Skip to main content

Nebulized Therapeutics for COVID-19 Pneumonia in Critical Care

  • Chapter
  • First Online:
Annual Update in Intensive Care and Emergency Medicine 2022

Part of the book series: Annual Update in Intensive Care and Emergency Medicine ((AUICEM))

Abstract

The COVID-19 pandemic is caused by aerosol transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The disease primarily causes pneumonia of varying severity resulting in respiratory failure. COVID-19 pneumonia patients require prolonged hospitalization and often critical care support including mechanical ventilation. Despite extensive research, current formulations and dose regimens of systemic therapeutics assessed for use in COVID-19 are either associated with adverse effects or are ineffective, which in part might be explained by inadequate lung penetration. Consequently, COVID-19 pneumonia is associated with high morbidity and mortality. Despite effective vaccine development, the disease is likely to remain prevalent due to logistics and viral mutations. Hence, there is an urgent need for safe and effective COVID-19 therapies. Nebulized drug delivery of existing formulations could potentially achieve higher local drug concentrations and improve clinical outcomes with limited systemic adverse effects. Various nebulized therapeutic agents are currently undergoing clinical trials. Barriers affecting safe and effective nebulized therapies should be addressed simultaneously to provide guidelines for nebulized therapeutics for COVID-19 pneumonia in critical care. We review the technical aspects of nebulization therapy and consider which medications are likely to be most suitable for delivery by this route.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Salje H, Tran Kiem C, Lefrancq N, et al. Estimating the burden of Sars-Cov-2 in France. Science. 2020;369:208–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dhanani J, Fraser JF, Chan HK, Rello J, Cohen J, Roberts JA. Fundamentals of aerosol therapy in critical care. Crit Care. 2016;20:269.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dhand R. How should aerosols be delivered during invasive mechanical ventilation? Respir Care. 2017;62:1343–67.

    Article  PubMed  Google Scholar 

  4. Gbinigie K, Frie K. Should chloroquine and hydroxychloroquine be used to treat Covid-19? A rapid review. BJGP Open. 2020;4:bjgpopen20X101069.

    Article  PubMed  PubMed Central  Google Scholar 

  5. FDA cautions against use of hydroxychloroquine or chloroquine for COVID-19 outside of the hospital setting or a clinical trial due to risk of heart rhythm problems. Available at: https://www.fda.gov/drugs/drug-safety-and-availability/fda-cautions-against-use-hydroxychloroquine-or-chloroquine-covid-19-outside-hospital-setting-or. Accessed December 28, 2021.

  6. Garcia-Cremades M, Solans BP, Hughes E, et al. Optimizing hydroxychloroquine dosing for patients with Covid-19: an integrative modeling approach for effective drug repurposing. Clin Pharmacol Ther. 2020;108:253–63.

    Article  CAS  PubMed  Google Scholar 

  7. Yao X, Ye F, Zhang M, et al. In vitro antiviral activity and projection of optimized dosing design of hydroxychloroquine for the treatment of severe acute respiratory syndrome coronavirus 2 (Sars-Cov-2). Clin Infect Dis. 2020;71:732–9.

    Article  CAS  PubMed  Google Scholar 

  8. Charous BL, Halpern EF, Steven GC. Hydroxychloroquine improves airflow and lowers circulating ige levels in subjects with moderate symptomatic asthma. J Allergy Clin Immunol. 1998;102:198–203.

    Article  CAS  PubMed  Google Scholar 

  9. Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule gs-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531:381–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sun D. Remdesivir for treatment of Covid-19: combination of pulmonary and iv administration may offer additional benefit. AAPS J. 2020;22:77.

    Article  CAS  PubMed  Google Scholar 

  11. Knight V, McClung HW, Wilson SZ, et al. Ribavirin small-particle aerosol treatment of influenza. Lancet. 1981;2:945–9.

    Article  CAS  PubMed  Google Scholar 

  12. Yang SNY, Atkinson SC, Wang C, et al. The broad spectrum antiviral ivermectin targets the host nuclear transport importin alpha/beta1 heterodimer. Antivir Res. 2020;177:104760.

    Article  CAS  PubMed  Google Scholar 

  13. Caly L, Druce JD, Catton MG, Jans DA, Wagstaff KM. The FDA-approved drug ivermectin inhibits the replication of Sars-Cov-2 in vitro. Antivir Res. 2020;178:104787.

    Article  CAS  PubMed  Google Scholar 

  14. Jermain B, Hanafin PO, Cao Y, Lifschitz A, Lanusse C, Rao GG. Development of a minimal physiologically-based pharmacokinetic model to simulate lung exposure in humans following oral administration of ivermectin for Covid-19 drug repurposing. J Pharm Sci. 2020;109:3574–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. De Luca G, Cavalli G, Campochiaro C, et al. Gm-Csf blockade with mavrilimumab in severe Covid-19 pneumonia and systemic hyperinflammation: a single-Centre, prospective cohort study. Lancet Rheumatol. 2020;2:e465–73.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Partridge LJ, Urwin L, Nicklin MJH, et al. ACE2-independent interaction of SARS-CoV-2 spike protein with human epithelial cells is inhibited by unfractionated heparin. Cell. 2021;10:1419.

    Article  CAS  Google Scholar 

  17. Mycroft-West CJ, Su D, Pagani I, et al. Heparin inhibits cellular invasion by Sars-Cov-2: structural dependence of the interaction of the spike s1 receptor-binding domain with heparin. Thromb Haemost. 2020;120:1700–15.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Mulloy B, Hogwood J, Gray E, Lever R, Page CP. Pharmacology of heparin and related drugs. Pharmacol Rev. 2016;68:76–141.

    Article  PubMed  Google Scholar 

  19. Lever R, Page CP. Non-anticoagulant effects of heparin: an overview. Handb Exp Pharmacol. 2012;207:281–305.

    Article  CAS  Google Scholar 

  20. Chimenti L, Camprubi-Rimblas M, Guillamat-Prats R, et al. Nebulized heparin attenuates pulmonary coagulopathy and inflammation through alveolar macrophages in a rat model of acute lung injury. Thromb Haemost. 2017;117:2125–34.

    Article  PubMed  PubMed Central  Google Scholar 

  21. Juschten J, Tuinman PR, Juffermans NP, Dixon B, Levi M, Schultz MJ. Nebulized anticoagulants in lung injury in critically ill patients-an updated systematic review of preclinical and clinical studies. Ann Transl Med. 2017;5:444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Porto BN, Stein RT. Neutrophil extracellular traps in pulmonary diseases: too much of a good thing? Front Immunol. 2016;7:311.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Whyte CS, Morrow GB, Mitchell JL, Chowdary P, Mutch NJ. Fibrinolytic abnormalities in acute respiratory distress syndrome (ARDS) and versatility of thrombolytic drugs to treat Covid-19. J Thromb Haemost. 2020;18:1548–55.

    Article  CAS  PubMed  Google Scholar 

  24. Belen-Apak FB, Sarialioglu F. Pulmonary intravascular coagulation in Covid-19: possible pathogenesis and recommendations on anticoagulant/thrombolytic therapy. J Thromb Thrombolysis. 2020;50:278–80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Piras AM, Zambito Y, Lugli M, et al. Repurposing of plasminogen: an orphan medicinal product suitable for Sars-Cov-2 inhalable therapeutics. Pharmaceuticals (Basel). 2020;13:425.

    Article  CAS  Google Scholar 

  26. Abdelaal Ahmed Mahmoud A, Mahmoud HE, Mahran MA, Khaled M. Streptokinase versus unfractionated heparin nebulization in patients with severe acute respiratory distress syndrome (ARDS): a randomized controlled trial with observational controls. J Cardiothorac Vasc Anesth. 2020;34:436–43.

    Article  CAS  PubMed  Google Scholar 

  27. Hadjadj J, Yatim N, Barnabei L, et al. Impaired type I interferon activity and inflammatory responses in severe Covid-19 patients. Science. 2020;369:718–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borg FA, Isenberg DA. Syndromes and complications of interferon therapy. Curr Opin Rheumatol. 2007;19:61–6.

    Article  CAS  PubMed  Google Scholar 

  29. Zhou Q, Chen V, Shannon CP, et al. Interferon-alpha2b treatment for Covid-19. Front Immunol. 2020;11:1061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Monk PD, Marsden RJ, Tear VJ, et al. Safety and efficacy of inhaled nebulised interferon beta-1a (Sng001) for treatment of Sars-Cov-2 infection: a randomised, double-blind, placebo-controlled, phase 2 trial. Lancet Respir Med. 2021;9:196–206.

    Article  CAS  PubMed  Google Scholar 

  31. Group RC, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384:693–704.

    Article  Google Scholar 

  32. Bloom CI, Drake TM, Docherty AB, et al. Risk of adverse outcomes in patients with underlying respiratory conditions admitted to hospital with Covid-19: a national, multicentre prospective cohort study using the Isaric WHO clinical characterisation protocol UK. Lancet Respir Med. 2021;9:699–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Raverdeau M, Mills KH. Modulation of T cell and innate immune responses by retinoic acid. J Immunol. 2014;192:2953–8.

    Article  CAS  PubMed  Google Scholar 

  34. Yang C, Montgomery M. Dornase alfa for cystic fibrosis. Cochrane Database Syst Rev. 2018;9:CD001127.

    PubMed  Google Scholar 

  35. Morris C, Mullan B. Use of dornase alfa in the management of ARDS. Anaesthesia. 2004;59:1249.

    Article  CAS  PubMed  Google Scholar 

  36. Middleton EA, He XY, Denorme F, et al. Neutrophil extracellular traps contribute to immunothrombosis in covid-19 acute respiratory distress syndrome. Blood. 2020;136:1169–79.

    Article  CAS  PubMed  Google Scholar 

  37. Thomas GM, Carbo C, Curtis BR, et al. Extracellular DNA traps are associated with the pathogenesis of TRALI in humans and mice. Blood. 2012;119:6335–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Earhart AP, Holliday ZM, Hofmann HV, Schrum AG. Consideration of dornase alfa for the treatment of severe Covid-19 acute respiratory distress syndrome. New Microbes New Infect. 2020;35:100689.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Weber AG, Chau AS, Egeblad M, Barnes BJ, Janowitz T. Nebulized in-line endotracheal dornase alfa and albuterol administered to mechanically ventilated Covid-19 patients: a case series. Mol Med. 2020;26:91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Fuller BM, Mohr NM, Skrupky L, Fowler S, Kollef MH, Carpenter CR. The use of inhaled prostaglandins in patients with ARDS: a systematic review and meta-analysis. Chest. 2015;147:1510–22.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Ammar MA, Bauer SR, Bass SN, Sasidhar M, Mullin R, Lam SW. Noninferiority of inhaled epoprostenol to inhaled nitric oxide for the treatment of ARDS. Ann Pharmacother. 2015;49:1105–12.

    Article  CAS  PubMed  Google Scholar 

  42. Sonti R, Pike CW, Cobb N. Responsiveness of inhaled epoprostenol in respiratory failure due to Covid-19. J Intensive Care Med. 2021;36:327–33.

    Article  PubMed  Google Scholar 

  43. DeGrado JR, Szumita PM, Schuler BR, et al. Evaluation of the efficacy and safety of inhaled epoprostenol and inhaled nitric oxide for refractory hypoxemia in patients with coronavirus disease 2019. Crit Care Explor. 2020;2:e0259.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Meng SS, Chang W, Lu ZH, et al. Effect of surfactant administration on outcomes of adult patients in acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC Pulm Med. 2019;19:9.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Piva S, DiBlasi RM, Slee AE, et al. Surfactant therapy for covid-19 related ARDS: a retrospective case-control pilot study. Respir Res. 2021;22:20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. National Institute for Health and Care Excellence Covid-19 Rapid Guideline: Severe Asthma. Avaialble at: https://www.nice.org.uk/guidance/ng166. Accessed 8 October 2021.

  47. Australian National Asthma Council Managing Asthma During the Covid-19 (Sars-Cov-2) Pandemic. Available at: https://www.asthmahandbook.org.au/clinical-issues/covid-19. Accessed 8 October 2021.

  48. Tran K, Cimon K, Severn M, Pessoa-Silva CL, Conly J. Aerosol generating procedures and risk of transmission of acute respiratory infections to healthcare workers: a systematic review. PLoS One. 2012;7:e35797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ari A. Promoting safe and effective use of aerosol devices in Covid-19: risks and suggestions for viral transmission. Expert Opin Drug Deliv. 2020;17:1509–13.

    Article  CAS  PubMed  Google Scholar 

  50. Fink JB, Ehrmann S, Li J, et al. Reducing aerosol-related risk of transmission in the era of Covid-19: an interim guidance endorsed by the International Society of Aerosols in medicine. J Aerosol Med Pulm Drug Deliv. 2020;33:300–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Dhanani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dhanani, J., Reade, M.C. (2022). Nebulized Therapeutics for COVID-19 Pneumonia in Critical Care. In: Vincent, JL. (eds) Annual Update in Intensive Care and Emergency Medicine 2022. Annual Update in Intensive Care and Emergency Medicine. Springer, Cham. https://doi.org/10.1007/978-3-030-93433-0_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-93433-0_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-93432-3

  • Online ISBN: 978-3-030-93433-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics