Skip to main content

Development of a Cytokine-Modified Allogeneic Whole Cell Pancreatic Cancer Vaccine

  • Protocol
  • First Online:
Pancreatic Cancer

Part of the book series: Methods in Molecular Biology ((MIMB,volume 980))

Abstract

Management of patients with pancreatic cancer is a multidisciplinary approach that presents enormous challenges to the clinician. Overall 5-year survival for all patients remains <3%. Symptoms of early pancreas cancer are nonspecific. As such, only a fraction of patients are candidates for surgery. While surgical resection provides the only curative option, most patients will develop tumor recurrence and die of their disease. To date, the clinical benefits of chemotherapy and radiation therapy have been important but have led to modest improvements. Tumor vaccines have the potential to specifically target the needle of pancreas cancer cells amidst the haystack of normal tissue. The discovery of pancreas tumor-specific antigens and the subsequent ability to harness this technology has become an area of intense interest for tumor immunologists and clinicians alike. Without knowledge of specific antigen targets, the whole tumor cell represents the best source of immunizing antigens. This chapter will focus on the development of whole tumor cell vaccine strategies for pancreas cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Evans DB, Abbruzzese JL, Rich TA (1997) Cancer of the pancreas. In: DeVita VT, Hellman S, Rosenberg SA (eds) Principles and practice of oncology, 5th edn. J.B. Lippincott Co., Philadelphia, pp 1054–1087

    Google Scholar 

  2. Conlon KC, Klimstra DS, Brennan MF (1996) Long term survival after curative resection for pancreatic ductal adenocarcinoma. Ann Surg 223(3):273–279

    PubMed  CAS  Google Scholar 

  3. Yeo CJ, Cameron JL, Sohn TA et al (1997) Six hundred fifty consecutive pancreaticoduodenectomies in the 1990s: pathology, complications and outcomes. Ann Surg 226(3):248–260

    PubMed  CAS  Google Scholar 

  4. Sohn TA, Yeo CJ, Cameron JL et al (2000) Resected adenocarcinoma of the pancreas-616 patients: results, outcomes, and prognostic indicators. J Gastrointest Surg 4(6):567–579

    PubMed  CAS  Google Scholar 

  5. Hsu CC, Herman JM, Corsini MM, Winter JM, Callister MD, Haddock MG, Cameron JL, Pawlik TM, Schulick RD, Wolfgang CL, Laheru DA, Farnell MB, Swartz MJ, Gunderson LL, Miller RC (2010) Adjuvant chemoradiation for pancreatic adenocarcinoma: the Johns Hopkins Hospital-Mayo Clinic collaborative study. Ann Surg Oncol 17(4):981–990, Epub 2010 Jan 20

    PubMed  Google Scholar 

  6. Katz MH, Wang H, Fleming JB, Sun CC, Hwang RF, Wolff RA, Varadhachary G, Abbruzzese JL, Crane CH, Krishnan S, Vauthey JN, Abdalla EK, Lee JE, Pisters PW, Evans DB (2009) Long-term survival after multidisciplinary management of resected pancreatic adenocarcinoma. Ann Surg Oncol 16(4):836–847

    PubMed  Google Scholar 

  7. Oettle H, Post S, Neuhaus P, Gellert K, Langrehr J, Ridwelski K, Schramm H, Fahlke J, Zuelke C, Burkart C, Gutberlet K, Kettner E, Schmalenberg H, Weigang-Koehler K, Bechstein WO, Niedergethmann M, Schmidt-Wolf I, Roll L, Doerken B, Riess H (2007) Adjuvant chemotherapy with gemcitabine vs. observation in patients undergoing curative-intent resection of pancreatic cancer: a randomized controlled trial. JAMA 297(3):267–277

    PubMed  CAS  Google Scholar 

  8. Neoptolemos JP, Stocken DD, Bassi C, Ghaneh P, Cunningham D, Goldstein D, Padbury R, Moore MJ, Gallinger S, Mariette C, Wente MN, Izbicki JR, Friess H, Lerch MM, Dervenis C, Oláh A, Butturini G, Doi R, Lind PA, Smith D, Valle JW, Palmer DH, Buckels JA, Thompson J, McKay CJ, Rawcliffe CL, Büchler MW, European Study Group for Pancreatic Cancer (2010) Adjuvant chemotherapy with fluorouracil plus folinic acid vs. gemcitabine following pancreatic cancer resection: a randomized controlled trial. JAMA 304(10):1073–1081

    PubMed  CAS  Google Scholar 

  9. Lander ES, Linton LM, Birren B et al (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921

    PubMed  CAS  Google Scholar 

  10. Jones S, Zhang X, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, Hong SM, Fu B, Lin MT, Calhoun ES, Kamiyama M, Walter K, Nikolskaya T, Nikolsky Y, Hartigan J, Smith DR, Hidalgo M, Leach SD, Klein AP, Jaffee EM, Goggins M, Maitra A, Iacobuzio-Donahue C, Eshleman JR, Kern SE, Hruban RH, Karchin R, Papadopoulos N, Parmigiani G, Vogelstein B, Velculescu VE, Kinzler KW (2008) Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 321(5897):1801–1806, Epub 2008 Sep 4

    PubMed  CAS  Google Scholar 

  11. Velculescu VE, Zhang L, Vogelstein B, Kinzler KW (1995) Serial analysis of gene expression. Science 270:484–487

    PubMed  CAS  Google Scholar 

  12. Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR, Vogelstein B, Kinzler KW (1997) Genome expression profiles in normal and cancer cells. Science 276:1268–1272

    PubMed  CAS  Google Scholar 

  13. Lal A, Lash AE, Altschul SF, Velculescu V, Zhang L, McLendon RE, Marra MA, Prange C, Morin PJ, Polyak K, Papadopoulos N, Vogelstein B, Kinzler KW, Strausberg RL, Riggins GJ (1999) A public database for gene expression in human cancers. Cancer Res 59:5403–5407

    PubMed  CAS  Google Scholar 

  14. Lash AE, Tolstoshev CM, Wagner L, Schuler GD, Strausberg RL, Riggins GJ, Altschul SF (2000) SAGEmap: a public gene expression resource. Genome Res 10:1051–1060

    PubMed  CAS  Google Scholar 

  15. Iacobuzio-Donahue CA, Maitra A, Shen-Ong GL et al (2002) Discovery of novel tumor markers of pancreatic cancer using global gene expression technology. Am J Pathol 160(4):1239–1249

    PubMed  CAS  Google Scholar 

  16. Argani P, Iacobuzio-Donahue C, Ryu B et al (2001) Mesothelin is overexpressed in the vast majority of ductal adenocarcinoma of the pancreas: identification of a new pancreatic cancer marker by serial analysis of gene expression (SAGE). Clin Cancer Res 7:3862–3868

    PubMed  CAS  Google Scholar 

  17. Ryu B, Jones J, Blades NJ et al (2002) Relationships and differentially expressed genes among pancreatic cancers examined by large scale serial analysis of gene expression. Cancer Res 62:819–826

    PubMed  CAS  Google Scholar 

  18. Argani P, Rosty C, Reiter RE et al (2001) Discovery of new markers of cancer through serial analysis of gene expression: prostate stem cell antigen is overexpressed in pancreatic adenocarcinoma. Cancer Res 61:4320–4324

    PubMed  CAS  Google Scholar 

  19. Germain RN (1986) Immunology: the ins and outs of antigen processing and presentation. Nature 322:687–689

    PubMed  CAS  Google Scholar 

  20. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    PubMed  CAS  Google Scholar 

  21. Pieters J (2000) MHC class II restricted antigen processing and presentation. Adv Immunol 75:159–208

    PubMed  CAS  Google Scholar 

  22. Solheim JC (1999) Class I MHC molecules: assembly and antigen presentation. Immunol Rev 172:11–19

    PubMed  CAS  Google Scholar 

  23. Hammerling GJ, Vogt AB, Kropshofer H (1999) Antigen processing and presentation-towards the millennium. Immunol Rev 172:5–9

    PubMed  CAS  Google Scholar 

  24. Pardoll DM (2002) Spinning molecular immunology into successful immunotherapy. Nat Rev Immunol 2:227–238

    PubMed  CAS  Google Scholar 

  25. Chen L, Ashe S, Brady WA et al (1992) Costimulation of antitumor immunity by the B7 counterreceptor for the T lymphocyte molecules CD28 and CTLA-4. Cell 71:1093–1102

    PubMed  CAS  Google Scholar 

  26. Schwartz RH (1992) Costimulation of T lymphocytes, the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell 71:1065–1068

    PubMed  CAS  Google Scholar 

  27. Lechler R, Aichinger G, Lightstone L (1996) The endogenous pathway of MHC class II antigen presentation. Immunol Rev 151:51–79

    PubMed  CAS  Google Scholar 

  28. Ostrand-Rosenberg S (1994) Tumor immunotherapy: the tumor cell as an antigen presenting cell. Curr Opin Immunol 6(5):722–727

    PubMed  CAS  Google Scholar 

  29. Golumbek P, Lazenby A, Levitsky HI et al (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254:713–716

    PubMed  CAS  Google Scholar 

  30. Dranoff G, Jaffee EM, Golumbek P et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine GM-CSF stimulates potent, specific and long lasting anti tumor immunity. Proc Natl Acad Sci 90:3539–3543

    PubMed  CAS  Google Scholar 

  31. Nishihara T, Sawada T, Yamamoto A et al (2000) Antibody-dependent cytotoxicity mediated by chimeric monoclonal antibody Nd2 and experimental immunotherapy for pancreatic cancer. Jpn J Cancer Res 91(8):817–824

    PubMed  CAS  Google Scholar 

  32. Bruns CJ, Harbison MT, Davis DW et al (2000) Epidermal growth factor receptor blockade with C225 plus gemcitabine results in regression of human pancreatic carcinoma growing orthotopically in nude mice by antiangiogenic mechanisms. Clin Cancer Res 6(5):1936–1948

    PubMed  CAS  Google Scholar 

  33. Green MC, Murray JL, Hortobagyi GN (2000) Monoclonal antibody therapy for solid tumors. Cancer Treat Rev 26(4):269–286

    PubMed  CAS  Google Scholar 

  34. Tempero M (1998) Biologic therapy of gastrointestinal cancer. Cancer Treat Res 98:227–237

    PubMed  CAS  Google Scholar 

  35. Foon KA, Yannelli J, Bhattacharya-Chatterjee M (1999) Colorectal cancer as a model for immunotherapy. Clin Cancer Res 5(2):225–236

    PubMed  CAS  Google Scholar 

  36. Offringa R, Vierboom MP, van der Burg SH, Erdile L, Melief CJ (2000) p53: a potential target antigen for immunotherapy of cancer. Ann N Y Acad Sci 910:223–233

    PubMed  CAS  Google Scholar 

  37. Abbruzzese JL (2000) Molecular diagnosis of pancreatic and biliary cancer: ready for broad implementation? Cancer J 6(5):282–284

    PubMed  CAS  Google Scholar 

  38. Saforafas GH, Tsiotou AG, Tsiotos GG (2000) Molecular biology of pancreatic cancer; oncogenes, tumor suppressor genes, growth factors, and their receptors from a clinical perspective. Cancer Treat Rev 26(1):29–52

    Google Scholar 

  39. Hruban RH, Wilentz RE, Kern SE (2000) Genetic progression in the pancreatic ducts. Am J Pathol 156(6):1821–1825

    PubMed  CAS  Google Scholar 

  40. Hahn SA, Kern SE (1995) Molecular genetics of exocrine pancreatic neoplasms. Surg Clin North Am 75(5):857–869

    PubMed  CAS  Google Scholar 

  41. Bos JL (1989) Ras oncogenes in human cancer: a review. Cancer Res 49(17):4682–4689

    PubMed  CAS  Google Scholar 

  42. Flanders TY, Foulkes WD (1996) Pancreatic adenocarcinoma: epidemiology and genetics. J Med Genet 33(11):889–898

    PubMed  CAS  Google Scholar 

  43. Hruban RH, Van Mansfeld AD, Offerhaus GJ et al (1993) K-ras oncogene activation in adenocarcinoma of the pancreas. Am J Pathol 143(2):545–554

    PubMed  CAS  Google Scholar 

  44. Gjertsen MK, Bakka A, Breivik J et al (1995) Vaccination with mutant ras peptides and induction of T-cell responsiveness in pancreatic carcinoma patients carrying the corresponding ras mutation. Lancet 346:1399–1400

    PubMed  CAS  Google Scholar 

  45. Bergmann-Leitner ES, Kantor JA, Shupert WL, Schlom J, Abrams SI (1998) Identification of a human CD8+ T lymphocyte neo-epitope created by a ras codon 12 mutation which is restricted by the HLA-A2 allele. Cell Immunol 187:103–116

    PubMed  CAS  Google Scholar 

  46. Khleif SN, Abrams SI, Hamilton JM et al (1999) A Phase I vaccine trial with peptides reflecting Ras oncogene mutations of solid tumors. J Immunother 22(2):155–165

    Google Scholar 

  47. Toubaji A, Achtar M, Provenzano M et al (2008) Pilot study of mutant ras peptide-based ­vaccine as an adjuvant treatment in pancreatic and colorectal cancers. Cancer Immunol Immunother 57(9):1413–1420

    Google Scholar 

  48. Gjertsen MK, Buanes T, Rosseland AR et al (2001) Intradermal ras peptide vaccination with granulocyte-macrophage colony stimulating factor as adjuvant: clinical and immunological responses in patients with pancreatic adenocarcinoma. Int J Cancer 92:441–450

    PubMed  CAS  Google Scholar 

  49. Wang XY, Kaneko Y, Repasky E, Subjeck JR (2000) Heat shock proteins and cancer immunotherapy. Immunol Invest 29(2):131–137

    PubMed  CAS  Google Scholar 

  50. Janetzki S, Blachere NE, Srivastava PK (1998) Generation of tumor specific cytotoxic T lymphocytes and memory T cells by immunization with tumor derived heat shock protein gp96. J Immunother 21(4):269–276

    PubMed  CAS  Google Scholar 

  51. Maki RG, Livingston PO, Lewis JJ et al (2007) A phase I pilot study of autologous heat shock protein vaccine HSPPC-96 in patients with resected pancreatic adenocarcinoma. Dig Dis Sci 52(8):1964–1972

    Google Scholar 

  52. Finn OJ, Jerome KR, Henderson RA et al (1995) MUC-1 epithelial tumor mucin-based immunity and vaccines. Immunol Rev 14561–89

    PubMed  CAS  Google Scholar 

  53. Apostopopoulos V, McKenzie IF (1994) Cellular mucins: targets for immunotherapy. Crit Rev Immunol 14(3/4):293–309

    Google Scholar 

  54. Mukherjee P, Ginardi AR, Madsen CS et al (2000) Mice with spontaneous pancreatic cancer naturally develop MUC-1 specific CTLs that eradicate tumors when adoptively transferred. J Immunol 165:3451–3460

    PubMed  CAS  Google Scholar 

  55. Ramanathan RK, Lee K, Mckolanis J et al (2005) Phase I study of a MUC-1 synthetic vaccine admixed with SB-AS2 adjuvant in resected and locally advanced pancreatic cancer. Cancer Immunol Immunother 54(3):254–264, Epub 2004 Sep 14

    PubMed  CAS  Google Scholar 

  56. Hardacre JM, Mulcahy M, Small W, Talamonti M, Obel J, Krishnamurthi S, Rocha-Lima CS, Safran H, Lenz HJ, Chiorean EG (2012) Addition of algenpantucel-L immunotherapy to standard adjuvant therapy for pancreatic cancer: A phase 2 study. J Gastrointest Surg. Epub ahead of print 2012, Nov 15

    Google Scholar 

  57. Hammarstrom S (1999) The carcinoembryonic antigen (CEA) family: structures, suggested functions and expression in normal and malignant tissues. Semin Cancer Biol 9:67–81

    PubMed  CAS  Google Scholar 

  58. Marshall JL, Hoyer RJ, Toomey MA et al (2000) Phase I study in advanced cancer patients of a diversified prime and boost vaccination protocol using recombinant vaccinia virus and recombinant nonreplicating avipox virus to elicit anti-carcinoembryonic antigen immune responses. J Clin Oncol 18(23):3964–3973

    PubMed  CAS  Google Scholar 

  59. Laheru D, Jaffee EM (2005) Immunotherapy for pancreatic cancer—science driving clinical progress. Nat Rev Cancer 5(6):459–467

    PubMed  CAS  Google Scholar 

  60. Fong L, Small EJ (2008) Anti-cytotoxic T-lymphocyte antigen-4 antibody: the first in an emerging class of immunomodulatory antibodies for cancer treatment. J Clin Oncol 26(32):5275–5283

    Google Scholar 

  61. Le D, Lutz E, Huang L, Onners B, Uram J, Solt S, Sugar E, Zheng L, Jaffee E, Laheru D (2012) Phase Ib study of ipilimumab alone or in combination with allogeneic pancreatic tumor cells transfected with a GM-CSF gene (vaccine) in pancreatic cancer. J Clin Oncol 30(suppl 4; abstr 211)

    Google Scholar 

  62. Fonsatti E, Maio M, Altomonte M, Hersey P (2010) Biology and clinical applications of CD40 in cancer treatment. Semin Oncol 37(5):517–523

    PubMed  CAS  Google Scholar 

  63. Vonderheide RH, Flaherty KT, Khalil M, Stumacher MS, Bajor DL, Hutnick NA, Sullivan P, Mahany JJ, Gallagher M, Kramer A, Green SJ, O’Dwyer PJ, Running KL, Huhn RD, Antonia SJ (2007) Clinical activity and immune modulation in cancer patients treated with CP-870,893, a novel CD40 agonist monoclonal antibody. J Clin Oncol 25(7):876–883

    PubMed  CAS  Google Scholar 

  64. Beatty GL, Chiorean EG, Fishman MP, Saboury B, Teitelbaum UR, Sun W, Huhn RD, Song W, Li D, Sharp LL, Torigian DA, O’Dwyer PJ, Vonderheide RH (2011) CD40 agonists alter tumor stroma and show efficacy against pancreatic carcinoma in mice and humans. Science 331(6024):1612–1616

    PubMed  CAS  Google Scholar 

  65. Restifo NP (2000) Cancer vaccines: basic principles. In: Rosenberg SA (ed) The principles and practice of the biologic therapy of cancer, 3rd edn. Lippincott Williams and Wilkens, Philadelphia, pp 571–584

    Google Scholar 

  66. Pardoll DM, Jaffee EM (2000) Cancer vaccines: clinical applications. In: Rosenberg SA (ed) The principles and practice of the biologic therapy of cancer, 3rd edn. Lippincott Williams and Wilkens, Philadelphia, pp 647–662

    Google Scholar 

  67. Greten TF, Jaffee EM (1999) Cancer vaccines. J Clin Oncol 17(3):1047–1060

    PubMed  CAS  Google Scholar 

  68. Fearon ER, Itaya T, Hunt B, Vogelstein B, Frost P (1988) Induction in a murine tumor of immunogenic tumor variants by transfection with a foreign gene. Cancer Res 48(11):2975–2980

    PubMed  CAS  Google Scholar 

  69. Dranoff G, Jaffee EM, Golumbek P et al (1993) Vaccination with irradiated tumor cells engineered to secrete murine GM-CSF stimulates potent, specific and long lasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543

    PubMed  CAS  Google Scholar 

  70. Inaba K, Steinman R, Pack M et al (1992) Identification of proliferating dendritic cell precursors in mouse blood. J Exp Med 175:1157–1167

    PubMed  CAS  Google Scholar 

  71. Huang AY, Golumbek PT, Ahmadzadeh M et al (1994) Role of bone marrow derived cells in presenting MHC class I restricted tumor antigens. Science 264:961–965

    PubMed  CAS  Google Scholar 

  72. Nakazaki Y, Tani K, Lin ZT et al (1998) Vaccine effect of granulocyte-macrophage colony stimulating factor or CD80 gene transduced murine hematopoietic tumor cells and their cooperative enhancement of anti-tumor immunity. Gene Ther 5(10):1355–1362

    PubMed  CAS  Google Scholar 

  73. Golumbek PT, Azhari R, Jaffee EM et al (1993) Controlled release biodegradable cytokine depots: a new approach to cancer vaccine design. Cancer Res 53:1–4

    Google Scholar 

  74. Jaffee EM, Abrams RA, Cameron JL et al (1998) A phase I trial of lethally irradiated allogeneic pancreatic tumor cells transfected with the GM-CSF gene for the treatment of pancreatic adenocarcinoma. Hum Gene Ther 9:1951–1971

    PubMed  CAS  Google Scholar 

  75. Simons JW, Jaffee EM, Weber C et al (1997) Bioactivity of human GM-CSF gene transduced autologous renal vaccines. Cancer Res 57:1537–1546

    PubMed  CAS  Google Scholar 

  76. Simons JW, Mikhak B, Chang JF et al (1999) Induction of immunity to prostate cancer antigens: results of a clinical trial of vaccination with irradiated autologous prostate tumor cells engineered to secrete granulocyte-macrophage colony stimulating factor using ex vivo gene transfer. Cancer Res 59: 5160–5168

    PubMed  CAS  Google Scholar 

  77. Soiffer R, Lynch T, Mihm M et al (1998) Vaccination with irradiated autologous melanoma cells engineered to secrete human granulocyte-macrophage colony-stimulating factor generates potent antitumor immunity in patients with metastatic melanoma. Proc Natl Acad Sci USA 95(22):13141–13146

    PubMed  CAS  Google Scholar 

  78. Cox AL, Skipper J, Chen Y et al (1994) Identification of a peptide recognized by five melanoma specific human cytotoxic T cell lines. Science 264:716–719

    PubMed  CAS  Google Scholar 

  79. Kawakami Y, Eliyahu S, Delgado CH et al (1994) Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor. Proc Natl Acad Sci USA 91:3515–3519

    PubMed  CAS  Google Scholar 

  80. Jaffee EM, Schutte M, Gossett J et al (1998) Development and characterization of a cytokine-secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials. Cancer J Sci Am 4:194–203

    PubMed  CAS  Google Scholar 

  81. Jaffee EM, Hruban R, Biedzycki B et al (2001) A novel allogeneic GM-CSF secreting tumor vaccine for pancreatic cancer: a phase I trial of safety and immune activation. J Clin Oncol 19(1):145–156

    PubMed  CAS  Google Scholar 

  82. Davis MP, Dinneen AB, Landa N et al (1999) Grover’s disease: clinicopathologic review of 72 cases. Mayo Clin Proc 74(3):229–234

    PubMed  CAS  Google Scholar 

  83. Lutz E, Yeo CJ, Lillemoe KD, Biedrzycki B, Kobrin B, Herman J, Sugar E, Piantadosi S, Cameron JL, Solt S, Onners B, Tartakovsky I, Choi M, Sharma R, Illei PB, Hruban RH, Abrams RA, Le D, Jaffee E, Laheru D (2011) A lethally irradiated allogeneic granulocyte-macrophage colony stimulating factor-secreting tumor vaccine for pancreatic adenocarcinoma. A Phase II trial of safety, efficacy, and immune activation. Ann Surg 253(2):328–335

    PubMed  Google Scholar 

  84. Boon T, Van Den Eynde BJ (2000) Cancer vaccines; cancer antigens. In: Rosenberg SA (ed) The principles and practice of the biologic therapy of cancer, 3rd edn. Lippincott Williams and Wilkens, Philadelphia, pp 493–504

    Google Scholar 

  85. Graham FL, Van Der Eb AJ (1973) A new technique for the assay of infectivity of human adenovirus 5 DNA. Virology 52:456–467

    PubMed  CAS  Google Scholar 

  86. Potter H, Weir L, Leder P (1984) Enhancer-dependent expression of human kappa immunoglobulin genes introduced into mouse pre-B lymphocytes by electroporation. Proc Natl Acad Sci USA 81(22):7161–7165

    PubMed  CAS  Google Scholar 

  87. Capecchi MR (1980) High efficiency transformation by direct microinjection of DNA into cultured mammalian cells. Cell 22: 479–488

    PubMed  CAS  Google Scholar 

  88. Felgner PL, Gadek TR, Holm M, Roman R, Chan HW, Wenz M, Northrop JP, Ringold GM, Danielsen M (1987) Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc Natl Acad Sci USA 84:7413–7417

    PubMed  CAS  Google Scholar 

  89. Banerji J, Rusconi S, Schaffner W (1981) Expression of a beta-globin gene is enhanced by remote SV40 DNA sequences. Cell 27:299–308

    PubMed  CAS  Google Scholar 

  90. Kingston RE (1993) Introduction of DNA into mammalian cells. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology, vol 1. Wiley, Hoboken

    Google Scholar 

  91. Mulligan RC (1991) Gene transfer and gene therapy. Principles, prospects, and perspective. In: Lindsten J, Pettersson U (eds) Etiology of human diseases at the DNA level. Raven Press, Ltd., New York

    Google Scholar 

  92. Danos O, Mulligan RC (1988) Safe and efficient generation of recombinant retroviruses with amphotropic and ecotropic host ranges. Proc Natl Acad Sci USA 85:6460–6464

    PubMed  CAS  Google Scholar 

  93. Mann R, Mulligan RC, Baltimore D (1983) Construction of a retrovirus packaging mutant and its use to produce helper-free defective retrovirus. Cell 33:153–159

    PubMed  CAS  Google Scholar 

  94. Miller DA, Buttimore C (1986) Redesign of retrovirus packaging cell lines to avoid recombination leading to helper virus production. Mol Cell Biol 6(8):2895–2902

    PubMed  CAS  Google Scholar 

  95. Armentano D, Sheau-Fung Y, Kantoff P, von Ruden T, Anderson WF, Gilboa E (1987) Effect of internal viral sequences on the utility of retroviral vectors. J Virol 61:1647–1650

    PubMed  CAS  Google Scholar 

  96. Lindemann D, Patriquin E, Feng S, Mulligan RC (1997) Versatile retroviral vector systems for regulating gene expression in vitro and in vivo. Mol Med 3(7):466–476

    PubMed  CAS  Google Scholar 

  97. Uberla K (2002) Lentivirus vector based on simian immunodeficiency virus. Development and use. Methods Mol Med 69:351–360

    PubMed  CAS  Google Scholar 

  98. Srinivasakumar N (2002) Packaging cell system for lentivirus vectors. Preparation and use. Methods Mol Med 69:275–302

    PubMed  CAS  Google Scholar 

  99. Miller DA, Miller DG, Garcia VJ, Lynch CM (1993) Use of retroviral vectors for gene transfer and expression. Methods Enzymol 217:581–599

    PubMed  CAS  Google Scholar 

  100. Miller AD, Law MF, Verma IM (1985) Generation of helper-free amphotropic retroviruses that transduce a dominant acting, methotrexate-resistant dihydrofolate reductase gene. Mol Cell Biol 5:431–437

    PubMed  CAS  Google Scholar 

  101. Mann R, Baltimore D (1985) Varying the position of a retrovirus packaging sequence results in the encapsidation of both unspliced and spliced RNAs. J Virol 54:401–407

    PubMed  CAS  Google Scholar 

  102. Bosselman RA, Hsu RY, Bruszewski J, Hu F, Martin F, Nicholson M (1987) Replication-defective chimeric helper proviruses and factors affecting generation of competent virus: expression of Muloney murine leukemia virus structural genes via the metallothionein promoter. Mol Cell Biol 7(5):1797–1806

    PubMed  CAS  Google Scholar 

  103. Jaffee EM, Schutte M, Gossett J, Morsberger L, Adler AJ, Thomas M, Greten TF, Hruban RH, Yeo CJ, Griffin GA (1998) Development and characterization of a cytokine secreting pancreatic adenocarcinoma vaccine from primary tumors for use in clinical trials. Cancer J Sci Am 4(3):194–203

    PubMed  CAS  Google Scholar 

  104. Small J, Scangos G (1983) Recombination during gene transfer into mouse cells can restore the function of deleted genes. Science 219:174–176

    PubMed  CAS  Google Scholar 

  105. Kotani H, Newton PB, Zhang S, Chiang YL, Otto E, Weaver L, Balese MR, Anderson FW, McGarrity GJ (1994) Improved methods of retroviral vector transduction and production for gene therapy. Hum Gene Ther 5:19–28

    PubMed  CAS  Google Scholar 

  106. Cornetta K, Anderson F (1989) Protamine sulfate as an effective alternative to polybrene in retroviral-mediated gene transfer: implications for human gene therapy. J Virol Methods 23:187–194

    PubMed  CAS  Google Scholar 

  107. Wilson JM, Jefferson DM, Chowdhury JR, Novikoff PM, Johnston DE, Mulligan RC (1988) Retrovirus-mediated transduction of adult hepatocytes. Proc Natl Acad Sci USA 85:3014–3018

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dan Laheru .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Laheru, D., Biedrzycki, B., Jaffee, E.M. (2013). Development of a Cytokine-Modified Allogeneic Whole Cell Pancreatic Cancer Vaccine. In: Su, G. (eds) Pancreatic Cancer. Methods in Molecular Biology, vol 980. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-62703-287-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-62703-287-2_9

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-62703-286-5

  • Online ISBN: 978-1-62703-287-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics