Skip to main content

Pericyte Coculture Models to Study Astrocyte, Pericyte, and Endothelial Cell Interactions

  • Protocol
  • First Online:
Astrocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 814))

Abstract

The microvascular pericyte is an integral component of the blood-brain barrier and the neurovascular unit. Most model systems that have been developed to study the functional parameters of these systems have not incorporated the pericyte. In this chapter, we consider pericyte coculture and triple culture systems and detail the methodology, suggestions, and problems with isolation of these unique cells. We also present data to show that triple cultures are ideal to study the role of the CNS pericyte in CNS angiogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cameron, N. E., Eaton, S. E., Cotter, M. A., and Tesfaye, S. (2001) Vascular factors and metabolic interactions in the pathogenesis of diabetic neuropathy. Diabetologia 44 1973–1988.

    Article  PubMed  CAS  Google Scholar 

  2. Sieczkiewicz, G. J., Hussain, M., and Kohn, E. C. (2002) Angiogenesis and metastasis. Cancer Treat. Res . 107, 353–381.

    PubMed  CAS  Google Scholar 

  3. Provis, J. M. (2001) Development of the primate retinal vasculature. Prog. Retin. Eye Res. 20, 799–821.

    Article  PubMed  CAS  Google Scholar 

  4. Pallone, T. L., and Silldorff, E. P. (2001) Pericyte regulation of renal medullary blood flow. Exp. Nephrol. 9(3), 165–170.

    Article  PubMed  CAS  Google Scholar 

  5. AlIt, G., and Lawrenson, J. G. (2001) Pericytes: cell biology and pathology. Cells Tissues Organs 169, 1–11.

    Article  Google Scholar 

  6. Sims, D. E. (2000) Diversity within pericytes. Clin. Exp. Pharmacol. Physiol. 27, 842–846.

    Article  PubMed  CAS  Google Scholar 

  7. McLennan, S. V., Death, A. K., Fisher, E. J., Williams, P. F., Yue, D. K., and Turtle, J. R. (1999) The role of the mesangial cell and its matrix in the pathogenesis of diabetic nephropathy. Cell Mol. BioI. 45, 123–135.

    CAS  Google Scholar 

  8. Kawada, N. (1997) The hepatic perisinusoidal stellate cell. Histol. Histopathol. 121069–1080.

    PubMed  CAS  Google Scholar 

  9. Hirschi, K. K., and D’ Amore, P. A. (1997) Control of angiogenesis by the pericyte: molecular mechanisms and significance. E.X.S. 79, 419–428.

    Google Scholar 

  10. Hirschi, K. K., and D’ Amore, P. A. (1996) Pericytes in the microvasculature. Cardiovasc. Res. 32, 687–698.

    PubMed  CAS  Google Scholar 

  11. Pinzani, M. (1995) Hepatic stellate (ITO) cells: expanding roles for a liver-specific pericyte. 1. Hepatol. 22, 700–706.

    CAS  Google Scholar 

  12. Shepro, D., and Morel, N. M. (1993) Pericyte physiology. FASEB 1. 7 , 1031–1038.

    Google Scholar 

  13. Dore-Duffy P. (2008) Pericytes: pluripotent cells of the blood brain barrier. Curr Pharm Des. 14(16),1581–93.

    Article  PubMed  CAS  Google Scholar 

  14. Balabanov, R., Washington, R., Wagnerova, J., and Dore-Duffy, P. (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin aM and macrophage marker ED-2. Microvas. Res. 52, 127–142.

    Article  CAS  Google Scholar 

  15. Balabanov, R., Washington, R., Wagnerova, J., and Dore-Duffy, P. (1996) CNS microvascular pericytes express macrophage-like function, cell surface integrin aM, and macrophage marker ED-2. Microvasc. Res . 52, 127–142.

    Article  PubMed  CAS  Google Scholar 

  16. Dore-Duffy, P., and Balabanov, R. (1998) The role of the CNS microvascular pericyte in leukocyte polarization of cytokine-secreting phenotype. 1. Neurochem . 70, 72.

    Google Scholar 

  17. Dore-Duffy, P., Balabanov, R., Rafols, 1., and Swanborg, R. (1996) The recovery period of acute experimental autoimmune encephalomyelitis in rats corresponds to development of endothelial cell unresponsiveness to interferon gamma activation. 1. Neurosci. Res. 44 223–234.

    Google Scholar 

  18. Dore-Duffy, P., Balabanov, R., Washington, R., and Swanborg, R. (1994) Transforming growth factor B 1 inhibits cytokine-induced CNS endothelial cell activation. Mol. Chern. Neuropathol. 22, 161–175.

    Article  CAS  Google Scholar 

  19. Balabanov, R., Beaumon, T., and Dore-Duffy, P. (1999) Role of central nervous system microvascular pericytes in activation of antigen-primed splenic T-Iymphocytes. 1. Neurosci. Res. 55, 578–587.

    Article  CAS  Google Scholar 

  20. Dore-Duffy, P., Washington, R., and Balabanov, R. (1995) Cytokine-mediated activation of CNS microvessels: a system for examining antigenic modulation of CNS endothelial cells, and evidence for long-term expression of the adhesion protein E-selectin. 1. Cereb. Bloo Flow Metab. 14, 43–45.

    Google Scholar 

  21. Dore-Duffy, P., Owen, C., Balabanov, R., Murphy, S., Beaumont, T., and Rafols, J. (2000) Pericyte migration from the vascular wall in response to traumatic brain injury. Microvasc. Res. 60, 55–69.

