Skip to main content

Alternative techniques for peripheral nerve repair: conduits and end-to-side neurorrhaphy

  • Conference paper
How to Improve the Results of Peripheral Nerve Surgery

Part of the book series: Acta Neurochirurgica Supplementum ((NEUROCHIRURGICA,volume 100))

Abstract

Nowadays new techniques may help the surgeon in difficult cases of nerve tissue loss: when a gap is produced in a mixed nerve, the use of conduits can be an alternative to nerve grafts, which still represent the “gold standard” for this kind of lesions. We have applied biologic conduits (muscle inside a vein) in more than 40 cases since 1993 with 85% of good functional results for both sensory and mixed nerves up to 5 cm. The advantages of this technique are: 1) all graft material is easily withdrawn in the lesion area and thus is not necessary to perform any new incision; 2) the possibility of reconstructing nerve gaps up to 5 cm avoids secondary damage created by the withdrawal of healthy nerves; 3) the possibility for spontaneous orientation of regenerating nerve fibers is offered as fibers are allowed to search for their final target (chemiotropism).

Furthermore, when the tissue loss is important or the proximal nerve stump is not available, so jeopardizing the possibility of recovery with traditional reconstruction, the use of end-to-side neurorrhaphy has been described to solve the problem. However the use of end-toside neurorrhaphy in the clinical setting for motor recovery remains controversial. In our experience we had satisfying results only in 20% of cases and thus motor reconstruction in the absence of an available proximal nerve may be best handled by nerve to nerve transfers. By contrast we had good results in sensory nerve reconstruction (especially digital nerves) by end-to-side coaptation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Allieu Y, Privat JM, Bonnel F (1984) Paralysis of the brachial plexus. Neurotization by the spinal accessory nerve. Clin Plastic Surg 11: 133–137

    CAS  Google Scholar 

  2. Al-Qattan M, Al-Thunayan A (1998) Variables affecting axonal regeneration following end-to-side neurorrhaphy. Br J Plast Surg 51: 238–242

    Article  PubMed  CAS  Google Scholar 

  3. Andreopoulos E, Skoulis TG, Luizzi F et al (1998) Double-labelling technique to trace axonal sprouting after end-to-side neurorrhaphy [abstract]. J Reconst Microsurg 14: 591–599

    Google Scholar 

  4. Battiston B, Lanzetta M (1999) Reconstruction of high ulnar nerve lesions by distal double median to ulnar nerve transfer. J Hand Surg [Am] 24: 1185–1189

    Article  CAS  Google Scholar 

  5. Battiston B, Tos P, Cushway T, Geuna S (2000) Nerve repair by means of vein filled with muscle grafts. I. Clinical results. Microsurgery 20: 32–36

    CAS  Google Scholar 

  6. Battiston B, Tos P, Geuna S et al (2000) Nerve repair by means of vein filled with muscle grafts. II. Morphological analysis of regeneration. Microsurgery 20: 37–41

    Article  PubMed  CAS  Google Scholar 

  7. Brunelli G, Monini L (1984) Neurotization of avulsed roots of brachial plexus by means of anterior nerves of cervical plexus. Clin Plastic Surg 11: 149–153

    CAS  Google Scholar 

  8. Carlstedt T (1995) Spinal nerve root injuries in brachial plexus lesions: basic science and clinical application of new surgical strategies. Microsurgery 16: 13–16

    Article  PubMed  CAS  Google Scholar 

  9. Felici N, Del Bene M, Battiston B, Amadei F (2003) Functional results of end-to-side nerve anastomosis in 39 consecutive patients, Abstracts Volume Second Congress of the World Society for Reconstructive Microsurgery, Heidelberg, p 42

    Google Scholar 

  10. Fornaro M, Tos P, Geuna S, Giacobini-Robecchi MG, Battiston B (2001) Confocal imaging of Schwann-cell migration along muscle-vein combined grafts used to bridge nerve defects in the rat. Microsurgery 21: 153–155

    Article  PubMed  CAS  Google Scholar 

  11. Geuna S, Raimondo S, Nicolino S, Boux E, Fornaro M, Tos P, Battiston B, Perroteau I (2003) Schwann-cell proliferation in muscle-vein combined conduits for bridging rat sciatic nerve defects. J Reconstr Microsurg 19: 119–123

    Article  PubMed  CAS  Google Scholar 

  12. Gu YD, Chen DS, Zhang GM et al (1998) Long-term functional results of contralateral C7 transfer. J Reconstr Microsurg 14: 57–59

    PubMed  CAS  Google Scholar 

  13. Ide C (1984) Nerve regeneration through the basal lamina scaffold of the skeletal muscle. Neurosci Res 1: 379–391

    Article  Google Scholar 

  14. Kalliainen LK, Cederna PS, Kuzon WM (1999) Mechanical function of muscle reinnervated by end-to-side neurorrhaphy. Plast Reconstr Surg 103: 1919–1927

    Article  PubMed  CAS  Google Scholar 

  15. Levi-Montalcini R, Hamburger V (1951) Selective growth stimulating effects of mouse sarcoma on sensory and sympathetic nervous system of the chick embryo. J Exp Zool 116: 321–362

    Article  PubMed  CAS  Google Scholar 

  16. Liu K, Chen LE, Seaber AV, Goldner RV, Urbaniak JR (1999) Motor functional and morphological findings following end-to-side neurorrhaphy in the rat model. J Orthop Res 17: 293–300

    Article  PubMed  CAS  Google Scholar 

  17. Lundborg G (ed) (1988) Nerve injury and repair. Churchill Livingstone, Edinburgh

    Google Scholar 

  18. Lundborg G, Dahlin L, Danielsen N, Zhao Q (1994) Trophism, tropism and specificity in nerve regeneration. J Reconstr Microsurg 5: 345–354

    Google Scholar 

  19. Lundborg G, Longo FM, Varon S (1982) Nerve regeneration model and trophic factors in vivo. Brain Res 232: 157–161

    Article  PubMed  CAS  Google Scholar 

  20. Lundborg G, Rosen B, Dahlin L et al (1997) Tubular versus conventional repair of median and ulnar nerves in human forearm: early results from a prospective, randomized, clinical study. J Hand Surg [Am] 22: 99–106

    Article  CAS  Google Scholar 

  21. Lundborg G, Zhao Q, Kanje M, Danielsen N (1994) Can sensory and motor collateral sprouting be induced from intact peripheral nerve by end-to-side anastomosis? J Hand Surg 19B: 277–282

    Google Scholar 

  22. Luo Y, Wang T, Fang H (1997) Preliminary investigation of treatment of ulnar nerve defect by end-to-side neurorrhaphy. Chung Kuo Hsiu Fu Chung Chien Wai Ko Tsa Chih 11: 338–339

    PubMed  CAS  Google Scholar 

  23. Lutz B, Chuang D, Hsu J et al (1998) End-to-side neurorrhaphy: functional and double labelling study in rat upper limb. J Reconstr Microsurg 14: 590–602

    Google Scholar 

  24. Lutz BS, Chuang DC, Ma SF, Wei FC (2000) Selection of donor nerves — an important factor in end-to-side neurorrhaphy. Br J Plast Surg 53: 149–154

    Article  PubMed  CAS  Google Scholar 

  25. Mackinnon S, Dellon AL (1990) A study of nerve regeneration across synthetic (maxon) and biologic (collagen) nerve conduits for nerve gaps up to 5 cm in the primate. J Reconstr Microsurgery 6: 117–121

    CAS  Google Scholar 

  26. Mackinnon S, Dellon AL (eds) (1988) Nerve repair and nerve grafting. Surgery of the peripheral nerve. Thieme Medical Publishers, New York

    Google Scholar 

  27. MacKinnon SE (1996) Nerve allotransplantation following severe tibial nerve injury. Case report. J Neurosurg 84: 671–676

    PubMed  CAS  Google Scholar 

  28. Mackinnon SE, Dellon AL (1990) Clinical nerve reconstruction with a bioabsorbable polyglycolic acid tube. Plast Reconstr Surg 85: 419–424

    Article  PubMed  CAS  Google Scholar 

  29. Matsumoto M, Hirata H, Nishiyama M et al (1999) Schwann cells can induce collateral sprouting from intact axons: experimental study of end-to-side neurorrhaphy using a Y-chamber model. J Reconstr Microsurg 15/4: 281–286

    Article  Google Scholar 

  30. McCallister WV, Tang P, Trumble TE (1999) Is end-to-side neurorrhaphy effective? A study of axonal sprouting stimulated from intact nerves. J Reconstr Microsurg 15: 597–603

    PubMed  CAS  Google Scholar 

  31. Millesi H (1981) Interfascicular nerve grafting. Orthopaedic Clin North Am 12: 287–301

    CAS  Google Scholar 

  32. Narakas A (1977) The surgical management of brachial plexus injuries. In: Daniel RK, Terzis JK (eds) Reconstructive surgery. Little, Brown, Boston

    Google Scholar 

  33. Oberlin C (1994) Nerve transfer to biceps muscle using a part of ulnar nerve for C5–C6 avulsion of the brachial plexus. J Hand Surg [Am] 19: 232–237

    Article  CAS  Google Scholar 

  34. Pagnotta A, Tos P, Fornaro M, Gigante A, Geuna S, Battiston B (2002) Neurotrophins and their receptors in early axonal regeneration along muscle-vein-combined grafts Microsurgery 22: 300–303

    Google Scholar 

  35. Papalia I, Geuna S, Tos PL, Boux E, Battiston B, Stagno d’Alcontres F (2003) Morphological and functional study of rat median nerve repair by means of termino-lateral neurorrhaphy on the ulnar nerve. J Reconstr Microsurg 19(4): 257–264

    Article  PubMed  Google Scholar 

  36. Risitano G, Battiston B, Coppolino S, Tos P (2001) Risultati clinici sull’utilizzo della tubulizzazione biologica e sintetica nella ricostruzione dei nervi digitali della mano. Riv Chir Mano 38: 28–35

    Google Scholar 

  37. Rovak JM, Cederna PS, Kuzon WM Jr (2001) Terminolateral neurorrhaphy: a review of the literature. J Reconstr Microsurg 7: 615–624

    Article  Google Scholar 

  38. Smith RG, Appel SH (1983) Extracts of skeletal muscle increase neurite outgrowth and cholinergic activity of fetal rat spinal motor neurons. Science 219: 1079–1081

    Article  PubMed  CAS  Google Scholar 

  39. Tarasidis G, Watanabe O, Mackinnon S et al (1997) End-to-side neurorrhaphy resulting in limited sensory axonal regeneration in a rat model. Ann Otol Rhinol Laryngol 106: 506–512

    PubMed  CAS  Google Scholar 

  40. Tarasidis G, Watanabe O, Mackinnon S et al (1998) End-to-side neurorrhaphy: a long term study of neural regeneration in a rat model. Otolaryngol Head Neck Surg 119: 337–344

    Article  PubMed  CAS  Google Scholar 

  41. Tarasidis G, Watanabe O, Mackinnon S, Strasberg SR, Haughey BH, Hunter DA (1988) End-to-side neurorrhaphy: a long term study of neural regeneration in a rat model. Otolaringol Head Neck Surg 119: 337–341

    Article  Google Scholar 

  42. Tos P, Battiston B, Geuna S et al (2000) Tissue specificity in rat peripheral nerve regeneration through combined skeletal muscle and vein conduit grafts. Microsurgery 20: 65–71

    Article  PubMed  CAS  Google Scholar 

  43. Varon S, Adler R (1981) Tropic and specifying factors directed to neuronal cells. Adv Cell Neurobiol 2: 115–163

    CAS  Google Scholar 

  44. Viterbo F, Trindade JC, Hoshino K, Mazzoni Neto A ( 1994) End-to-side neurorrhaphy with removal of the epineurial sheath: an experimental study in rats. Plast Reconstr Surg 94: 1038–1047

    Article  PubMed  CAS  Google Scholar 

  45. Viterbo F, Trinidade JC, Hoshino K, Mazzoni A (1992) Lateroterminal neurorrhaphy without removal of the epineural sheat: experimental study in rats. Sao Paulo Med J 110: 267–275

    CAS  Google Scholar 

  46. Waller A (1850) Experiments on the section of glossopharyngeal and hypoglossal nerves of the frog, and observations of the alterations produced thereby in the structure of their primitive fibers. Philos Trans R Soc London (Biol) 140: 423–429

    Article  Google Scholar 

  47. Weber RA, Breidenbach WC, Brown RE, Jabaley ME, Mass DP (2000) A randomized prospective study of polyglycolic acid conduits for digital nerve reconstruction in humans. Plast Reconstr Surg 106: 1036–1045

    Article  PubMed  CAS  Google Scholar 

  48. Yamauchi T, Yajima Y, Tamai S et al (2001) Neurohistochemical analysis of regeneration in rat peripheral nerve after end-to-side neurorrhaphy. J Orthop Sci 6: 82–87

    Article  PubMed  CAS  Google Scholar 

  49. Yüksel F, Karacaolu E, Güler M (1999) Nerve regeneration through side-to-side neurorrhaphy sites in a rat model: a new concept in peripheral nerve surgery. Plast Reconstr Surg 104: 2092–2099

    Article  PubMed  Google Scholar 

  50. Zhang Z, Soucacos P, Bo J, Beris AE (1999) Evaluation of collateral sprouting after end-to-side coaptation using a fluorescent double labelling technique. Microsurgery 19: 281–286

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag

About this paper

Cite this paper

Battiston, B., Tos, P., Conforti, L.G., Geuna, S. (2007). Alternative techniques for peripheral nerve repair: conduits and end-to-side neurorrhaphy. In: Millesi, H., Schmidhammer, R. (eds) How to Improve the Results of Peripheral Nerve Surgery. Acta Neurochirurgica Supplementum, vol 100. Springer, Vienna. https://doi.org/10.1007/978-3-211-72958-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-211-72958-8_10

  • Publisher Name: Springer, Vienna

  • Print ISBN: 978-3-211-72955-7

  • Online ISBN: 978-3-211-72958-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics