Skip to main content

Efficacy and Safety of Zopiclone and Eszopiclone in the Treatment of Primary and Comorbid Insomnia

  • Chapter
  • First Online:
GABA and Sleep

Abstract

Drug enantiomers with chiral factors exhibit different effects on pharmacological activity, metabolism, and toxicity in the human body, and thus may differ in their pharmacokinetic and pharmacodynamic properties. Many currently used medications in clinical practice are mixtures of enantiomers (racemates), and replacing existing racemates with single isomers has resulted in improved efficacy and/or safety profile of the racemic mixtures. This “chiral switch” allows the existing racemate to be switched to one of its isomers and provides a safer, better-tolerated, and more efficacious alternative medication. Since the introduction and widespread use of asymmetric synthesis and chiral separation technologies, as well as the publication of formal FDA guidelines, which encourage the development of chiral drugs, many pharmaceutical manufacturers have developed single-enantiomer drugs.

Zopiclone [(R,S)-zopiclone] is a hypnotic, which has been available in countries outside the United States (US) for over 20 years, while eszopiclone (S-zopiclone) is the dextrorotatory enantiomer of racemic zopiclone, approved as a hypnotic in the United States in 2004. Both zopiclone and eszopiclone are pyrrolopyrazine derivatives of the cyclopyrrolone class, and are both active at GABAA receptors, whereas (S)-zopiclone has a relatively higher affinity and accounts for much of the action of racemic zopiclone.

The hypnotic effects of zopiclone and eszopiclone have been demonstrated in numerous clinical trials in healthy subjects and patients with insomnia. Both hypnotics are utilized in the management of insomnia in patients who either experience difficulty initiating sleep or are unable to maintain sleep through the night.

Clinical studies utilizing zopiclone at a dose of 7.5mg administered nightly have demonstrated the hypnotic’s efficacy in reduced sleep onset latency, increased total sleep time, and a reduction in the number of night-time awakenings. In treating insomnia, 7.5mg zopiclone nightly is at least effective as the benzodiazepine hypnotics, flurazepam, flunitrazepam, nitrazepam, temazepam, triazolam, and midazolam, used at approved therapeutic doses. Trials with zopiclone administered for up to 6 weeks duration as well as EEG analysis of sleep parameters in a 17-week study have revealed no marked tolerance to the effects of the hypnotic. Additionally, studies with zopiclone have demonstrated that it does not have a high dependence potential or cause rebound insomnia, and does not cause significant next-day psychomotor impairment.

In clinical trials, eszopiclone 2mg and 3mg in adults with chronic insomnia significantly improved subjective and objective sleep measures including improved sleep efficiency, sleep latency, total sleep time, wake time after sleep onset, number of awakenings, number of nights awakened weekly, and quality and depth of sleep. In elderly patients, eszopiclone 2mg was associated with significantly shorter sleep latency compared to placebo and significantly improved ratings of sleep quality and depth, wake time after sleep onset, sleep duration, and decreased cumulative number of naps. Long-term treatment of primary insomnia with eszopiclone for 6 months improved daytime functioning and health-related quality of life. In clinical trials of up to 12 months duration, eszopiclone 3mg showed a sustained beneficial effect on sleep induction and sleep maintenance, was well tolerated, with no clinically significant evidence of tolerance, rebound insomnia or dependence noted. Nightly use of eszopiclone 3mg did not impair next-day driving-related skills or measures of cognition relative to placebo. Randomized, double-blind trials have demonstrated that eszopiclone 3mg administered once nightly for 4–8 weeks produced significantly greater improvements in measures of sleep induction and maintenance compared to placebo in patients with insomnia and comorbid conditions, as well as improvements in certain measures of the comorbid conditions compared to standard therapies alone. In 2005, eszopiclone was the first sedative hypnotic approved by the US Food and Drug Administration (FDA) for the long-term management of chronic insomnia.

Both zopiclone and eszopiclone appear to be well tolerated in short-term and in longer-term studies in nonelderly and elderly patients. Numerous studies performed on a self-reporting basis show the absence of serious adverse events. The most commonly reported adverse events in clinical trials with both zopiclone and eszopiclone are unpleasant or bitter taste, headache, dizziness, and dry mouth.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stinson SC (2001) Chiral chemistry. Chem Eng News 79:45–56

    Article  Google Scholar 

  2. Food and Drug Administration [FDA] (1992) FDA’s policy statement for the development of new stereoisomeric drugs. US Food and Drug Administration [policy document] http://www.fda.gov/cder/guidance/stereo.htm. Fed Reg.22:249. Accessed June 16 2009

  3. Agranat I, Caner H (2002) Putting chirality to work: the strategy of chiral switches. Nat Rev Drug Discov 1:753–768

    Article  PubMed  CAS  Google Scholar 

  4. Howland RH (2009) Clinical implications of chirality and stereochemistry in psychopharmacology. J Psychosoc Nurs Ment Health Serv 47:17–21

    Google Scholar 

  5. Patil PA, Kothekar MA (2006) Development of safer molecules through chirality. Indian J Med Sci 60:427–437

    Article  PubMed  CAS  Google Scholar 

  6. Tucker GT (2000) Chiral switches. Lancet 385:1085–1087

    Article  Google Scholar 

  7. Davies NM, Teng XW (2003) Importance of chirality in drug therapy and pharmacy profile: implications for psychiatry. Adv Pharm 1:242–252

    Google Scholar 

  8. Blanchard JC, Boireau A, Garret C et al (1979) In vitro and in vivo inhibition by zopiclone of benzodiazepine binding to rodent brain receptors. Life Sci 24:2417–2420

    Article  PubMed  CAS  Google Scholar 

  9. Blaschke G, Hempel G, Muller WE (1993) Preparative and analytical separation of the zopiclone enantiomers and determination of their affinity to the benzodiazepine receptor binding site. Chirality 5:419–421

    Article  PubMed  CAS  Google Scholar 

  10. Fernandez C, Gimenes F, Baune B et al (1993) Determination of the enantiomers of zopiclone and its two chiral metabolites in urine using an automated coupled achiral-chiral chromatographic system. J Chromatogr 617:271–278

    Article  PubMed  CAS  Google Scholar 

  11. Tang K, Chen Y, Liu J (2008) Resolution of zopiclone enantiomers by biphasic recognition chiral extraction. Sep Purif Technol 62:681–686

    Article  CAS  Google Scholar 

  12. Gomis DB, Velasco CB, Sanchez IH et al (2009) Optimization by factorial design of a capillary electrophoresis method for the chiral resolution and determination of zopiclone and its synthesis precursor. J Liq Chromatogr Relat Technol 32:2654–2668

    Article  CAS  Google Scholar 

  13. Patent Storm. US Patent 7456173 – Compositions comprising zopiclone derivatives and methods of making and using the same. Issued on November 25, 2008 with estimated expiration date October 26, 2026. Available at: http://www.patentstorm.us/patents/7456173/fulltext.html. Accessed 1 July 2009

  14. World Intellectual Property Organization. (WO/2009/079940) Method for transformation of crystal form of zopiclone. Available at: http://www.wipo.int/pctdb/en/wo.jsp?WO=2009079940. Accessed 1 July 2009

  15. Fernandez C, Alet P, Davrinche C et al (2002) Stereoselective distribution and stereoconversion of zopiclone enantiomers in plasma and brain tissues in rats. J Pharm Pharmacol 54:335–340

    Article  PubMed  CAS  Google Scholar 

  16. Fernandez C, Maradeix V, Gimenez F et al (1993) Pharmacokinetics of zopiclone and its enantiomers in Caucasian young healthy volunteers. Drug Metab Dispos 21:1125–1128

    PubMed  CAS  Google Scholar 

  17. Cotrel C, Roussel G (2006) US Patent 7,125,874 B2, October 24

    Google Scholar 

  18. Lunesta [package insert] (2008) Marlborough, Mass: Sepracor February

    Google Scholar 

  19. Najib JS (2006) Eszopiclone, a nonbenzodiazepine sedative-hypnotic agent for the treatment of transient and chronic insomnia. Clin Ther 28:491–516

    Article  PubMed  CAS  Google Scholar 

  20. Smith AJ, Adler L, Silk J et al (2001) Effect of α-subunit on allosteric modulation of ion channel function in stably expressed human recombinant γ-aminobutyric acid receptors determined using 36Cl ion flux. Mol Pharmacol 59:1108–1118

    PubMed  CAS  Google Scholar 

  21. Sanger DJ (2004) The pharmacology and mechanisms of action of new generation non-benzodiazepine hypnotic agents. CNS Drugs 18(suppl 1):9–15

    Article  PubMed  CAS  Google Scholar 

  22. Mohler H, Burkard WP, Keller HH et al (1981) Benzodiazepine antagonist Ro 15-1788: binding characteristics and interaction with drug-induced changes in dopamine turnover and cerebellar cGMP levels. J Neurochem 37:714–722

    Article  PubMed  CAS  Google Scholar 

  23. Carlson JN, Haskew R, Wacker J et al (2001) Sedative and anxiolytic effects of zopiclone’s enantiomers and metabolite. Eur J Pharmacol 415:181–189

    Article  PubMed  CAS  Google Scholar 

  24. European Medicines Agency (EMEA) (2009) Withdrawal assessment report for Lunivia. International non-proprietary name: eszopiclone. Procedure No. EMEA/H/C/00895. Available at: http://www.emea.europa.eu/humandocs/PDFs/EPAR/lunivia/H-895-WAR.pdf. Accessed 26 October 2009

  25. Rudolph U, Crestani F, Mohler H (2001) GABA(A) receptor subtypes: dissecting their pharmacological functions. Trends Pharmacol Sci 22:188–194

    Article  PubMed  CAS  Google Scholar 

  26. Hanson SM, Morlock EV, Satyshur KA et al (2008) Structural requirements for eszopiclone and zolpidem binding to the γ-aminobutyric acid type-A (GABAA) receptor are different. J Med Chem 51:7243–7252

    Article  PubMed  CAS  Google Scholar 

  27. McMahon LR, Jerussi TP, France CP (2003) Stereoselective discriminative stimulus effects of zopiclone in rhesus monkeys. Psychopharmacology 165:222–228

    PubMed  CAS  Google Scholar 

  28. Fernandez C, Martin C, Gimenez F et al (1995) Clinical pharmacokinetics of zopiclone. Clin Pharmacokinet 29:431–441

    Article  PubMed  CAS  Google Scholar 

  29. Davies M, Newell JG, Derry JM et al (2000) Characterization of the interaction of zopiclone with gamma-aminobutyric acid type A receptors. Mol Pharmacol 58:756–762

    PubMed  CAS  Google Scholar 

  30. Serra M, Concas A, Biggio G (1996) Failure of long-term administration of zopiclone and zolpidem to induce tolerance in mice. Neurosci Res Commun 19:169–178

    Article  CAS  Google Scholar 

  31. Fleck MW (2002) Molecular actions of (S)-desmethylzopiclone (SEP-174559), an anxiolytic metabolite of zopiclone. J Pharmacol Exp Ther 302:612–618

    Article  PubMed  CAS  Google Scholar 

  32. Nofzinger EA, Buysse D, Moul D et al (2008) Eszopiclone reverses brain hyperarousal in insomnia: evidence from [18F]-FDG PET. Sleep 31:A232, Supplement

    Google Scholar 

  33. Goa KL, Heel RC (1986) Zopiclone- a review of its pharmacodynamic and pharmacokinetic properties and therapeutic efficacy as a hypnotic. Drugs 32:48–65

    Article  PubMed  CAS  Google Scholar 

  34. Leese P, Maier G, Vaickus L et al (2002) Eszopiclone: pharmacokinetic and pharmacodynamic effects of a novel sedative hypnotic after daytime administration in healthy subjects. Sleep 25:A45, Suppl

    Google Scholar 

  35. Maier G, Koch P, Caron J et al (2003) Dose proportionality and time to steady-state of eszopiclone in healthy adult volunteers following single and multiple dosing. Pharm Sci 5:M1325

    Google Scholar 

  36. Gaillot J, LeRoux Y, Houghton GW et al (1987) Critical factors for pharmacokinetics of zopiclone in the elderly and in patients with liver and renal insufficiency. Sleep 10(Suppl 1):7–21

    PubMed  Google Scholar 

  37. Fernandez C, Gimenez F, Thuillier A et al (1999) Stereoselective binding of zopiclone to human plasma proteins. Chirality 11:129–132

    Article  PubMed  CAS  Google Scholar 

  38. Drover DR (2004) Comparative pharmacokinetics and pharmacodynamics of short-acting hypnosedatives: zaleplon, zolpidem, and zopiclone. Clin Pharmacokinet 43:227–238

    Article  PubMed  CAS  Google Scholar 

  39. Wadworth AN, McTavish D (1993) Zopiclone: a review of its pharmacological properties and therapeutic efficacy as a hypnotic. Drugs Aging 3:441–459

    Article  PubMed  CAS  Google Scholar 

  40. LeLiboux A, Frydman A, Gaillot J (1987) Simultaneous determination of zopiclone and its two major metabolites (N-oxide and N-desmethyl) in human biological fluids by reversed-phase high-performance liquid chromatography. J Chromatogr 417:151–158

    Article  CAS  Google Scholar 

  41. Huq F (2007) Molecular modeling analysis of the metabolism of eszopiclone. J Pharmacol Toxicol 2:732–736

    Article  CAS  Google Scholar 

  42. Viron B, DeMeyer M, LeLiboux A et al (1990) Steady state pharmacokinetics of zopiclone during multiple oral dosing (7.5 mg) in patients with severe chronic renal failure. Int Clin Psychopharmacol 5(Suppl 2):95–104

    PubMed  Google Scholar 

  43. Gaillot J, Heusse D, Houghton GW et al (1983) Pharmacokinetics and metabolism of zopiclone. Pharmacology 27(Suppl 2):76–91

    Article  PubMed  CAS  Google Scholar 

  44. O’Toole DP, Carlisle RJT, Howard PJ et al (1986) The influence of altered gastric emptying rates on orally administered zopiclone pharmacokinetics. Br J Clin Pharmacol 21:615

    Google Scholar 

  45. Wagner J, Wagner ML (2000) Non-benzodiazepines for the treatment of insomnia. Sleep Med Rev 4:551–581

    Article  PubMed  Google Scholar 

  46. McGechan A, Wellington K (2005) Ramelteon. CNS Drugs 19:1057–1065

    Article  PubMed  CAS  Google Scholar 

  47. Kim YD, Zhuang HY, Tsutsumi M et al (1993) Comparison of the effect of zopiclone and brotizolam on sleep EEG by quantitative evaluation in healthy young women. Sleep 16:655–661

    PubMed  CAS  Google Scholar 

  48. Kanno O, Watanabe H, Kazamatsuri H (1993) Effects of zopiclone, flunitrazepam, triazolam and levomepromazine on the transient change in sleep-wake schedule: polygraphic study, and the evaluation of sleep and daytime condition. Prog Neuropsychopharmacol Biol Psychiatry 17:229–239

    Article  PubMed  CAS  Google Scholar 

  49. Hemmeter U, Muller WE, Wittchen HU et al (2000) Effect of zopiclone and temazepam on sleep EEG parameters, psychomotor and memory functions in healthy elderly volunteers. Psychopharmacology 147:384–396

    Article  PubMed  CAS  Google Scholar 

  50. Parrino L, Fioriti G, Terzano MG (1996) Cyclic alternating pattern (CAP) rate in the polygraphic investigation of classic and novel hypnotic drugs. Eur Psychiatry 11(Suppl 1):15S–19S

    Article  Google Scholar 

  51. Zammit GK, McNabb LJ, Caron J et al (2004) Efficacy and safety of eszopiclone across 6-weeks of treatment for primary insomnia. Curr Med Res Opin 20:1979–1991

    Article  PubMed  CAS  Google Scholar 

  52. McCall WV, Erman M, Krystal A et al (2006) A polysomnography study of eszopiclone in elderly patients with insomnia. Curr Med Res Opin 22:1633–1642

    Article  PubMed  CAS  Google Scholar 

  53. Rosenberg R, Caron J, Roth T et al (2005) An assessment of the efficacy and safety of eszopiclone in the treatment of transient insomnia in healthy adults. Sleep Med 6:15–22

    Article  PubMed  Google Scholar 

  54. Xi M, Chase MH (2009) The impact of age on the hypnotic effects of eszopiclone and zolpidem in the guinea pig. Psychopharmacology 205:107–117

    Article  PubMed  CAS  Google Scholar 

  55. Georgiev V (2001) (S)-Zopiclone Sepracor. Curr Opin Investig Drugs 2:271–273

    PubMed  CAS  Google Scholar 

  56. Anonymous (2005) Eszopiclone. Eszopiclone, Estorra, S-Zopiclone, Zopiclone-Sepracor. Drugs R D 6:111–115

    Google Scholar 

  57. European Medicines Agency (2008) Pre-authorisation evaluation of medicines for human use Doc.Ref. EMEA/CHMP/546022/2008. Available at: http://www.emea.europa.eu/pdfs/human/opinion/Lunivia_54602208en.pdf. Accessed on 20 Aug 2009

  58. European Medicines Agency (2008) Pre-authorisation evaluation of medicines for human use Doc. Ref. EMEA/303056/2009. Available at: http://www.emea.europa.eu/humandocs/PDFs/EPAR/lunivia/30305609en.pdf. Accessed on 19 Jul 2009

  59. Sepracor Press Release (2009) Sepracor files patent infringement lawsuit against eszopiclone ANDA filers. Available at: http://phx.corporate-ir.net/phoenix.zhtml?c=90106&p=irol-newsArticle&ID=1268262&highlight. Accessed 20 Sep 2009

  60. Giercksky K, Wickstrom E (1980) A dose-response study in situational insomnia with zopiclone, a new tranquilizer. Clin Ther 3:21–27

    PubMed  CAS  Google Scholar 

  61. Dehlin O, Rundgren A, Borjesson L et al (1983) Zopiclone to geriatric patients: a parallel double-blind dose-response clinical trial of zopiclone as a hypnotic to geriatric patients: a study in a geriatric hospital. Pharmacology 27:173–178

    Article  PubMed  Google Scholar 

  62. Mamelak M, Scima A, Price V (1982) Effects of zopiclone on the sleep of chronic insomniacs. Int Pharmacopsychiatry 17(Suppl 2):156–164

    PubMed  Google Scholar 

  63. Fleming JAE, Bourgouin J, Hamilton P (1988) A sleep laboratory evaluation of the long-term efficacy of zopiclone. Can J Psychiatry 33:103–107

    PubMed  CAS  Google Scholar 

  64. Krystal AD, Walsh JK, Laska E et al (2003) Sustained efficacy of eszopiclone over 6 months of nightly treatment: Results of a randomized, double-blind, placebo-controlled study in adults with chronic insomnia. Sleep 26:793–799

    PubMed  Google Scholar 

  65. Roth T, Walsh JK, Krystal A et al (2005) An evaluation of the efficacy and safety of eszopiclone over 12 months in patients with chronic primary insomnia. Sleep Med 6:487–495

    Article  PubMed  Google Scholar 

  66. Walsh J, Krystal A, Amato D et al (2007) Nightly treatment of primary insomnia with eszopiclone for six months: effect on sleep, quality of life, and work limitations. Sleep 30:959–968

    PubMed  Google Scholar 

  67. Scharf M, Erman M, Rosenberg R et al (2005) A 2-week efficacy and safety study of eszopiclone in elderly patients with primary insomnia. Sleep 28:720–727

    PubMed  Google Scholar 

  68. Allain H, Delahaye C, LeCoz F et al (1991) Post-marketing surveillance of zopiclone in insomnia: analysis of 20, 513 cases. Sleep 14:408–413

    PubMed  CAS  Google Scholar 

  69. Hair PI, McCormack PL, Curran MP (2008) Eszopiclone a review of its use in the treatment of insomnia. Drugs 68:1415–1434

    Article  PubMed  CAS  Google Scholar 

  70. Krystal A, Ancoli-Israel S, McCall WV et al (2008) The safety of eszopiclone in a 12-week study of elderly out-patients with primary insomnia. In: Poster presented at American Society of Consultant Pharmacists (ASCP), New Orleans, LA, 19–22 Nov 2008

    Google Scholar 

  71. Krystal A, Ancoli-Israel S, McCall WV et al (2008) A 12-week study of eszopiclone in elderly out-patients with primary insomnia: effects of treatment discontinuation. Poster presented at: European College of Neuropsychiatry (ECNP) Barcelona, Spain, Aug 30–Sep 3 2008

    Google Scholar 

  72. Boyle J, Trick L, Johnsen S et al (2008) Next-day cognition, psychomotor function, and driving-related skills following nighttime administration of eszopiclone. Hum Psychopharmacol 23:385–397

    Article  PubMed  Google Scholar 

  73. Neubauer DN (2009) Current and new thinking in the management of comorbid insomnia. Am J Manag Care 15:S24–32, supplement

    PubMed  Google Scholar 

  74. Fava M, McCall W, Krystal A et al (2006) Eszopiclone co-administered with fluoxetine in patients with insomnia coexisting with major depressive disorder. Biol Psychiatry 59:1052–1060

    Article  PubMed  CAS  Google Scholar 

  75. Krystal A, Fava M, Rubens R et al (2007) Evaluation of eszopiclone discontinuation after cotherapy with fluoxetine for insomnia with coexisting depression. J Clin Sleep Med 3:48–55

    PubMed  Google Scholar 

  76. Fontaine R, Beaudry P, Le Morvan P (1990) Zopiclone and triazolam in insomnia associated with generalized anxiety disorder: a placebo-controlled evaluation of efficacy and daytime anxiety. Int Clin Psychopharmacol 5:173–183

    Article  PubMed  CAS  Google Scholar 

  77. Mizuki Y, Hashimoto M, Tanaka T et al (1983) A new physiological tool for assessing anxiolytic effects in humans: frontal midline theta activity. Psychopharmacology 80:311–314

    Article  PubMed  CAS  Google Scholar 

  78. Inanaga K, Tanaka M, Mizuki Y (1982) Prediction of clinical efficacy of zopiclone by utilizing two psychophysiological tools in healthy volunteers. Int Pharmacopsychiatry 17(2):109–115

    PubMed  CAS  Google Scholar 

  79. Pollack M, Kinrys G, Krystal A et al (2008) Eszopiclone coadministered with escitalopram in patients with insomnia and comorbid generalized anxiety disorder. Arch Gen Psychiatry 65:551–562

    Article  PubMed  CAS  Google Scholar 

  80. Medical News Today (2009). sepracor reports preliminary phase ii study results for SEP-225441 for the treatment of generalized anxiety disorder. Available at: http://www.medicalnewstoday.com/articles/141429.php/trackback Accessed 16 Aug 2009

  81. Soares CN, Joffe H, Rubens R et al (2006) Eszopiclone in patients with insomnia during perimenopause and early postmenopause. Obstet Gynecol 108:1402–1410

    Article  PubMed  CAS  Google Scholar 

  82. Drewes AM, Andreasen A, Jennum P et al (1991) Zopiclone in the treatment of sleep abnormalities in fibromyalgia. Scand J Rheumatol 20:288–293

    Article  PubMed  CAS  Google Scholar 

  83. Gronblad M, Nykänen J, Konttinen Y et al (1993) Effect of zopiclone on sleep quality, morning stiffness, widespread tenderness and pain and general discomfort in primary fibromyalgia patients. A double-blind randomized trial. Clin Rheumatol 12:186–191

    Article  PubMed  CAS  Google Scholar 

  84. Drewes AM, Bjerregard K, Taagholt SJ et al (1998) Zopiclone as night medication in rheumatoid arthritis. Scand J Rheumatol 27:180–187

    Article  PubMed  CAS  Google Scholar 

  85. Schnitzer T, Rubens R, Wessel T et al (2006) The effect of eszopiclone 3 mg compared with placebo in patients with rheumatoid arthritis and co-existing insomnia. Sleep 29:A238, Suppl

    Google Scholar 

  86. Roth T (2009) Hypnotic use for insomnia management in chronic obstructive pulmonary disease. Sleep Med 10:19–25

    Article  PubMed  Google Scholar 

  87. Powchik P, Cohn M (2001) (S)-Zopiclone: an isomerically pure non-benzodiazepine hypnotic without respiratory depression. Sleep 24:A170, Suppl

    Google Scholar 

  88. Rosenberg R, Roach JM, Scharf M et al (2007) A pilot study evaluating acute use of eszopiclone in patients with mild to moderate obstructive sleep apnea syndrome. Sleep Med 8:464–470

    Article  PubMed  Google Scholar 

  89. Lettieri CJ, Quast TN, Eliasson AH et al (2008) Eszopiclone improves overnight polysomnography and continuous positive airway pressure titration: a prospectie, randomized, placebo-controlled trial. Sleep 31:1310–1316

    PubMed  Google Scholar 

  90. Noble S, Langtry HD, Lamb HM (1998) Zopiclone. An update of its pharmacology, clinical efficacy, and tolerability in the treatment of insomnia. Drugs 55:277–302

    Article  PubMed  CAS  Google Scholar 

  91. Delahaye C, Ferrand B, Pieddeloup C et al (1990) Post marketing surveillance of zopiclone: interim analysis on the first 10,000 cases in a clinical study in general practice. Int Clin Psychopharmacol 5(suppl 2):131–138

    PubMed  Google Scholar 

  92. Dehlin O, Rubin B, Rundgren A (1995) Double-blind comparison of zopiclone and flunitrazepam in elderly insomniac with special focus on residual effects. Curr Med Res Opin 13:317–324

    Article  PubMed  CAS  Google Scholar 

  93. Hajak G, Clarenbach P, Fischer W et al (1994) Zopiclone improves sleep quality and daytime well-being in insomniac patients: comparison with triazolam, flunitrazepam, and placebo. Int Clin Psychopharmacol 9:251–261

    Article  PubMed  CAS  Google Scholar 

  94. Doty RL, Treem J, Tourbier I et al (2009) A double-blind study of the influence of eszopiclone on dysgeusia and taste function. Pharmacol Biochem Behav 94:312–318

    Article  PubMed  CAS  Google Scholar 

  95. Erman MK, Zammit G, Rubens R et al (2008) A polysomnographic placebo-controlled evaluation of the efficacy and safety of eszopiclone relative to placebo and zolpidem in the treatment of primary insomnia. J Clin Sleep Med 4:229–234

    PubMed  Google Scholar 

  96. Duggal H (2007) New-onset transient hallucinations possibly due to eszopiclone: a case study. Prim Care Companion J Clin Psychiatry 9:468–469

    Article  PubMed  Google Scholar 

  97. Terzano MG, Rossi M, Palomba V et al (2003) New drugs for insomnia. Comparative tolerability of zopiclone, zolpidem and zaleplon. Drug Saf 26:261–282

    Article  PubMed  CAS  Google Scholar 

  98. Billiard M, Besset A, deLustrac C et al (1987) Dose-response effects of zopiclone on night sleep and on nighttime and daytime functioning. Sleep 10(Suppl 1):27–34

    PubMed  Google Scholar 

  99. Nicholson AN, Stone BM (1982) Zopiclone: sleep and performance studies in healthy man. Int Pharmacopsychiatry 17(Suppl 2):92–97

    PubMed  CAS  Google Scholar 

  100. Broadhurst A, Cushanaghan C (1987) Residual effects of zopiclone. Sleep 10:48–53

    PubMed  Google Scholar 

  101. O’Hanlon JF (1995) Zopiclone’s residual effects on psychomotor and information processing skills involved in complex tasks such as car driving: a critical review. Eur Psychiatry 10(Suppl 3):137S–143S

    Article  PubMed  Google Scholar 

  102. Zammit GK (2009) Comparative tolerability of newer agents for insomnia. Drug Saf 32:735–748

    Article  PubMed  CAS  Google Scholar 

  103. Gorenstein C, Tavares SM, Gentil V et al (1990) Psychophysiological effects and dose equivalence of zopiclone and triazolam administered to healthy volunteers. Methodological considerations. Braz J Med Biol Res 23:941–951

    PubMed  CAS  Google Scholar 

  104. Tariq SH, Pulisetty S (2008) Pharmacotherapy for insomnia. Clin Geriatr Med 24:93–105

    Article  PubMed  Google Scholar 

  105. Conn DK, Madan R (2003) Use of sleep-promoting medications in nursing home residents. Risks versus benefits. Drugs Aging 23:271–287

    Article  Google Scholar 

  106. Hajak G (1999) A comparative assessment of the risks and benefits of zopiclone. A review of 15 years’ clinical experience. Drug Saf 21:457–469

    Article  PubMed  CAS  Google Scholar 

  107. Lader M (1997) Zopiclone: is there any dependence and abuse potential? J Neurol 244(Suppl 1):S18–S22

    Article  PubMed  CAS  Google Scholar 

  108. Voderholzer U, Riemann D, Hornyak M et al (2001) A double-blind, randomized and placebo-controlled study on the polysomnographic withdrawal effects of zopiclone, zolpidem and triazolam in healthy subjects. Eur Arch Psychiatry Clin Neurosci 251:117–123

    Article  PubMed  CAS  Google Scholar 

  109. Begg EJ, Robson RA, Frampton CM et al (1992) A comparison of the efficacy and tolerance of short acting sedatives midazolam and zopiclone. N Z Med J 105:428–429

    PubMed  CAS  Google Scholar 

  110. Fleming JA, McClure DJ, Mayes C et al (1990) A comparison of the efficacy, safety, and withdrawal effects of zopiclone and triazolam in the treatment of insomnia. Int Clin Psychopharmacol 5(Suppl 2):29–37

    PubMed  Google Scholar 

  111. Dorian P, Sellers EM, Kaplan H et al (1983) Evaluation of zopiclone physical dependence liability in normal volunteers. Pharmacology 27(Suppl 2):228–234

    Article  PubMed  Google Scholar 

  112. Bianchi M, Musch B (1990) Zopiclone discontinuation: review of 25 studies assessing withdrawal and rebound phenomena. Int Clin Psychopharmacol 5(Suppl 2):139–145

    PubMed  Google Scholar 

  113. Jones IR, Sullivan G (1998) Physical dependence on zopiclone: case reports. BMJ 316:117

    Article  PubMed  CAS  Google Scholar 

  114. Hajak G, Muller WE, Wittchen HU et al (2003) Abuse and dependence potential for the non-benzodiazepine hypnotics zolpidem and zopiclone: a review of case reports and epidemiological data. Addiction 98:1371–1378

    Article  PubMed  CAS  Google Scholar 

  115. Cimolai N (2007) Zopiclone. Is it a pharmacologic agent for abuse? Can Fam Physician 53:2124–2129

    PubMed  Google Scholar 

  116. Pat-Horenczyk R, Hacohen D, Herer P et al (1998) The effects of substituting zopiclone in withdrawal from chronic use of benzodiazepine hypnotics. Psychopharmacology 140:450–457

    Article  PubMed  CAS  Google Scholar 

  117. Scharf M (2006) Eszopiclone for the treatment of insomnia. Expert Opin Pharmacother 7:345–356

    Article  PubMed  CAS  Google Scholar 

  118. Anonymous (2005) Eszopiclone (Lunesta), a new hypnotic. Obstet Gynecol 106:398–401

    Google Scholar 

  119. Monti JM, Pandi-Perumal SR (2007) Eszopiclone: its use in the treatment of insomnia. Neuropsychiatr Dis Treat 3:441–453

    PubMed  CAS  Google Scholar 

  120. Ngen CC, Hassan R (1990) A double-blind, placebo-controlled trial of zopiclone 7.5 mg and temazepam 20 mg in insomnia. Int Clin Psychopharmacol 5:165–171

    Article  PubMed  CAS  Google Scholar 

  121. Elie R, Lavoie G, Bourgouin J et al (1990) Zopiclone versus flurazepam in insomnia: prolonged administration and withdrawal. Int Clin Psychopharmacol 5:279–286

    Article  PubMed  CAS  Google Scholar 

  122. Tamminen T, Hansen PP (1987) Chronic administration of zopiclone and nitrazepam in the treatment of insomnia. Sleep 10(Suppl 1):63–72

    PubMed  Google Scholar 

  123. Pecknold J, Wilson R, leMorvan P (1990) Long term efficacy and withdrawal of zopiclone: a sleep laboratory study. Int Clin Psychopharmacol 5(Suppl 2):57–67

    PubMed  Google Scholar 

  124. Alderman CP, Gilbert AL (2009) A qualitative investigation of long-term zopiclone use and sleep quality among Vietnam war veterans with PTSD. Ann Pharmacother 43:1576–1582

    Article  PubMed  CAS  Google Scholar 

  125. Sikdar S, Ruben SM (1996) Zopiclone abuse among polydrug users (letter). Addiction 91:285–291

    Article  PubMed  CAS  Google Scholar 

  126. WHO (2006) World Health Organization – Assessment of zopiclone. In: 34th WHO Expert Committee on Drug Dependence (ECDD). http://www.who.int/medicines/areas/quality_safety/4.6ZopicloneCritReview.pdf. Accessed 1 Jul 2009

  127. Yanagita T (1983) Dependence potential of zopiclone studied in monkeys. Pharmacology 27(Suppl 2):216–227

    Article  PubMed  Google Scholar 

  128. Clee BC, McBride AJ, Sullivan G (1995) Warning about zopiclone misuse (letter). Addiction 91:1389–1390

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jadwiga S. Najib .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Birkhäuser Basel

About this chapter

Cite this chapter

Najib, J.S. (2010). Efficacy and Safety of Zopiclone and Eszopiclone in the Treatment of Primary and Comorbid Insomnia. In: Monti, J., Pandi-Perumal, S., Möhler, H. (eds) GABA and Sleep. Springer, Basel. https://doi.org/10.1007/978-3-0346-0226-6_18

Download citation

Publish with us

Policies and ethics