Skip to main content

Part of the book series: Experientia Supplementum ((EXS,volume 106))

Abstract

MicroRNAs, key regulators of biological processes, are involved in the pathophysiological mechanisms underlying human diseases, including cardiovascular diseases. Their recent discovery revealed a previously unknown layer of pathophysiologic regulators, which also play a key role in the regulation of several aspects of cardiovascular diseases. More recently, it was demonstrated that circulating microRNAs can be measured in the blood. Hence, the potential use of microRNAs as disease biomarkers attracted many research groups. Indeed, their unusual stability in the bloodstream and during prolonged storage make circulating miRs very interesting as potential biomarkers. Circulating microRNAs are emerging as the next generation “smart” biomarkers and could be helpful in further improving the diagnostic and therapeutic processes of cardiovascular diseases. The present chapter summarizes the most relevant experimental evidence on circulating microRNAs in cardiovascular diseases, including arterial remodeling, restenosis, coronary artery disease, acute coronary syndromes, hypertension, heart failure, and ischemic stroke, highlighting potential pathophysiological correlations to the mechanisms underlying cardiovascular diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ai J, Zhang R, Li Y et al (2010) Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun 391:73–77

    Article  CAS  PubMed  Google Scholar 

  • Arroyo JD, Chevillet JR, Kroh EM et al (2011) Argonaute2 complexes carry a population of circulating miRs independent of vesicles in human plasma. Proc Natl Acad Sci USA 108:5003–5008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  CAS  PubMed  Google Scholar 

  • Bostjancic E, Zidar N, Stajer D et al (2010) MiRs miR-1, miR-133a, miR-133b and miR-208 are dysregulated in human myocardial infarction. Cardiology 115:163–169

    Article  CAS  PubMed  Google Scholar 

  • Casscells W (1992) Migration of smooth muscle and endothelial cells. Critical events in restenosis. Circulation 86:723–729

    Article  CAS  PubMed  Google Scholar 

  • Cheng Y, Tan N, Yang J et al (2010) A translational study of circulating cell-free microRNA-1 in acute myocardial infarction. Clin Sci 119:87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cirillo P, Golino P, Calabrò P (2003) Activated platelets stimulate tissue factor expression in smooth muscle cells. Thromb Res 112:51–57

    Article  PubMed  Google Scholar 

  • Corsten MF, Dennert R, Jochems S et al (2010) Circulating MicroRNA-208b and MicroRNA 499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet 3:499–506

    Article  PubMed  Google Scholar 

  • Curcio A, Torella D, Iaconetti C et al (2013) MicroRNA-1 downregulation increases connexin 43 displacement and induces ventricular tachyarrhythmias in rodent hypertrophic hearts. PLoS ONE 8, e70158

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • D’Alessandra Y, Devanna P, Limana F et al (2010) Circulating miRs are new and sensitive biomarkers of myocardial infarction. Eur Heart J 31:2765–2773

    Article  PubMed  PubMed Central  Google Scholar 

  • De Rosa S, Fichtlscherer S, Lehmann R et al (2011) Transcoronary concentration gradients of circulating miRs. Circulation 124:1936–1944

    Article  PubMed  Google Scholar 

  • De Rosa S, Curcio A, Indolfi C (2014) Emerging role of microRNAs in cardiovascular diseases. Circ J 78:567–575

    Article  PubMed  Google Scholar 

  • Devaux Y, Vausort M, Goretti E et al (2012) Use of circulating miRs to diagnose acute myocardial infarction. Clin Chem 58:559–567

    Article  CAS  PubMed  Google Scholar 

  • Devaux Y, Vausort M, McCann GP et al (2013) A panel of 4 microRNAs facilitates the prediction of left ventricular contractility after acute myocardial infarction. PLoS ONE 8, e70644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Devaux Y, Mueller M, Haaf P et al (2015) Diagnostic and prognostic value of circulating microRNAs in patients with acute chest pain. J Intern Med 277:260–271

    Article  CAS  PubMed  Google Scholar 

  • Dharap A, Bowen K, Place R et al (2009) Transient focal ischemia induces extensive temporal changes in rat cerebral microRNAome. J Cereb Blood Flow Metab 29:675–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong S, Cheng Y, Yang J et al (2009) MicroRNA expression signature and the role of microRNA-21 in the early phase of acute myocardial infarction. J Biol Chem 284:29514–29525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edelstein LC, Bray PF (2011) MicroRNAs in platelet production and activation. Blood 117:5289–5296

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Eskildsen TV, Jeppesen PL, Schneider M et al (2013) Angiotensin II regulates microRNA-132/-212 in hypertensive rats and humans. Int J Mol Sci 14:11190–11207

    Article  PubMed  PubMed Central  Google Scholar 

  • Fichtlscherer S, De Rosa S, Fox H et al (2010) Circulating miRs in patients with coronary artery disease. Circ Res 107:677–684

    Article  CAS  PubMed  Google Scholar 

  • Flammer AJ, Gössl M, Widmer RJ et al (2012) Osteocalcin positive CD133+/CD34-/KDR+ progenitor cells as an independent marker for unstable atherosclerosis. Eur Heart J 33:2963–2969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukushima Y, Nakanishi M, Nonogi H et al (2011) Assessment of plasma miRs in congestive heart failure. Circ J 75:336–340

    Article  CAS  PubMed  Google Scholar 

  • Gidlof O, Andersson P, van der Pals J et al (2011) Cardiospecific microRNA plasma levels correlate with troponin and cardiac function in patients with ST elevation myocardial infarction, are selectively dependent on renal elimination, and can be detected in urine samples. Cardiology 118:217–226

    Article  PubMed  Google Scholar 

  • Goren Y, Kushnir M, Zafrir B et al (2012) Serum levels of miRs in patients with heart failure. Eur Heart Fail 14:147–154

    Article  CAS  Google Scholar 

  • He M, Gong Y, Shi J et al (2014a) Plasma microRNAs as potential noninvasive biomarkers for in-stent restenosis. PLoS ONE 9, e112043

    Article  PubMed  PubMed Central  Google Scholar 

  • He F, Lv P, Zhao X et al (2014b) Predictive value of circulating miR-328 and miR-134 for acute myocardial infarction. Mol Cell Biochem 394:137–144

    Article  CAS  PubMed  Google Scholar 

  • Hergenreider E, Heydt S, Tréguer K et al (2012) Atheroprotective communication between endothelial cells and smooth muscle cells through miRNAs. Nat Cell Biol 14:249–256

    Article  CAS  PubMed  Google Scholar 

  • Iaconetti C, Polimeni A, Sorrentino S et al (2012) Inhibition of mir-92a increases endothelial proliferation and migration in vitro as well as reduces neointimal proliferation in vivo after vascular injury. Basic Res Cardiol 107:296–309

    Article  PubMed  Google Scholar 

  • Iaconetti C, Gareri C, Polimeni A et al (2013) Non-coding RNAs: the “dark matter” of cardiovascular pathophysiology. Int J Mol Sci 14:19987–20018

    Article  PubMed  PubMed Central  Google Scholar 

  • Iaconetti C, De Rosa S, Polimeni A et al (2015) Down-regulation of miR-23b induces phenotypic switching of vascular smooth muscle cells in vitro and in vivo. Cardiovasc Res 107(4):522–533, pii: cvv141

    Article  CAS  PubMed  Google Scholar 

  • Ikitimur B, Cakmak HA, Coskunpinar E et al (2015) Relationship between circulating microRNAs and left ventricular mass in symptomatic heart failure patients with systolic dysfunction. Kardiol Pol. doi:10.5603/KP.a2015.0082 [Epub ahead of print]

    Google Scholar 

  • Indolfi C, Curcio A (2014) Stargazing microRNA maps a new miR-21 star for cardiac hypertrophy. J Clin Invest 124:1896–1898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Indolfi C, Avvedimento EV, Rapacciuolo A et al (1995) Inhibition of cellular ras prevents smooth muscle cell proliferation after vascular injury in vivo. Nat Med 1:541–545

    Article  CAS  PubMed  Google Scholar 

  • Indolfi C, Di Lorenzo E, Rapacciuolo A et al (2000) 8-Chloro-cAMP inhibits smooth muscle cell proliferation in vitro and neointima forma- tion induced by balloon injury in vivo. J Am Coll Cardiol 36:288–293

    Article  CAS  PubMed  Google Scholar 

  • Indolfi C, Torella D, Cavuto L et al (2001) Effects of balloon injury on neointimal hyperplasia in streptozotocin-induced diabetes and in hyperinsulinemic nondiabetic pancreatic islet-transplanted rats. Circulation 103:2980–2986

    Article  CAS  PubMed  Google Scholar 

  • Indolfi C, Torella D, Coppola C et al (2002) Rat carotid artery dilation by PTCA balloon catheter induces neointima formation in presence of IEL rupture. Am J Physiol Heart Circ Physiol 283:H760–H767

    Article  CAS  PubMed  Google Scholar 

  • Indolfi C, Mongiardo A, Curcio A et al (2003) Molecular mechanisms of in-stent restenosis and approach to therapy with eluting stents. Trends Cardiovasc Med 13:142–148

    Article  CAS  PubMed  Google Scholar 

  • Indolfi C, Gasparri C, Vicinanza C et al (2011) Mitogen-activated protein kinases activation in T lymphocytes of patients with acute coronary syndromes. Basic Res Cardiol 106:667–679

    Article  CAS  PubMed  Google Scholar 

  • Jeyaseelan K, Lim KY, Armugam A (2008) MicroRNA expression in the blood and brain of rats subjected to transient focal ischemia by middle cerebral artery occlusion. Stroke 39:959–966

    Article  CAS  PubMed  Google Scholar 

  • Ji X, Takahashi R, Hiura Y et al (2009) Plasma miR-208 as a biomarker of myocardial injury. Clin Chem 55:1944–1949

    Article  CAS  PubMed  Google Scholar 

  • Kim JM, Jung KH, Chu K et al (2015) Atherosclerosis-related circulating microRNAs as a predictor of stroke recurrence. Transl Stroke Res 6:191–197

    Article  CAS  PubMed  Google Scholar 

  • Kondkar AA, Bray MS, Leal SM et al (2010) VAMP8/endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost 8:369–378

    Article  CAS  PubMed  Google Scholar 

  • Kontaraki JE, Marketou ME, Zacharis EA et al (2014) MicroRNA-9 and microRNA-126 expression levels in patients with essential hypertension: potential markers of target-organ damage. J Am Soc Hypertens 8:368–375

    Article  CAS  PubMed  Google Scholar 

  • Landry P, Plante I, Ouellet DL et al (2009) Existence of a microRNA pathway in anucleate platelets. Nat Struct Mol Biol 16:961–966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laterza OF, Lim L, Garrett-Engele PW et al (2009) Plasma MiRs as sensitive and specific biomarkers of tissue injury. Clin Chem 55:1977–1983

    Article  CAS  PubMed  Google Scholar 

  • Leistner DM, Fichtlscherer S, Thome C et al (2013) OCT-derived coronary plaque morphology and transcoronary concentration gradients of vessel wall-associated microRNAs. Eur Heart J 34(suppl 1). doi:10.1093/eurheartj/eht310.P5445

  • Li P, Teng F, Gao F et al (2015) Identification of circulating microRNAs as potential biomarkers for detecting acute ischemic stroke. Cell Mol Neurobiol 35:433–447

    Article  PubMed  Google Scholar 

  • Liu DZ, Tian Y, Ander BP et al (2010) Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab 30:92–101

    Article  PubMed  Google Scholar 

  • Marques FZ, Campain AE, Tomaszewski M (2011) Gene expression profiling reveals renin mRNA overexpression in human hypertensive kidneys and a role for microRNAs. Hypertension 58:1093–1098

    Article  CAS  PubMed  Google Scholar 

  • Meder B, Keller A, Vogel B et al (2011) MicroRNA signatures in total peripheral blood as novel biomarkers for acute myocardial infarction. Basic Res Cardiol 106:13–23

    Article  CAS  PubMed  Google Scholar 

  • Meyer SU, Kaiser S, Wagner C et al (2012) Profound effect of profiling platform and normalization strategy on detection of differentially expressed microRNAs--a comparative study. PLoS ONE 7, e38946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monleau M, Bonnel S, Gostan T et al (2014) Comparison of different extraction techniques to profile microRNAs from human sera and peripheral blood mononuclear cells. BMC Genomics 15:395

    Article  PubMed  PubMed Central  Google Scholar 

  • Moon JH, Chae MK, Kim KJ et al (2012) Decreased endothelial progenitor cells and increased serum glycated albumin are independently correlated with plaque-forming carotid artery atherosclerosis in type 2 diabetes patients without documented ischemic disease. Circ J 76:2273–2279

    Article  CAS  PubMed  Google Scholar 

  • Nagalla S, Shaw C, Kong X et al (2011) Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity. Blood 117:5189–5197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olivieri F, Antonicelli R, Lorenzi M et al (2013) Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol 167:531–536

    Article  PubMed  Google Scholar 

  • Polimeni A, De Rosa S, Indolfi C (2013) Vascular miRNAs after balloon angioplasty. Trends Cardiovasc Med 23:9–14

    Article  CAS  PubMed  Google Scholar 

  • Qureshi IA, Mehler MF (2010) The emerging role of epigenetics in stroke: II. RNA regulatory circuitry. Arch Neurol 67:1435–1441

    PubMed  PubMed Central  Google Scholar 

  • Rayner KJ, Moore KJ (2014) MicroRNA control of high-density lipoprotein metabolism and function. Circ Res 114:183–192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren J, Zhang J, Xu N et al (2013) Signature of circulating microRNAs as potential biomarkers in vulnerable coronary artery disease. PLoS ONE 8, e80738

    Article  PubMed  PubMed Central  Google Scholar 

  • Rink C, Khanna S (2011) MicroRNA in ischemic stroke etiology and pathology. Physiol Genomics 43:521–528

    Article  CAS  PubMed  Google Scholar 

  • Rixe J, Rolf A, Fichtlscherer S et al (2011) Plasma levels of circulating microRNAs correlate with coronary plaque burden as assessed by cardiac computed tomography. Circulation 124:1. (Abstract 15162)

    Article  Google Scholar 

  • Sanchis J, Bardají A, Bosch X et al (2012) Usefulness of high-sensitivity troponin T for the evaluation of patients with acute chest pain and no or minimal myocardial damage. Am Heart J 164:194–200

    Article  CAS  PubMed  Google Scholar 

  • Santovito D, Mandolini C, Marcantonio P et al (2013) Overexpression of microRNA-145 in atherosclerotic plaques from hypertensive patients. Expert Opin Ther Targets 17:217–223

    Article  CAS  PubMed  Google Scholar 

  • Sondermeijer BM, Bakker A, Halliani A et al (2011) Platelets in patients with premature coronary artery disease exhibit upregulation of miRNA340 and miRNA624. PLoS ONE 6, e25946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stellos K, Dimmeler S (2014) Vascular MicroRNAs: from disease mechanisms to therapeutic targets. Circ Res 114:3–4

    Article  CAS  PubMed  Google Scholar 

  • Tan KS, Armugam A, Sepramaniam S et al (2009) Expression profile of MiRs in young stroke patients. PLoS ONE 4, e7689

    Article  PubMed  PubMed Central  Google Scholar 

  • Tijsen AJ, Creemers EE, Moerland PD et al (2010) MiR423-5p as a circulating biomarker for heart failure. Circ Res 106:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Torella D, Iaconetti C, Catalucci D et al (2011) MicroRNA-133 controls vascular smooth muscle cell phenotypic switch in vitro and vascular remodeling in vivo. Circ Res 109:880–893

    Article  CAS  PubMed  Google Scholar 

  • Turchinovich A, Weiz L, Langheinz A et al (2011) Characterization of extracellular circulating microRNA. Nucleic Acids Res 39:7223–7233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Voellenkle C, van Rooij J, Cappuzzello C et al (2010) MicroRNA signatures in peripheral blood mononuclear cells of chronic heart failure patients. Physiol Genomics 42:420–426

    Article  CAS  PubMed  Google Scholar 

  • Wang GK, Zhu JQ, Zhang JT et al (2010) Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J 31:659–666

    Article  PubMed  Google Scholar 

  • Wang R, Li N, Zhang Y et al (2011) Circulating MiRs are promising novel biomarkers of acute myocardial infarction. Intern Med 50:1789–1795

    Article  CAS  PubMed  Google Scholar 

  • Widera C, Gupta SK, Lorenzen JM et al (2011) Diagnostic and prognosticimpact of six circulating miRs in acute coronary syndrome. J Mol Cell Cardiol 51:872–875

    Article  CAS  PubMed  Google Scholar 

  • Willerson JT, Golino P, Eidt J et al (1989) Specific platelet mediators and unstable coronary artery lesions. Experimental evidence and potential clinical implications. Circulation 80:198–205

    Article  CAS  PubMed  Google Scholar 

  • Wong LL, Armugam A, Sepramaniam S et al (2015) Circulating microRNAs in heart failure with reduced and preserved left ventricular ejection fraction. Eur J Heart Fail 17:393–404

    Article  CAS  PubMed  Google Scholar 

  • Xiao J, Jing ZC, Ellinor PT et al (2011) MicroRNA-134 as a potential plasma biomarker for the diagnosis of acute pulmonary embolism. J Transl Med 9:159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zeng L, Liu J, Wang Y (2011) MicroRNA-210 as a novel blood biomarker in acute cerebral ischemia. Front Biosci 3:1265–1272

    Google Scholar 

  • Zhang Y, Liu D, Chen X et al (2010) Secreted monocytic miR-150 enhances targeted endothelial cell migration. Mol Cell 39:133–144

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ciro Indolfi M.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

De Rosa, S., Indolfi, C. (2015). Circulating microRNAs as Biomarkers in Cardiovascular Diseases. In: Igaz, P. (eds) Circulating microRNAs in Disease Diagnostics and their Potential Biological Relevance. Experientia Supplementum, vol 106. Springer, Basel. https://doi.org/10.1007/978-3-0348-0955-9_6

Download citation

Publish with us

Policies and ethics