    Article  PubMed  CAS  Google Scholar 

  22. Diaz-Flores, L., Gutierrez, R., and Varela, H. (1994) Angiogenesis: an update. Ristol Ristopathol. 4, 807–843.

    Google Scholar 

  23. Ozerdem U, Stallcup WB. (2003) Early contribution of pericytes to angiogenic sprouting and tube formation. Angiogenesis 6, 241–9.

    Article  PubMed  CAS  Google Scholar 

  24. Dore-Duffy P, LaManna JC.(2007) Physiologic angiodynamics in the brain. Antioxid Redox Signal 9, 1363–71.

    Article  PubMed  CAS  Google Scholar 

  25. Nehls V, Schuchardt E, Drenckhahn D. (1994)The effect of fibroblasts, vascular smooth muscle cells, and pericytes on sprout formation of endothelial cells in a fibrin gel angiogenesis system. Microvasc Res. 48, 349–63.

    Article  PubMed  CAS  Google Scholar 

  26. Hellström M, Gerhardt H, Kalén M, Li X, Eriksson U, Wolburg H, Betsholtz C.(2001) Lack of pericytes leads to endothelial hyperplasia and abnormal vascular morphogenesis. J Cell Biol. 153, 543–53.

    Article  PubMed  Google Scholar 

  27. McCarthy KD, de Vellis J (1980) Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue. J. Cell biol. 85: 890-902.

    Article  PubMed  CAS  Google Scholar 

  28. Joo, F, and Karnushina, I. (1973) A procedure for the isolation of capillaries from rat brain. Cytobios 8, 41-48.

    PubMed  CAS  Google Scholar 

  29. Bowman, P. D., Betz, A. L., Jerry, D. D. A., et al. (1981) Primary culture of capillary endothelium from rat brain. In Vitro 17, 353–362.

    Article  PubMed  CAS  Google Scholar 

  30. Buzney, S. M., Massicotte, S. J., Hetu, N., and Zetter, B. R. (1983) Retinal vascular endothelial cells and pericytes. Differential growth characteristics. In Vitro 4, 470–480.

    Google Scholar 

  31. Gitlin, J. D., and D’ Amore, P. A. (1983) Culture of retinal capillary cells using selective growth media. Microvas. Res. 1, 74–80.

    Article  Google Scholar 

  32. Herman, I. M., and Jacobson, S. (1988) In situ analysis of microvascular pericytes in hypertensive rat brains. Tissue Cell 1, 112.

    Article  Google Scholar 

  33. Sussman, I., Carson, M. P., Schultz, V, et al. (1988) Chronic exposure to high glucose decreases myo-inositol in cultured cerebral microvascular pericytes but not in endothelium. Diabetologia 10 771775.

    Article  Google Scholar 

  34. Dore-Duffy P.(2003) Isolation and characterization of cerebral microvascular pericytes. Methods in Molecular Medicine. Vol. 89 “The Blood Brain Barrier” edited by S Nag. Human Press Inc. Totowa NJ. 375–382.

    Google Scholar 

  35. Balabanov, R., and Dore-Duffy, P. (1988) Role of the CNS microvascular pericyte in the blood brain barrier. 1. Neurosci. Res . 6, 637–644.

    Google Scholar 

  36. Bryan BA, D’Amore PA.(2008) Pericyte isolation and use in endothelial/pericyte coculture models. Methods Enzymol. 443, 315–31

    Article  PubMed  CAS  Google Scholar 

  37. Nakagawa S, Deli MA, Nakao S, Honda M, Hayashi K, Nakaoke R, Kataoka Y, Niwa M. (2007) Pericytes from brain microvessels strengthen the barrier integrity in primary cultures of rat brain endothelial cells. Cell Mol Neurobiol. 27, 687–9.

    Article  PubMed  CAS  Google Scholar 

  38. Nakagawa S, Deli MA, Kawaguchi H, Shimizudani T, Shimono T, Kittel A, Tanaka K, Niwa M. (2009) A new blood-brain barrier model using primary rat brain endothelial cells, pericytes and astrocytes. Neurochem Int. 54, 253–63.

    Article  PubMed  CAS  Google Scholar 

  39. Nehls V, Drenckhahn D. (1995) A novel, microcarrier-based in vitro assay for rapid and reliable quantification of three-dimensional cell migration and angiogenesis. Microvasc Res. 50, 311–22.

    Article  PubMed  CAS  Google Scholar 

  40. Stratman AN, Malotte KM, Mahan RD, Davis MJ, Davis GE.(2009) Pericyte recruitment during vasculogenic tube assembly stimulates endothelial basement membrane matrix formation. Blood. 114, 5091-10.

    Article  PubMed  CAS  Google Scholar 

  41. Dore-Duffy P, Katychev A, Wang X, Van Buren E. (2006) CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab. 26, 613-24.

    Article  PubMed  CAS  Google Scholar 

  42. Ozerdem U, Grako KA, Dahlin-Huppe K, Monosov E, Stallcup WB.(2001) NG2 proteoglycan is expressed exclusively by mural cells during vascular morphogenesis. Dev Dyn 222, 218-27.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Part of the work discussed in this chapter was supported in part by: Grants from the National Institute of Health NINDS (NS47672) and the National Multiple Sclerosis Society (CA1042A8, PP1517).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paula Dore-Duffy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Katyshev, V., Dore-Duffy, P. (2012). Pericyte Coculture Models to Study Astrocyte, Pericyte, and Endothelial Cell Interactions. In: Milner, R. (eds) Astrocytes. Methods in Molecular Biology, vol 814. Humana Press. https://doi.org/10.1007/978-1-61779-452-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-452-0_31

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-451-3

  • Online ISBN: 978-1-61779-452-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics