Skip to main content

Shape Analysis for Brain Structures

  • Chapter
  • First Online:
Shape Analysis in Medical Image Analysis

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 14))

Abstract

Advances in magnetic resonance imaging (MRI) have enabled non-invasive examination of brain structures in unprecedented details. With increasing amount of high resolution MRI data becoming available, we are at a position to make significant clinical contributions. In this chapter, we review the main approaches to shape analysis for brain structures. The purpose of this review is to provide methodological insights for pushing forward shape analysis research, so that we can better benefit from the available high resolution data. We describe in this review point-based, mesh-based, function-based, and medial representations as well as deformetrics. Their respective advantages and disadvantages as well as the implications of increasing resolution and greater sample sizes on these shape analysis approaches are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dryden IL, Mardia KV (1998) Statistical Shape Analysis. Wiley, Chichester

    MATH  Google Scholar 

  2. Besl PJ, McKay ND (1992) A method for Registration of 3-D shapes. IEEE Trans Pattern Anal Mach Intel 14(2):239–256

    Article  Google Scholar 

  3. Bookstein FL (1997) Morphometric tools for landmark Data: geometry and biology. Cambridge University Press, Cambridge

    Google Scholar 

  4. Cootes TF, Taylor CJ, Cooper DH, Graham J (1995) Active shape models-their training and application. Comput Vis Image Underst 61(1):38–59

    Article  Google Scholar 

  5. Cootes TF, Edwards GJ, Taylor CJ (2001) Active appearance models. IEEE Trans Pattern Anal Mach Intel 23(6):681–685

    Article  Google Scholar 

  6. Rohr K (1997) On 3D differential operators for detecting point landmarks. Image Vis Comput 15(3):219–233

    Article  Google Scholar 

  7. Ono M, Kubik S, Abernathy CD (1990) Atlas of the cerebral sulci. Thieme Medical, New York

    Google Scholar 

  8. Duta N, Sonka M (1998) Segmentation and interpretation of MR Brain images. An improved active shape model. Imaging IEEE Trans Med 17(6):1049–1062

    Article  Google Scholar 

  9. Tao X, Prince JL, Davatzikos C (2002) Using a statistical shape model to extract sulcal curves on the outer cortex of the human brain. IEEE Trans Med Imaging 21(5):513–524

    Article  Google Scholar 

  10. Yushkevich PA, Piven J, Hazlett HC, Smith RG, Ho S, Gee JC, Gerig G (2006) User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31(3):1116–1128

    Article  Google Scholar 

  11. Joshi S, Miller MI (2000) Landmark matching via large deformation diffeomorphisms. IEEE Trans Image Process 9(8):1357–1370

    Article  MATH  MathSciNet  Google Scholar 

  12. Davies RH, Twining CJ, Cootes TF, Waterton JC, Taylor CJ (2002) A minimum description length approach to statistical shape modeling. IEEE Trans Med Imaging 21(5):525–537

    Article  Google Scholar 

  13. Brummer ME (1991) Hough transform detection of the longitudinal fissure in tomographic head images. IEEE Trans Med Imaging 10(1):74–81

    Article  Google Scholar 

  14. Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, pp 147–151

    Google Scholar 

  15. Witkin A (1984) Scale-space filtering: a new approach to multi-scale description. IEEE Int Conf Acoust Speech Signal Process 9:150–153

    Google Scholar 

  16. Lindeberg T (1998) Feature detection with automatic scale selection. Int J Comput Vis 30(2):79–116

    Article  Google Scholar 

  17. Lowe DG (2004) Distinctive image features from scale-invariant keypoints. Int J Comput Vis 60(2):91–110

    Article  Google Scholar 

  18. Toews M, Wells WM III, Collins DL, Arbel T (2010) Feature-based morphometry: discovering group-related anatomical patterns. NeuroImage 49(3):2318–2327

    Article  Google Scholar 

  19. Burt P, Adelson E (1983) The Laplacian Pyramid as a compact image code. IEEE Trans Commun 31(4):532–540

    Article  Google Scholar 

  20. Toews M, Wells WM III (2013) Efficient and robust model-to-image alignment using 3D scale-invariant features. Med Image Anal 17(3):271–282

    Article  Google Scholar 

  21. Toews M, Wells III WM (2009) SIFT-rank: ordinal description for invariant feature correspondence. In: IEEE conference on computer vision and pattern recognition, pp 172–177

    Google Scholar 

  22. Toews M, Arbel T (2007) A statistical parts-based model of anatomical variability. IEEE Trans Med Imaging 26(4):497–508

    Article  Google Scholar 

  23. Toews M, Zöllei L, Wells WM III (2013) Invariant feature-based alignment of volumetric multi-modal images. In: Wells WM, Joshi S, Pohl KM (eds) IPMI 2013, LNCS, vol 7917. Springer, Berlin, pp 25–36

    Google Scholar 

  24. Gupta A, Toews M, Janardhana R, Rathi Y, Gilmore J, Escolar M, Styner M (2013) Fiber feature map based landmark initialization for highly deformable DTI registration. In: SPIE medical imaging, pp 866907–866907. International Society for Optics and Photonics

    Google Scholar 

  25. Toews M, Wells WM III, Zöllei L (2012) A feature-based developmental model of the infant brain in structural MRI. In: Ayache N, Delingette H, Golland P, Mori K (eds) MICCAI 2012, LNCS, vol 15. Springer, Berlin, pp 204–211

    Google Scholar 

  26. Uhlenbeck K (1976) Generic properties of eigenfunctions. Am J Math 98(4):1059–1078

    Article  MATH  MathSciNet  Google Scholar 

  27. Qiu A, Bitouk D, Miller MI (2006) Smooth functional and structural maps on the neocortex via orthonormal bases of the Laplace-Beltrami operator. IEEE Trans Med Imaging 25(10):1296–1306

    Article  Google Scholar 

  28. Shi Y, Lai R, Morra J, Dinov I, Thompson P, Toga A (2010) Robust surface reconstruction via Laplace-Beltrami eigen-projection and boundary deformation. IEEE Trans Med Imaging 29(12):2009–2022

    Article  Google Scholar 

  29. Lai R, Shi Y, Dinov I, Chan TF, Toga AW (2009) Laplace-Beltrami nodal counts: a new signature for 3D shape analysis. In: International symposium on biomedical imaging, pp 694–697

    Google Scholar 

  30. Reuter M, Wolter F, Peinecke N (2006) Laplace-Beltrami spectra as shape-DNA of surfaces and solids. Comput Aided Des 38:342–366

    Article  Google Scholar 

  31. Reeb G (1946) Sur les Points Singuliers d’une Forme de Pfaff Completement Integrable ou d’une Fonction Nemérique. Comptes Rendus Acad Sci 222:847–849

    Google Scholar 

  32. Jost J (2001) Riemannian geometry and geometric analysis, 3rd edn. Springer, New York

    Google Scholar 

  33. Shinagawa Y, Kunii TL (1991) Constructing a reeb graph automatically from cross sections. IEEE Comput Graph Appl 11(6):44–51

    Article  Google Scholar 

  34. Takahashi S, Ikeda T, Shinagawa Y, Kunii TL, Ueda M (1995) Algorithms for extracting correct critical points and constructing topological graphs from discrete geographical elevation data. Comput Graph Forum 14(3):181–192

    Article  Google Scholar 

  35. Biasotti S, Falcidieno B, Spagnuolo M (2000) Extended reeb graphs for surface understanding and description. In: International conference on discrete geometry for computer imagery, pp 185–197

    Google Scholar 

  36. Lazarus F, Verroust A (1999) Level set diagrams of polyhedral objects. In: ACM symposium on solid modeling and applications, pp 130–140

    Google Scholar 

  37. Hilaga M, Shinagawa Y, Kohmura T, Kunii TL (2001) Topology matching for fully automatic similarity estimation of 3D shapes. In: SIGGRAPH, pp 203–212

    Google Scholar 

  38. Mortara M, Patané G (2002) Affine-invariant skeleton of 3D shapes. In: Shape modeling Internationl, pp 245–252

    Google Scholar 

  39. Tierny J, Vandeborre JP, Daoudi M (2006) Invariant high level reeb graphs of 3D polygonal meshes. In: International symposium on 3D data processing, visualization, and transmission, pp 105–112

    Google Scholar 

  40. Rustamov RM (2007) Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: Eurographics symposium on geometry processing, pp 225–233

    Google Scholar 

  41. Ovsjanikov M, Sun J, Guibas LJ (2008) Global intrinsic symmetries of shapes. Eurograph Symp Geom Process 27:1341–1348

    Google Scholar 

  42. Shi Y, Lai R, Toga AW (2013) Cortical surface reconstruction via unified reeb analysis of geometric and topological outliers in magnetic resonance images. IEEE Trans Med Imaging 32(3):511–530

    Article  Google Scholar 

  43. Dale AM, Fischl B, Sereno MI (1999) Cortical surface-based analysis I: Segmentation and surface reconstruction. NeuroImage 9:179–194

    Article  Google Scholar 

  44. Lai R, Shi Y, Scheibel K, Fears S, Woods R, Toga A, Chan T (2010) Metric induced optimal embedding for intrinsic 3D shape analysis. In: International conference on computer vision pattern recognition, pp 2871–2878

    Google Scholar 

  45. Shi Y, Lai R, Toga AW (2013) Conformal mapping via metric optimization with application for cortical label fusion. IPMI (in press)

    Google Scholar 

  46. Gu X, Wang Y, Chan TF, Thompson PM, Yau ST (2004) Genus zero surface conformal mapping and its application to brain surface mapping. IEEE Trans Med Imaging 23(8):949–958

    Article  Google Scholar 

  47. Gold SM, O’Connor, MF, Gill R, Kern KC, Shi Y, Henry RG, Pelletier D, Mohr DC, Sicotte NL (2012) Detection of Altered hippocampal morphology in multiple sclerosis associated depression using automated surface mesh modeling. Hum Brain Mapp. doi:10.1002/hbm.22154. [Epub ahead of print]

  48. Hu MK (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    Article  MATH  Google Scholar 

  49. Lo CH, Don HS (1989) 3-D moment forms: their construction and application to object identification and positioning. IEEE Trans Pattern Anal Mach Intel 11(10):1053–1064

    Article  Google Scholar 

  50. Fischl B, Liu A, Dale AM (2001) Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 20(1):70–80

    Article  Google Scholar 

  51. Székely G, Kelemen A, Brechbühler C, Gerig G (1996) Segmentation of 2-D and 3-D objects from MRI volume data using constrained elastic deformations of flexible Fourier contour and surface models. Med Image Anal 1(1):19–34

    Google Scholar 

  52. Healy DM, Rockmore DN, Kostelec PJ, Moore S (2003) FFTs for the 2-sphere-improvements and variations. J Fourier Anal Appl 9(4):341–385

    Article  MATH  MathSciNet  Google Scholar 

  53. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intel 11(7):674–693

    Article  MATH  Google Scholar 

  54. Lindeberg T (1993) Scale-space theory in computer vision. Kluwer Academic, Hingham

    Google Scholar 

  55. Yu P, Grant PE, Qi Y, Han X, Ségonne F, Pienaar R, Busa E, Pacheco J, Makris N, Buckner RL, Golland P, Fischl B (2007) Cortical surface shape analysis based on spherical wavelets. IEEE Trans Med Imaging 26(4):582–597

    Article  Google Scholar 

  56. Bernal-Rusiel JL, Atienza M, Cantero JL (2008) Detection of focal changes in human cortical thickness: spherical wavelets versus gaussian smoothing. NeuroImage 41(4):1278–1292

    Article  Google Scholar 

  57. Kim WH, Pachauri D, Hatt C, Chung MK, Johnson S, Singh V (2012) Wavelet based multi-scale shape features on arbitrary surfaces for cortical thickness discrimination. In: Bartlett P (ed) NIPS 2012. LNCS, vol 25, pp 1250–1258

    Google Scholar 

  58. Sadjadi FA, Hall EL (1980) Three-dimensional moment invariants. IEEE Trans Pattern Anal Mach Intel 2:127–136

    Article  MATH  Google Scholar 

  59. Mangin JF, Poupon F, Duchesnay E, Riviére D, Cachia A, Collins DL, Evans AC, Régis J (2004) Brain morphometry using 3D moment invariants. Med Image Anal 8(3):187–196

    Article  Google Scholar 

  60. Ng B, Abugharbieh R, Huang X, McKeown MJ (2009) Spatial characterization of fMRI activation maps using invariant 3-D moment descriptors. IEEE Trans Med Imaging 28(2):261–268

    Article  Google Scholar 

  61. Yang F, Kruggel F (2009) A graph matching approach for labeling brain sulci using location, orientation, and shape. Neurocomputing 73(1):179–190

    Article  Google Scholar 

  62. Zacharaki EI, Hogea CS, Shen D, Biros G, Davatzikos C (2009) Non-diffeomorphic registration of brain tumor images by simulating tissue loss and tumor growth. NeuroImage 46(3):762–774

    Article  Google Scholar 

  63. Millán RD, Dempere-Marco L, Pozo JM, Cebral JR, Frangi AF (2007) Morphological characterization of intracranial aneurysms using 3-D moment invariants. IEEE Trans Med Imaging 26(9):1270–1282

    Article  Google Scholar 

  64. Prastawa M, Bullitt E, Ho S, Gerig G (2004) A brain tumor segmentation framework based on outlier detection. Med Image Anal 8(3):275–283

    Article  Google Scholar 

  65. Warfield SK, Kaus M, Jolesz FA, Kikinis R (2000) Adaptive, template moderated, spatially varying statistical classification. Med Image Anal 4(1):43–55

    Article  Google Scholar 

  66. Gerig G, Styner M, Jones D, Weinberger D, Lieberman J (2001) Shape analysis of brain ventricles using SPHARM. In: IEEE workshop mathematical methods in biomedical image, analysis, pp 171–178

    Google Scholar 

  67. Levitt JJ, Styner M, Niethammer M, Bouix S, Koo MS, Voglmaier MM, Dickey CC, Niznikiewicz MA, Kikinis R, McCarley RW, Shenton ME (2009) Shape abnormalities of caudate nucleus in schizotypal personality disorder. Schizophr Res 110(1):127–139

    Article  Google Scholar 

  68. Zhao Z, Taylor WD, Styner M, Steffens DC, Krishnan KR, MacFall JR (2008) Hippocampus shape analysis and late-life depression. PLoS One 3(3):e1837

    Article  Google Scholar 

  69. Van De Ville D, Seghier ML, Lazeyras FO, Blu T, Unser M (2007) WSPM: wavelet-based statistical parametric mapping. NeuroImage 37(4):1205–1217

    Article  Google Scholar 

  70. Canales-Rodríguez EJ, Radua J, Pomarol-Clotet E, Sarró S, Alemán-Gómez Y, Iturria-Medina Y, Salvador R (2013) Statistical analysis of brain tissue images in the wavelet domain: wavelet-based morphometry. NeuroImage 72(22):214–226

    Article  Google Scholar 

  71. Hackmack K, Paul F, Weygandt M, Allefeld C, Haynes JD (2012) Multi-scale classification of disease using structural MRI and wavelet transform. NeuroImage 62(1):48–58

    Article  Google Scholar 

  72. Nain D, Haker S, Bobick A, Tannenbaum A (2007) Multiscale 3-D shape representation and segmentation using spherical wavelets. IEEE Trans Med Imaging 26(4):598–618

    Article  Google Scholar 

  73. Hamarneh G, Abugharbieh R, McInerney T (2004) Medial profiles for modeling deformation and statistical analysis of shape and their use in medical image segmentation. Int J Shape Model 10:187–210.

    Google Scholar 

  74. Ward A, Hamarneh G (2008) GMAT: The groupwise medial axis transform for fuzzy skeletonization and intelligent pruning. Technical report, School of Computing Science, Simon Fraser University, Burnaby

    Google Scholar 

  75. Blum H (1967) A transformation for extracting new descriptors of shape. Models for the perception of speech and visual form. MIT Press, Cambridge, pp 362–380

    Google Scholar 

  76. Bai X, Latecki LJ, Liu WY (2007) Skeleton pruning by contour partitioning with discrete curve evolution. IEEE Trans Pattern Anal Mach Intel 29(3):449–462

    Article  Google Scholar 

  77. Ward A, Hamarneh G (2010) GMAT: the groupwise medial axis transform for fuzzy skeletonization and intelligent pruning. IEEE Trans Pattern Anal Mach Intel 32(6):1084–1096

    Article  Google Scholar 

  78. Pizer SM, Fletcher PT, Joshi S, Thall A, Chen JZ, Fridman Y, Fritsch DS, Gash AG, Glotzer JM, Jiroutek MR, Lu C, Muller KE, Tracton G, Yushkevich P, Chaney EL (2003) Deformable M-reps for 3D medical image segmentation. Int J Comput Vis 55(2):85–106

    Article  Google Scholar 

  79. Siddiqi K, Pizer SM (2008) Medial representations: mathematics, algorithms and applications. Springer, New York

    Book  Google Scholar 

  80. Fletcher T, Lu C, Pizer SM, Joshi S (2004) Principal geodesic analysis for the study of nonlinear statistics of shape. IEEE Trans Med Imaging 23(8):995–1005

    Article  Google Scholar 

  81. Yushkevich PA, Zhang H, Gee JC (2006) Continuous medial representation for anatomical structures. IEEE Trans Med Imaging 25(12):1547–1564

    Article  Google Scholar 

  82. Yushkevich PA (2009) Continuous medial representation of brain structures using the Biharmonic PDE. NeuroImage 45(1):s99–s110

    Article  MathSciNet  Google Scholar 

  83. Yushkevich PA (2003) Statistical shape characterization using the medial representation. Ph.D. thesis, University of North Carolina, Chapel Hill

    Google Scholar 

  84. Matheron G (1988) Examples of topological properties of skeletons. In: Serra J (ed) Image analysis and mathematical morphology part II: theoretical advances. Academic Press, London, pp 217–238

    Google Scholar 

  85. Naf M, Kubler O, Kikinis R, Shenton M, Szekely G (1996) Characterization and recognition of 3D organ shape in medical image analysis using skeletonization. In: Workshop on mathematical methods in biomedical image analysis, pp 139–150. IEEE Computer Society

    Google Scholar 

  86. Styner M (2001) Combined boundary-medial shape description of variable biological objects. Ph.D. thesis, University of North Carolina, Chapel Hill

    Google Scholar 

  87. Katz R (2002) Form metrics for interactive rendering via figural models of perception. Ph.D. thesis, University of North Carolina, Chapel Hill

    Google Scholar 

  88. Siddiqi K, Ahokoufandeh A, Dickinson S, Zucker S (1998) Shock graphs and shape matching. Int Conf Comput Vis 35:13–32

    Google Scholar 

  89. Siddiqi K, Bouix S, Tannenbaum A, Zucker SW (1999) The Hamilton-Jacobi skeleton. Comput Vis 2:828–834. IEEE Press

    Google Scholar 

  90. Fridman Y, Pizer SM, Aylward S, Bullitt E (2003) Segmenting 3D branching tubular structures using cores. In: Ellis RE, Peters TM (eds) MICCAI 2003. LNCS, vol 2879, pp 570–577. Springer, New York

    Google Scholar 

  91. Golland P, Grimson W, Kikinis R (1999) Statistical shape analysis using fixed topology skeletons: corpus callosum study. In: Kuba A, Attila J, Samal M (eds) LNCS, vol 1613, pp 382–388. Springer, New York

    Google Scholar 

  92. Fletcher T (2004) Statistical variability in nonlinear spaces: application to shape analysis and DT-MRI. Ph.D. thesis, University of North Carolina, Chapel Hill

    Google Scholar 

  93. Styner M, Lieberman JA, Pantazis D, Gerig G (2004) Boundary and medial shape analysis of the hippocampus in schizophrenia. Med Image Anal 8(3):197–203

    Article  Google Scholar 

  94. McClure RK, Styner M, Maltbie E, Lieberman JA, Gouttard S, Gerig G, Shi X, Zhu H (2013) Localized differences in caudate and hippocampal shape are associated with schizophrenia but not antipsychotic type. Psychiatry Res 211(1):1–10

    Article  Google Scholar 

  95. Ishaq O, Hamarneh G, Tam R, Traboulsee A (2007) Longitudinal, regional and deformation-specific corpus callosum shape analysis for multiple sclerosis. In: IEEE international conference of engineering in medicine and biology society, pp 2110–2113

    Google Scholar 

  96. Vaillant M, Glaunes J (2005) Surface matching via currents. In: Christensen GE, Sonka M (eds) LNCS, vol 3565, pp 381–392. Springer, New York

    Google Scholar 

  97. Charon N, Trouvé A The varifold representation of non-oriented shapes for diffeomorphic registration. SIAM J Imaging Sci (to appear), eprint arXiv:1304.6108

    Google Scholar 

  98. Durrleman S (2010) Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution. Ph.D. thesis, Nice Sophia-Antipolis University, France

    Google Scholar 

  99. Christensen GE, Rabbitt RD, Miller MI (1994) 3D brain mapping using a deformable neuroanatomy. Phys Med Biol 39(3):609–618

    Article  Google Scholar 

  100. Trouvé A (1998) Diffeomorphisms groups and pattern matching in image analysis. Int J Comput Vis 28(3):213–221

    Article  Google Scholar 

  101. Dupuis P, Grenander U, Miller MI (1998) Variational problems on flows of diffeomorphisms for image matching. Q Appl Math 56(3):587–600

    MATH  MathSciNet  Google Scholar 

  102. Vercauteren T, Pennec X, Perchant A, Ayache N (2009) Diffeomorphic demons: efficient non-parametric image registration. NeuroImage 45(1):S61–S72

    Article  Google Scholar 

  103. Durrleman S, Prastawa M, Korenberg JR, Joshi S, Trouvé A, Gerig G (2012) Topology preserving atlas construction from shape data without correspondence using sparse parameters. In: Ayache N, Delingette H, Golland P, Mori K (eds) MICCAI 2012. LNCS, vol 7512, pp 223–230

    Google Scholar 

  104. Miller MI, Trouvé A, Younes L (2002) On the metrics and euler-lagrange equations of computational anatomy. Ann Rev Biomed Eng 4:375–405

    Article  Google Scholar 

  105. Miller MI, Trouvé A, Younes L (2006) Geodesic shooting for computational anatomy. J Math Imaging Vis 24(2):209–228

    Article  Google Scholar 

  106. Durrleman S, Pennec X, Trouvé A, Thompson P, Ayache N (2008) Inferring brain variability from diffeomorphic deformations of currents: an integrative approach. Med Image Anal 12(5):626–637

    Article  Google Scholar 

  107. Medical Image Computing and Computer-Assisted Intervention—MICCAI (2013) In: Mori K, Ichiro S (eds) LNCS, vol 8149, pp 267–274

    Google Scholar 

  108. Auzias G, Colliot O, Glaunès JA, Perrot M, Mangin J-F, Trouvé A, Baillet S (2011) Diffeomorphic brain registration under exhaustive sulcal constraints. IEEE Trans Med Imaging 30(6):1214–1227

    Google Scholar 

  109. Qiu A, Younes L, Wang L, Ratnanather JT, Gillepsie SK, Kaplan G, Csernansky J, Miller MI (2007) Combining anatomical manifold information via diffeomorphic metric mappings for studying cortical thinning of the cingulated gyrus in schizophrenia. Neuroimage 37(3):821–833

    Article  Google Scholar 

  110. Durrleman S, Pennec X, Trouvé A, Braga J, Gerig G, Ayache A (2013) Toward a comprehensive framework for the spatiotemporal analysis of longitudinal shape data. Int J Comput Vis 103(1):22–59

    Article  MATH  MathSciNet  Google Scholar 

  111. Mansi T, Voigt I, Leonardi B, Pennec X, Durrleman S, Sermesant M, Delingette H, Taylor AM, Boudjemline Y, Pongiglione G, Ayache N (2011) A statistical model for quantification and prediction of cardiac remodelling: application to tetralogy of fallot. IEEE Trans Med Imaging 9(30):1605–1616

    Article  Google Scholar 

  112. Allassonnière S, Kuhn E (2010) Stochastic algorithm for parameter estimation for dense deformable template mixture model. ESAIM-PS 14:382–408

    Article  MATH  Google Scholar 

  113. van der Kolk AG, Hendrikse J, Zwanenburg JJ, Visser F, Luijten PR (2013) Clinical applications of 7 T MRI in the brain. Eur. J. Radiol. 82(5):708–718

    Article  Google Scholar 

  114. Warfield SK, Zou KH, Wells WM (2004) Simultaneous truth and performance level estimation (STAPLE): an algorithm for the validation of image segmentation. IEEE Trans Med Imaging 23(7):903–921

    Article  Google Scholar 

  115. Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der Kouwe A, Killiany R, Kennedy D, Klaveness S, Montillo A, Makris N, Rosen B, Dale AM (2002) Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33(3):341–355

    Article  Google Scholar 

  116. Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT, Albert MS, Killiany RJ (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. NeuroImage 31(3):968–980

    Article  Google Scholar 

  117. Top A, Hamarneh G, Abugharbieh R (2011) Active learning for interactive 3D image segmentation. In: Fichtinger G, Peters T (eds) MICCAI 2011. LNCS, vol 14, pp 603–610

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernard Ng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ng, B., Toews, M., Durrleman, S., Shi, Y. (2014). Shape Analysis for Brain Structures. In: Li, S., Tavares, J. (eds) Shape Analysis in Medical Image Analysis. Lecture Notes in Computational Vision and Biomechanics, vol 14. Springer, Cham. https://doi.org/10.1007/978-3-319-03813-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-03813-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-03812-4

  • Online ISBN: 978-3-319-03813-1

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics