruses in healthy wild waterfowl. PLoS Pathog 4(8):e1000127

    PubMed Central  PubMed  Google Scholar 

  • Galsworthy SJ, ten Bosch QA, Hoye BJ (2011) Effects of infection-induced migration delays on the epidemiology of avian influenza in wild mallard populations. PLoS ONE 6(10):e26118

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gambaryan A, Webster R, Matrosovich M et al (2002) Differences between influenza virus receptors on target cells of duck and chicken. Arch Virol 147:1197–1208

    PubMed  CAS  Google Scholar 

  • Gilbert M, Chaitaweesub P, Paranhos Filho AC et al (2006) Free-grazing ducks and highly pathogenic avian influenza, Thailand. Emerg Infect Dis 12:227–234

    Google Scholar 

  • Gilbert M, Jambal L, Karesh WB et al (2012) Highly pathogenic avian influenza virus among wild birds in Mongolia. PLoS ONE 7(9):e44097

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gilsdorf A, Boxall N, Gasimov V et al (2006) Two clusters of human infection with influenza A/H5N1 virus in the Republic of Azerbaijan, February–March 2006. Euro Surveill 11:122–126

    PubMed  CAS  Google Scholar 

  • Gonzalez-Reiche AS, Morales-Betoulle ME, Alvarez D et al (2012) Influenza A viruses from wild birds in Guatemala belong to the North American lineage. PLoS ONE 7(3):e32873

    PubMed Central  PubMed  CAS  Google Scholar 

  • Guan Y, Shortridge KF, Krauss S et al (2000) H9N2 influenza viruses possessing H5N1-like internal genomes continue to circulate in poultry in Southeastern China. J Virol 74:9372–9380

    PubMed Central  PubMed  CAS  Google Scholar 

  • Gunnarsson G, Latorre-Margalef N, Hobson KA et al (2012) Disease dynamics and bird migration–linking mallards Anas platyrhynchos and subtype diversity of the influenza A virus in time and space. PLoS ONE 7(4):e35679

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hanson BA, Luttrell MP, Goekjian VH et al (2008) Is the occurrence of avian influenza virus in Charadriiformes species and location dependent? J Wildl Dis 44:351–361

    PubMed  CAS  Google Scholar 

  • Henaux V, Samuel MD, Dusek RJ et al (2012) Presence of avian influenza viruses in waterfowl and wetlands during summer 2010 in California: are resident birds a potential reservoir? PLoS ONE 7(2):e31471

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hasselquist D (2007) Comparative immunoecology in birds: hypotheses and tests. J Ornithol 148:S571–S582

    Google Scholar 

  • Hénaux V, Parmley J, Soos C et al (2013) Estimating transmission of avian influenza in wild birds from incomplete epizootic data: implications for surveillance and disease spread. J Appl Ecol 50(1):223–231

    Google Scholar 

  • Herfst SSE, Linster M, Chutinimitkul S et al (2012) Airborne Transmission of Influenza A/H5N1 virus between ferrets. Science 336:1534–1541

    PubMed  CAS  Google Scholar 

  • Herrick KA, Huettmann F, Lindgren MA (2013) A global model of avian influenza prediction in wild birds: the importance of northern regions. Vet Res 44(1):42

    PubMed Central  PubMed  Google Scholar 

  • Hesterberg U, Harris K, Stroud D et al (2009) Avian influenza surveillance in wild birds in the European union in 2006. Influenza Other Respir Viruses 3(1):1–14

    PubMed  Google Scholar 

  • Hill NJ, Takekawa JY, Cardona CJ et al (2012a) Cross-seasonal patterns of avian influenza virus in breeding and wintering migratory birds: a flyway perspective. Vector Borne Zoonotic Dis 12(3):243–253

    PubMed Central  PubMed  Google Scholar 

  • Hill NJ, Takekawa JY, Ackerman JT et al (2012b) Migration strategy affects avian influenza dynamics in mallards (Anas platyrhynchos). Mol Ecol 21(24):5986–5999

    PubMed  Google Scholar 

  • Horacek M (2011) Back-tracking the movements of a migratory bird: a case study of a white-fronted goose (Anser albifrons). Rapid Commun Mass Spectrom 25(20):3146–3150

    PubMed  CAS  Google Scholar 

  • Horby P, Nguyen NY, Dunstan SJ et al (2012) The role of host genetics in susceptibility to influenza: a systematic review. PLoS ONE 7:e33180

    PubMed Central  PubMed  CAS  Google Scholar 

  • Hoye BJ, Munster VJ, Nishiura H et al (2010) Surveillance of wild birds for avian influenza virus. Emerg Infect Dis 16:1827–1834

    PubMed Central  PubMed  Google Scholar 

  • Hoye BJ, Munster VJ, Nishiura H et al (2011) Reconstructing an annual cycle of interaction: natural infection and antibody dynamics to avian influenza along a migratory flyway. Oikos 120(5):748–755

    Google Scholar 

  • Iowa State University (2010) High pathogenicity avian influenza. http://www.cfsph.iastate.edu/Factsheets/pdfs/high_pathogenic_avian_influenza.pgf

  • Ito T, Kawaoka Y (2000) Host-range barrier of influenza A viruses. Vet Microbiol 74:71–75

    PubMed  CAS  Google Scholar 

  • Iverson SA, Takekawa JY, Schwarzbach S et al (2008) Low prevalence of avian influenza virus in shorebirds on the Pacific coast of North America. Waterbirds 31:602–610

    Google Scholar 

  • Jiao P, Song Y, Yuan R et al (2012) Complete genomic sequence of an H5N1 influenza virus from a parrot in southern China. J Virol 86:8894–8895

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kilpatrick AM, Chmura AA, Gibbons DW et al (2006) Predicting the global spread of H5N1 avian influenza. Proc Natl Acad Sci USA 103:19368–19373

    PubMed Central  PubMed  CAS  Google Scholar 

  • Kim HR, Lee YJ, Park CK et al (2012) Highly pathogenic avian influenza (H5N1) outbreaks in wild birds and poultry, South Korea. Emerg Infect Dis 18:480–483

    PubMed Central  PubMed  Google Scholar 

  • Knight-Jones TJD, Hauser R, Matthes D et al (2010) Evaluation of effectiveness and efficiency of wild bird surveillance for avian influenza. Vet Res 41(4):50. doi:10.1051/vetres/2010023

    PubMed Central  PubMed  Google Scholar 

  • Krauss S, Obert CA, Franks J et al (2007) Influenza in migratory birds and evidence of limited intercontinental virus exchange. PLoS Pathog 3(11):e167

    PubMed Central  PubMed  Google Scholar 

  • Krauss S, Walker D, Pryor SP et al (2004) Influenza A viruses of migrating wild aquatic birds in North America. Vector-Borne Zoonotic Dis 4:177–189

    PubMed  Google Scholar 

  • Krauss S, Webster RG (2010) Avian influenza virus surveillance and wild birds: past and present. Avian Dis 54(1):394–398

    PubMed  Google Scholar 

  • Kuiken T (2013) Is low pathogenic avian influenza virus virulent for wild waterbirds?. Proc Roy Soc B: Biol Sci 280(1763)

    Google Scholar 

  • Lam TT, Ip HS, Ghedin E et al (2012) Migratory flyway and geographical distance are barriers to the gene flow of influenza virus among North American birds. Ecol Lett 15(1):24–33

    PubMed Central  PubMed  Google Scholar 

  • Lee YJ, Choi YK, Kim YJ et al (2008) Highly pathogenic avian influenza virus (H5N1) in domestic poultry and relationship with migratory birds South Korea. Emerg Infect Dis 14(3):487–490

    PubMed Central  PubMed  CAS  Google Scholar 

  • Liu J, Okazaki K, Bai GR et al (2004) Interregional transmission of the internal protein genes of H2 influenza virus in migratory ducks from North America to Eurasia. Virus Genes 29:81–86

    PubMed  Google Scholar 

  • Liu J, Xiao H, Lei F et al (2005) Highly pathogenic H5N1 virus infection in migratory birds. Science 309(5738):1206

    PubMed  CAS  Google Scholar 

  • Lu SH, Xi XH, Zheng YF et al (2013) Analysis of the clinical characteristics and treatment of two patients with avian influenza virus (H7N9). Biosci Trends 7:109–112

    PubMed  Google Scholar 

  • Lvov DK, Shchelkanov MY, Prilipov AG et al (2010) Evolution of highly pathogenic avian influenza H5N1 virus in natural ecosystems of northern Eurasia (2005–08). Avian Dis 54:483–495

    PubMed  CAS  Google Scholar 

  • Makarova NV, Kaverin NV, Krauss S et al (1999) Transmission of Eurasian avian H2 influenza virus to shorebirds in North America. J Gen Virol 80(Part 12):3167–3171

    Google Scholar 

  • Maxted AM, Luttrell MP, Goekjian VH et al (2012) Avian influenza infection dynamics in shorebird hosts. J Wildl Dis 48:322–334

    PubMed  Google Scholar 

  • Minh PQ, Morris RS, Schauer B et al (2009) Spatio-temporal epidemiology of highly pathogenic avian influenza outbreaks in the two deltas of Vietnam during 2003–2007. Prev Vet Med 89:16–24

    PubMed  Google Scholar 

  • Munster VJ, Wallensten A, Baas C et al (2005) Mallards and highly pathogenic avian influenza ancestral viruses, northern Europe. Emerg Infect Dis 11:1545–1551

    PubMed Central  PubMed  CAS  Google Scholar 

  • Munster VJ, Baas C, Lexmond P et al (2007) Spatial, temporal, and species variation in prevalence of influenza A viruses in wild migratory birds. PLoS Pathogens 3(5):e61. doi:10.1371/journal.ppat.0030061

  • Musa OI, Salaudeen AG, Akanbi AA II et al (2009) Risk factors, threats and prevention of highly pathogenic avian influenza (HPAI) in African countries. Afr J Cln Exper Microbiol 10(2):99–116

    Google Scholar 

  • Nagarajan S, Tosh C, Murugkar HV et al (2010) Isolation and molecular characterization of a H5N1 virus isolated from a Jungle crow (Corvus macrohynchos) in India. Virus Genes 41:30–36

    PubMed  CAS  Google Scholar 

  • Obenauer JC, Denson J, Mehta PK et al (2006) Large-scale sequence analysis of avian influenza isolates. Science 311:1576–1580

    PubMed  CAS  Google Scholar 

  • OIE (2011) Update on avian influenza in animals (Type H5 and H7). http://www.oie.int/animal-health-in-the-world/update-on-avianinfluenza/2011

  • Olsen B, Munster VJ, Wallensten A et al (2006) Global patterns of influenza a virus in wild birds. Science 312:384–388

    PubMed  CAS  Google Scholar 

  • Pandit PS, Bunn DA, Pande SA et al (2013) Modeling highly pathogenic avian influenza transmission in wild birds and poultry in West Bengal, India. Scientific Rep 3(2175). doi:10.1038/srep02175

  • Parry J (2013) H7N9 virus is more transmissible and harder to detect than H5N1, say experts. BMJ 346:f2568

    PubMed  Google Scholar 

  • Paull SHL, Song S, McClure KM et al (2012) From superspreaders to disease hotspots: linking transmission across hosts and space. Front Ecol Environ 10:75–82

    PubMed Central  PubMed  Google Scholar 

  • Perezl DR, Lim W, Seiler JP et al (2003) Role of quail in the interspecies transmission of H9 influenza A viruses: molecular changes in HA that correspond to adaptation from ducks to chickens. J Virol 77(5):3148–3156

    Google Scholar 

  • Pillai SP, Suarez DL, Pantin-Jackwood M et al (2008) Pathogenicity and transmission studies of H5N2 parrot avian influenza virus of Mexican lineage in different poultry species. Vet Microbiol 129:48–57

    PubMed  CAS  Google Scholar 

  • Qi X, Qian YH, Bao CJ et al (2013) Probable person-to-person transmission of novel avian influenza A (H7N9) virus in Eastern China, 2013: epidemiological investigation. BMJ 347:f4752

    PubMed Central  PubMed  Google Scholar 

  • Reed KD, Meece JK, Henkel JS et al (2003) Birds, migration and emerging zoonoses: West Nile diseases, lyme diseases, influenza A and enteropathogens. Clin Med Res 1:5–12

    PubMed Central  PubMed  Google Scholar 

  • Reid AH, Taubenberger JK (2003) The origin of the 1918 pandemic influenza virus: a continuing enigma. J Gen Virol 84:2285–2292

    PubMed  CAS  Google Scholar 

  • Reperant LA, van de Bildt MW, van Amerongen G et al (2011) Highly pathogenic avian influenza virus H5N1 infection in a long-distance migrant shorebird under migratory and non-migratory states. PLoS ONE 6(11):e27814

    PubMed Central  PubMed  CAS  Google Scholar 

  • Rollo SN, Ferro PJ, Peterson MJ et al (2012) Role of nonmigratory mottled ducks (Anas fulvigula) as sentinels for avian influenza surveillance. J Zoo Wildl Med 43(1):168–170

    PubMed  Google Scholar 

  • Runstadler J, Hill N, Hussein I et al (2013) Connecting the study of wild influenza with the potential for pandemic disease. Infect Genet Evol (In press)

    Google Scholar 

  • Sakoda Y, Ito H, Uchida Y (2012) Reintroduction of H5N1 highly pathogenic avian influenza virus by migratory water birds, causing poultry outbreaks in the 2010–2011 winter season in Japan. J Gen Virol 93(Pt 3):541–550

    PubMed  CAS  Google Scholar 

  • Schoene CUR, Staubach C, Grund C et al (2013) Towards a new, ecologically targeted approach to monitoring wild bird populations for avian influenza viruses. Epidemiol Infect 1(1):1–11

    Google Scholar 

  • Sengupta R, Rosenshein L, Gilbert M et al (2007) Ecoregional dominance in spatial distribution of avian influenza (H5N1) outbreaks. Emerg Infect Dis 13(8):1269–1270

    PubMed Central  PubMed  Google Scholar 

  • Shi B, Xia S, Yang GJ et al (2013) Inferring the potential risks of H7N9 infection by spatiotemporally characterizing bird migration and poultry distribution in eastern. China Infect Dis Poverty 2:8 doi:10.1186/2049-9957-2-8

  • Shoham D, Jahangir A, Ruenphet S et al (2012) Persistence of avian influenza viruses in various artificially frozen environmental water types. Influenza Res Treat http://www.ncbi.nlm.nih.gov/pubmed/23091712

  • Smith GJD, Vijayakrishna D, Bahl J et al (2009) Origin and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 459:1122–1126

    PubMed  CAS  Google Scholar 

  • Soliman A, Saad M, Elassal E et al (2012) Surveillance of avian influenza viruses in migratory birds in Egypt, 2003–09. J Wildl Dis 48(3):669–675

    PubMed  Google Scholar 

  • Songserm T, Jam-On R, Sae-Heng N et al (2006) Domestic ducks and H5N1 influenza epidemic, Thailand. Emerg Infect Dis 12:575–581

    PubMed Central  PubMed  Google Scholar 

  • Squires RB, Noronha J, Hunt V et al (2012) Influenza research database: an integrated bioinformatics resource for influenza research and surveillance. Influenza Other Respi Viruses 6:404–416

    PubMed Central  Google Scholar 

  • Stallknecht DE, Luttrell MP, Poulson R et al (2012) Detection of avian influenza virsues from shorebirds: evaluation of surveillance and testing approaches. J Wildl Dis 48:382–393

    PubMed Central  PubMed  CAS  Google Scholar 

  • Stallknecht DE, Shane SM (1988) Host range of avian influenza virus in free living birds. Vet Res Commun 12:125–141

    PubMed  CAS  Google Scholar 

  • Suss J, Schafer J, Sinnecker H et al (1994) Influenza virus subtypes in aquatic birds of eastern Germany. Arch Virol 135:101–114

    PubMed  CAS  Google Scholar 

  • Takekawa JY, Hill NJ, Schultz AK et al (2011) Rapid diagnosis of Avian Influenza virus in wild birds: use of a portable rRT-PCR and freeze-dried reagents in the field. J Vis Exp 54(2):2829. doi: 10.3791/2829

    Google Scholar 

  • Teru VC, Manu SA, Ahmed GI et al (2012) Situation-based survey of avian influenza viruses in possible “bridge” species of wild and domestic birds in Nigeria. Influenza Res Treat 2012:567601. doi:10.1155/2012/567601

    Google Scholar 

  • Tiensin T, Nielen M, Songserm T et al (2007) Geographic and temporal distribution of highly pathogenic avian influenza A virus (H5N1) in Thailand, 2004–2005: an overview. Avian Dis 51:182–188

    PubMed  CAS  Google Scholar 

  • Tolf C, Bengtsson D, Rodrigues D et al (2012) Birds and viruses at a crossroad—surveillance of influenza a virus in portuguese waterfowl. PLoS ONE 7(11):e49002

    PubMed Central  PubMed  CAS  Google Scholar 

  • Tracey JP (2010) Risk-based surveillance of avian influenza in Australias wild birds. Wildl Res 37(2):134–144

    Google Scholar 

  • Uchida Y, Chaichoune K, Wiriyarat W et al (2008) Molecular epidemiological analysis of highly pathogenic avian influenza H5N1 subtype isolated from poultry and wild bird in Thailand. Virus Res 138:70–80

    PubMed  CAS  Google Scholar 

  • Vandegrift KJ, Sokolow SH, Daszak P et al (2010) Ecology of avian influenza viruses in a changing world. Ann New York Acad Sci 1195:113–128

    Google Scholar 

  • Vijaykrishna D, Deng YM, Su YC et al (2013) The recent establishment of North American H10 lineage influenza viruses in Australian wild waterfowl and the evolution of Australian avian influenza viruses. J Virol 87(18):10182–10189

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wainwrighta S, Trevenneca C, Claesa F et al (2012) Highly pathogenic avian influenza in Mexico (H7N3): a significant threat to poultry production not to be underestimated. Empres Watch 26. http://www.fao.org/docrep/016/an395e/an395e.pdf

  • Wallensten A, Munster VJ, Elmberg J et al (2005) Multiple gene segment reassortment between Eurasian and American lineages of influenza A virus (H6N2) in Guillemot (Uria aalge). Arch Virol 150:1685–1692

    PubMed  CAS  Google Scholar 

  • Weber TP, Stilianakis NI (2008) Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect 57(5):361–373

    PubMed  Google Scholar 

  • Webster RG, Bean WJ, Gorman OT et al (1992) Evolution and ecology of influenza A viruses. Microbiol Rev 56:152–179

    PubMed Central  PubMed  CAS  Google Scholar 

  • Wille M, HuangY Robertson GJ et al (2014) Evaluation of seabirds in Newfoundland and Labrador, Canada, as hosts of influenza A viruses. J Wildl Dis 50:98–103

    PubMed  Google Scholar 

  • Winker K, Gibson DD (2010) The Asia-to-America influx of avian influenza wild bird hosts is large. Avian Dis 54:477–482

    PubMed  Google Scholar 

  • Winker K, McCracken KG, Gibson DD et al (2007) Movements of birds and avian influenza from Asia into Alaska. Emerg Infect Dis 13:547–552

    PubMed Central  PubMed  Google Scholar 

  • World Health Organization (2005) Avian influenza frequently asked question. http://www.who.int/csr/disease/avian_influenza/avian_faqs/en/index.html

  • World Health Organisation (WHO) (2013) Global alert and response. Infection prevention and control of epidemic- and pandemic-prone acute respiratory diseases in health care. http://www.who.int/csr/resources/publications/swineflu/WHO_CDS_EPR_2007_6/en/index.html

  • Zhu H, Wang D, Kelvin DJ et al (2013) Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science 341:183–186

    PubMed  CAS  Google Scholar 

  • Zwarts L, Blomert AM, Bruno JE et al (1990) Why do waders reach high feeding densities on the intertidal flats of the Banc d’Arguin, Mauritania? Ardea 78:39–52

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Kapoor .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kapoor, S., Dhama, K. (2014). Role of Migratory Birds in Spreading Influenza Viruses. In: Insight into Influenza Viruses of Animals and Humans. Springer, Cham. https://doi.org/10.1007/978-3-319-05512-1_6

Download citation

Publish with us

Policies and ethics