Skip to main content

Computational Modeling of Mitochondrial Function

  • Protocol
  • First Online:
Mitochondrial Bioenergetics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 810))

Abstract

The advent of techniques with the ability to scan massive changes in cellular makeup (genomics, proteomics, etc.) has revealed the compelling need for analytical methods to interpret and make sense of those changes. Computational models built on sound physico-chemical mechanistic basis are unavoidable at the time of integrating, interpreting, and simulating high-throughput experimental data. Another powerful role of computational models is predicting new behavior provided they are adequately validated.

Mitochondrial energy transduction has been traditionally studied with thermodynamic models. More recently, kinetic or thermo-kinetic models have been proposed, leading the path toward an understanding of the control and regulation of mitochondrial energy metabolism and its interaction with cytoplasmic and other compartments. In this work, we outline the methods, step-by-step, that should be followed to build a computational model of mitochondrial energetics in isolation or integrated to a network of cellular processes. Depending on the question addressed by the modeler, the methodology explained herein can be applied with different levels of detail, from the mitochondrial energy producing machinery in a network of cellular processes to the dynamics of a single enzyme during its catalytic cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kell DB (2006) Theodor Bucher Lecture. Metabolomics, modelling and machine learning in systems biology – towards an understanding of the languages of cells. Delivered on 3 July 2005 at the 30th FEBS Congress and the 9th IUBMB conference in Budapest. FEBS J 273:873–894

    Article  PubMed  CAS  Google Scholar 

  2. Winslow RL, Cortassa S, Greenstein JL (2005) Using models of the myocyte for functional interpretation of cardiac proteomic data. J Physiol 563:73–81

    Article  PubMed  CAS  Google Scholar 

  3. Oltvai ZN, Barabasi AL (2002) Systems biology. Life’s complexity pyramid. Science 298:763–764

    Article  PubMed  CAS  Google Scholar 

  4. Aon MA, Cortassa S (2006) Metabolic dynamics in cells viewed as multilayered, distributed, mass-energy-information networks. In: Jorde L, Little P, Dunn M, Subramaniam S (eds) Encyclopedia of genetics, genomics, proteomics and bioinformatics. Wiley, New York

    Google Scholar 

  5. Yung CK, Halperin VL, Tomaselli GF, Winslow RL (2004) Gene expression profiles in end-stage human idiopathic dilated cardiomyopathy: altered expression of apoptotic and cytoskeletal genes. Genomics 83:281–297

    Article  PubMed  CAS  Google Scholar 

  6. Pietrobon D, Zoratti M, Azzone GF, Caplan SR (1986) Intrinsic uncoupling of mitochondrial proton pumps. 2. Modeling studies. Biochemistry 25:767–775

    Article  PubMed  CAS  Google Scholar 

  7. Stucki JW (1980) The optimal efficiency and the economic degrees of coupling of oxidative phosphorylation. Eur J Biochem 109:269–283

    Article  PubMed  CAS  Google Scholar 

  8. Westerhoff HV, Lolkema JS, Otto R, Hellingwerf KJ (1982) Thermodynamics of growth. Non-equilibrium thermodynamics of bacterial growth. The phenomenological and the mosaic approach. Biochim Biophys Acta 683:181–220

    PubMed  CAS  Google Scholar 

  9. Tager JM, Wanders RJ, Groen AK, Kunz W, Bohnensack R, Kuster U, Letko G, Bohme G, Duszynski J, Wojtczak L (1983) Control of mitochondrial respiration. FEBS Lett 151:1–9

    Article  PubMed  CAS  Google Scholar 

  10. Westerhoff HV, Van Dam K (1987) Thermo-dynamics and control of biological free-energy transduction. Elsevier, Amsterdam

    Google Scholar 

  11. Cortassa S, Aon MA, Westerhoff HV (1991) Linear nonequilibrium thermodynamics describes the dynamics of an autocatalytic system. Biophys J 60:794–803

    Article  PubMed  CAS  Google Scholar 

  12. Cortassa S, Aon JC, Aon MA (1995) Fluxes of carbon, phosphorylation, and redox intermediates during growth of saccharomyces cerevisiae on different carbon sources. Biotechnol Bioeng 47:193–208

    Article  PubMed  CAS  Google Scholar 

  13. Savinell JM, Palsson BO (1992) Network analysis of intermediary metabolism using linear optimization. I. Development of mathematical formalism. J Theor Biol 154:421–454

    Article  PubMed  CAS  Google Scholar 

  14. Christensen B, Nielsen J (2000) Metabolic network analysis. A powerful tool in metabolic engineering. Adv Biochem Eng Biotechnol 66:209–231

    PubMed  CAS  Google Scholar 

  15. Segel LA (1980) Mathematical models in molecular and cellular biology. Cambridge University Press, New York

    Google Scholar 

  16. Cortassa S, Aon MA, Marban E, Winslow RL, O’Rourke B (2003) An integrated model of cardiac mitochondrial energy metabolism and calcium dynamics. Biophys J 84:2734–2755

    Article  PubMed  CAS  Google Scholar 

  17. Savageau MA (1991) Biochemical systems theory: operational differences among variant representations and their significance. J Theor Biol 151:509–530

    Article  PubMed  CAS  Google Scholar 

  18. Savageau MA (1995) Michaelis–Menten mechanism reconsidered: implications of fractal kinetics. J Theor Biol 176:115–124

    Article  PubMed  CAS  Google Scholar 

  19. Cortassa S, Aon MA, Iglesias AA, Lloyd D (2002) An introduction to metabolic and cellular engineering, 1st edn. World Scientific Publishers, Singapore

    Book  Google Scholar 

  20. Cortassa S, Aon MA, O’Rourke B, Jacques R, Tseng HJ, Marban E, Winslow RL (2006) A computational model integrating electrophysiology, contraction, and mitochondrial bioenergetics in the ventricular myocyte. Biophys J 91:1564–1589

    Article  PubMed  CAS  Google Scholar 

  21. Magnus G, Keizer J (1997) Minimal model of beta-cell mitochondrial Ca2+ handling. Am J Physiol 273:C717–C733

    PubMed  CAS  Google Scholar 

  22. Jeong H, Tombor B, Albert R, Oltvai ZN, Barabasi AL (2000) The large-scale organization of metabolic networks. Nature 407:651–654

    Article  PubMed  CAS  Google Scholar 

  23. Almaas E, Kovacs B, Vicsek T, Oltvai ZN, Barabasi AL (2004) Global organization of metabolic fluxes in the bacterium Escherichia coli. Nature 427:839–843

    Article  PubMed  CAS  Google Scholar 

  24. Hill TL, Chay TR (1979) Theoretical methods for study of kinetics of models of the mitochondrial respiratory chain. Proc Natl Acad Sci USA 76:3203–3207

    Article  PubMed  CAS  Google Scholar 

  25. Dhooge A, Govaerts W, Kuznetsov YA, Meijer HGE, Sautois B (2008) New features of the software MatCont for bifurcation analysis of dynamical systems. Math Comput Model Dyn Syst 14:147–175

    Article  Google Scholar 

  26. Gunn RB, Curran PF (1971) Membrane potentials and ion permeability in a cation exchange membrane. Biophys J 11:559–571

    Article  PubMed  CAS  Google Scholar 

  27. Hille B (2001) Ion channels of excitable membranes, 3rd edn. Sinauer, Sunderland, MA

    Google Scholar 

  28. Crank J (1975) The mathematics of diffusion, 2nd edn. Clarendon, Oxford

    Google Scholar 

  29. Tran LM, Rizk ML, Liao JC (2008) Ensemble modeling of metabolic networks. Biophys J 95:5606–5617

    Article  PubMed  CAS  Google Scholar 

  30. Segel IH (1975) Enzyme kinetics: behavior and analysis of rapid equilibrium and steady state enzyme systems. Wiley, New York

    Google Scholar 

  31. Cortassa S, Aon MA, Winslow RL, O’Rourke B (2004) A mitochondrial oscillator dependent on reactive oxygen species. Biophys J 87:2060–2073

    Article  PubMed  CAS  Google Scholar 

  32. Barthelmes J, Ebeling C, Chang A, Schomburg I, Schomburg D (2007) BRENDA, AMENDA and FRENDA: the enzyme information system in 2007. Nucleic Acids Res 35:D511–D514

    Article  PubMed  CAS  Google Scholar 

  33. Brandes R, Bers DM (2002) Simultaneous measurements of mitochondrial NADH and Ca(2+) during increased work in intact rat heart trabeculae. Biophys J 83:587–604

    Article  PubMed  CAS  Google Scholar 

  34. Wright BE, Butler MH, Albe KR (1992) Systems analysis of the tricarboxylic acid cycle in Dictyostelium discoideum. I. The basis for model construction. J Biol Chem 267:3101–3105

    PubMed  CAS  Google Scholar 

  35. Cortassa S, O’Rourke B, Winslow RL, Aon MA (2009) Control and regulation of mitochondrial energetics in an integrated model of cardiomyocyte function. Biophys J 96:2466–2478

    Article  PubMed  CAS  Google Scholar 

  36. Karatzaferi C, Myburgh KH, Chinn MK, Franks-Skiba K, Cooke R (2003) Effect of an ADP analog on isometric force and ATPase activity of active muscle fibers. Am J Physiol 284:C816–C825

    CAS  Google Scholar 

  37. Rutter GA, Denton RM (1988) Regulation of NAD+-linked isocitrate dehydrogenase and 2-oxoglutarate dehydrogenase by Ca2+ ions within toluene-permeabilized rat heart mitochondria. Interactions with regulation by adenine nucleotides and NADH/NAD+ ratios. Biochem J 252:181–189

    PubMed  CAS  Google Scholar 

  38. Aon MA, Cortassa S, Maack C, O’Rourke B (2007) Sequential opening of mitochondrial ion channels as a function of glutathione redox thiol status. J Biol Chem 282:21889–21900

    Article  PubMed  CAS  Google Scholar 

  39. Aon MA, Cortassa S, Marban E, O’Rourke B (2003) Synchronized whole cell oscillations in mitochondrial metabolism triggered by a local release of reactive oxygen species in cardiac myocytes. J Biol Chem 278:44735–44744

    Article  PubMed  CAS  Google Scholar 

  40. Wei AC, Aon MA, O’Rourke B, Winslow RL, Cortassa S. (2011) Mitochondrial energetics, pH regulation, and ion dynamics: a ­computational-experimental approach. Biophys J 100:2894–903

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institute of Health R37 HL 54598, P01HL081427, and R01 HL091923.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Cortassa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Cortassa, S., Aon, M.A. (2012). Computational Modeling of Mitochondrial Function. In: Palmeira, C., Moreno, A. (eds) Mitochondrial Bioenergetics. Methods in Molecular Biology, vol 810. Humana Press. https://doi.org/10.1007/978-1-61779-382-0_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-382-0_19

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-381-3

  • Online ISBN: 978-1-61779-382-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics