Skip to main content

Introduction to Viral Vectors

  • Protocol
  • First Online:
Viral Vectors for Gene Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 737))

Abstract

Viral vector is the most effective means of gene transfer to modify specific cell type or tissue and can be manipulated to express therapeutic genes. Several virus types are currently being investigated for use to deliver genes to cells to provide either transient or permanent transgene expression. These include adenoviruses (Ads), retroviruses (γ-retroviruses and lentiviruses), poxviruses, adeno-associated viruses, baculoviruses, and herpes simplex viruses. The choice of virus for routine clinical use will depend on the efficiency of transgene expression, ease of production, safety, toxicity, and stability. This chapter provides an introductory overview of the general characteristics of viral vectors commonly used in gene transfer and their advantages and disadvantages for gene therapy use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schalk, J. A., Mooi, F. R., Berbers, G. A., van Aerts, L. A., Ovelgonne, H., and Kimman, T. G. (2006) Preclinical and clinical safety studies on DNA vaccines, Hum. Vaccin 2, 45–53.

    Google Scholar 

  2. Thomas, C. E., Ehrhardt, A., and Kay, M. A. (2003) Progress and problems with the use of viral vectors for gene therapy, Nat. Rev. Genet. 4, 346–358.

    Article  PubMed  CAS  Google Scholar 

  3. Mairhofer, J., and Grabherr, R. (2008) Rational vector design for efficient non-viral gene delivery: challenges facing the use of plasmid DNA, Mol. Biotechnol 39, 97–104.

    Google Scholar 

  4. Bower, D. M., and Prather, K. L. (2009) Engineering of bacterial strains and vectors for the production of plasmid DNA, Appl. Microbiol. Biotechnol. 82, 805–813.

    Google Scholar 

  5. Navarro, J., Oudrhiri, N., Fabrega, S., and Lehn, P. (1998) Gene delivery systems: Bridging the gap between recombinant viruses and artificial vectors, Adv. Drug Deliv. Rev. 30, 5–11.

    Google Scholar 

  6. Bouard, D., Alazard-Dany, D., and Cosset, F. L. (2009) Viral vectors: from virology to transgene expression, Br. J. Pharmacol. 157, 153–165.

    Google Scholar 

  7. McTaggart, S., and Al-Rubeai, M. (2002) Retroviral vectors for human gene delivery, Biotechnol. Adv. 20, 1–31.

    Google Scholar 

  8. Rowe, W. P., Huebner, R. J., Gilmore, L. K., Parrott, R. H., and Ward, T. G. (1953) Isolation of a cytopathogenic agent from human adenoids undergoing spontaneous degeneration in tissue culture, Proc. Soc. Exp. Biol. Med. 84, 570–573.

    Google Scholar 

  9. Shenk, T. (1996) Adenoviridae: The viruses and their replication in Fields Virology (Fields, B. N., Ed.), pp 2111-2148, Lippincott-Raven Publishers, Philadelphia, PA.

    Google Scholar 

  10. Kovesdi, I., Brough, D. E., Bruder, J. T., and Wickham, T. J. (1997) Adenoviral vectors for gene transfer, Curr. Opin. Biotechnol. 8, 583–589.

    Google Scholar 

  11. Douglas, J. T. (2007) Adenoviral vectors for gene therapy, Mol. Biotechnol. 36, 71–80.

    Google Scholar 

  12. Campos, S. K., and Barry, M. A. (2007) Current advances and future challenges in Adenoviral vector biology and targeting, Curr. Gene Ther. 7, 189–204.

    Google Scholar 

  13. Boyer, J., and Ketner, G. (1999) Adenovirus Late Gene Expression, in Aednovirues: Basic Biology to Gene Therapy (Seth, P., Ed.), pp 69–77, R. G. Landes Bioscience, Austin, TX.

    Google Scholar 

  14. Rux, J. J., and Burnett, R. (1999) in Adenoviruses: Basic Biology to Gene Therapy (Seth, P., Ed.), pp 5-15, Medical Intelligence 15. R. G. Landes Bioscience, Austin, TX.

    Google Scholar 

  15. Bergelson, J. M., Cunningham, J. A., Droguett, G., Kurt-Jones, E. A., Krithivas, A., Hong, J. S., et al. (1997) Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5, Science 275, 1320–1323.

    Google Scholar 

  16. Tomko, R. P., Xu, R., and Philipson, L. (1997) HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses, Proc. Natl. Acad. Sci. USA 94, 3352–3356.

    Google Scholar 

  17. Berkner, K. L. (1988) Development of adenovirus vectors for the expression of heterologous genes, Biotechniques 6, 616–629.

    Google Scholar 

  18. Roth, J. A. (2006) Adenovirus p53 gene therapy, Expert Opin. Biol. Ther. 6, 55–61.

    Google Scholar 

  19. Onion, D., Patel, P., Pineda, R. G., James, N. D., and Mautner, V. (2009) Anti-Vector and Tumor Immune Responses following Adenovirus Directed Enzyme Pro-drug Therapy for the Treatment of Prostate Cancer, Hum. Gene Ther. 20, 1249–1258.

    Google Scholar 

  20. Patel, P., Young, J. G., Mautner, V., Ashdown, D., Bonney, S., Pineda, R. G., et al. (2009) A Phase I/II Clinical Trial in Localized Prostate Cancer of an Adenovirus Expressing Nitroreductase with CB1984, Mol. Ther. 17, 1292–1299.

    Article  PubMed  CAS  Google Scholar 

  21. Pastore, L., Morral, N., Zhou, H., Garcia, R., Parks, R. J., Kochanek, S., et al. (1999) Use of a liver-specific promoter reduces immune response to the transgene in adenoviral vectors, Hum. Gene Ther. 10, 1773–1781.

    Article  PubMed  CAS  Google Scholar 

  22. Ghosh, S. S., Gopinath, P., and Ramesh, A. (2006) Adenoviral vectors: a promising tool for gene therapy, Appl Biochem Biotechnol 133, 9–29.

    Article  PubMed  CAS  Google Scholar 

  23. Hu, P.-F., Chen, H., Zhong, W., Lin, Y., Zhang, X., Chen, Y.-X., et al. (2009) Adenovirus-mediated transfer of siRNA against PAI-1 mRNA ameliorates hepatic fibrosis in rats, J. Hepatol 51, 102–113.

    Article  PubMed  CAS  Google Scholar 

  24. Okuda, T., Tagawa, K., Qi, M. L., Hoshio, M., Ueda, H., Kawano, H., et al. (2004) Oct-3/4 repression accelerates differentiation of neural progenitor cells in vitro and in vivo, Brain Res. Mol. Brain Res. 132, 18–30.

    Article  PubMed  CAS  Google Scholar 

  25. Shiver, J. W., Fu, T. M., Chen, L., Casimiro, D. R., Davies, M. E., Evans, R. K., et al. (2002) Replication-incompetent adenoviral vaccine vector elicits effective anti-immunodeficiency-virus immunity, Nature 415, 331–335.

    Article  PubMed  CAS  Google Scholar 

  26. Suckau, L., Fechner, H., Chemaly, E., Krohn, S., Hadri, L., Kockskamper, J., et al. (2009) Long-Term Cardiac-Targeted RNA Interference for the Treatment of Heart Failure Restores Cardiac Function and Reduces Pathological Hypertrophy, Circulation 119, 1241–1252.

    Article  PubMed  CAS  Google Scholar 

  27. Mata-Espinosa, D. A., Mendoza-Rodriguez, V., Aguilar-Leon, D., Rosales, R., Lopez-Casillas, F., and Hernandez-Pando, R. (2008) Therapeutic Effect of Recombinant Adenovirus Encoding Interferon-[gamma] in a Murine Model of Progressive Pulmonary Tuberculosis, Mol. Ther. 16, 1065–1072.

    Article  PubMed  CAS  Google Scholar 

  28. Happel, K. I., Lockhart, E. A., Mason, C. M., Porretta, E., Keoshkerian, E., Odden, et al. (2005) Pulmonary Interleukin-23 Gene Delivery Increases Local T-Cell Immunity and Controls Growth of Mycobacterium tuberculosis in the Lungs, Infect. Immun. 73, 5782–5788.

    Google Scholar 

  29. Goncalves, M. A. (2005) Adeno-associated virus: from defective virus to effective vector, Virol. J. 2, 43.

    Article  PubMed  CAS  Google Scholar 

  30. Büning, H., Braun-Falco, M., and Hallek, M. (2004) Progress in the use of adeno-associated viral vectors for gene therapy, Cells Tissues Organs 177, 139–150.

    Article  PubMed  CAS  Google Scholar 

  31. Ding, W., Zhang, L., Yan, Z., and Engelhardt, J. F. (2005) Intracellular trafficking of adeno-associated viral vectors, Gene Ther. 12, 873–880.

    Article  PubMed  CAS  Google Scholar 

  32. McCarty, D. M., Fu, H., Monahan, P. E., Toulson, C. E., Naik, P., and Samulski, R. J. (2003) Adeno-associated virus terminal repeat (TR) mutant generates self-complementary vectors to overcome the rate-limiting step to transduction in vivo, Gene Ther. 10, 2112–2118.

    Article  PubMed  CAS  Google Scholar 

  33. Kotin, R. M., Menninger, J. C., Ward, D. C., and Berns, K. I. (1991) Mapping and direct visualization of a region-specific viral DNA integration site on chromosome 19q13-qter, Genomics 10, 831–834.

    Article  PubMed  CAS  Google Scholar 

  34. Matsushita, T., Elliger, S., Elliger, C., Podsakoff, G., Villarreal, L., Kurtzman, G. J., et al. (1998) Adeno-associated virus vectors can be efficiently produced without helper virus, Gene Ther. 5, 938–945.

    Article  PubMed  CAS  Google Scholar 

  35. Russell, D. W., and Kay, M. A. (1999) Adeno-associated virus vectors and hematology, Blood 94, 864–874.

    PubMed  CAS  Google Scholar 

  36. Coura Rdos, S., and Nardi, N. B. (2007) The state of the art of adeno-associated virus-based vectors in gene therapy, Virol. J. 4, 99.

    Article  PubMed  CAS  Google Scholar 

  37. McCarty, D. M., Monahan, P. E., and Samulski; R. J. (2001) Self-complementary recombinant adeno-associated virus (scAAV) vectors promote efficient transduction independently of DNA synthesis. Gene Ther. 8, 1248–1254.

    Google Scholar 

  38. Galeano, M., Deodato, B., Altavilla, D., Squadrito, G., Seminara, P., Marini, H., et al. (2003) Effect of recombinant adeno-associated virus vector-mediated vascular endothelial growth factor gene transfer on wound healing after burn injury, Crit. Care Med. 31, 1017–1025.

    Article  PubMed  CAS  Google Scholar 

  39. Deodato, B., Arsic, N., Zentilin, L., Galeano, M., Santoro, D., Torre, V., et al. (2002) Recombinant AAV vector encoding human VEGF165 enhances wound healing, Gene Ther. 9, 777–785.

    Article  PubMed  CAS  Google Scholar 

  40. Galeano, M., Deodato, B., Altavilla, D., Cucinotta, D., Arsic, N., Marini, H., et al. (2003) Adeno-associated viral vector-mediated human vascular endothelial growth factor gene transfer stimulates angiogenesis and wound healing in the genetically diabetic mouse, Diabetologia 46, 546–555.

    PubMed  CAS  Google Scholar 

  41. Paterna, J. C., and Bueler, H. (2002) Recombinant adeno-associated virus vector design and gene expression in the mammalian brain, Methods 28, 208–218.

    Article  PubMed  CAS  Google Scholar 

  42. Wang, Z., Zhu, T., Qiao, C., Zhou, L., Wang, B., Zhang, J., et al. (2005) Adeno-associated virus serotype 8 efficiently delivers genes to muscle and heart, Nat. Biotechnol. 23, 321–328.

    Article  PubMed  CAS  Google Scholar 

  43. Martin, K. R., Klein, R. L., and Quigley, H. A. (2002) Gene delivery to the eye using adeno-associated viral vectors, Methods 28, 267–275.

    Article  PubMed  CAS  Google Scholar 

  44. Summerford, C., and Samulski, R. J. (1998) Membrane-associated heparan sulfate proteoglycan is a receptor for adeno-associated virus type 2 virions, J. Virol. 72, 1438–1445.

    PubMed  CAS  Google Scholar 

  45. Di Pasquale, G., Davidson, B. L., Stein, C. S., Martins, I., Scudiero, D., Monks, A., et al. (2003) Identification of PDGFR as a receptor for AAV-5 transduction, Nat. Med. 9, 1306–1312.

    Article  PubMed  CAS  Google Scholar 

  46. Rabinowitz, J. E., Rolling, F., Li, C., Conrath, H., Xiao, W., Xiao, X., et al. (2002) Cross-packaging of a single adeno-associated virus (AAV) type 2 vector genome into multiple AAV serotypes enables transduction with broad specificity, J. Virol. 76, 791–801.

    Article  PubMed  CAS  Google Scholar 

  47. Chao, H., Liu, Y., Rabinowitz, J., Li, C., Samulski, R. J., and Walsh, C. E. (2000) Several log increase in therapeutic transgene delivery by distinct adeno-associated viral serotype vectors, Mol. Ther. 2, 619–623.

    Article  PubMed  CAS  Google Scholar 

  48. Gao, G. P., Alvira, M. R., Wang, L., Calcedo, R., Johnston, J., and Wilson, J. M. (2002) Novel adeno-associated viruses from rhesus monkeys as vectors for human gene therapy, Proc. Natl. Acad. Sci. USA 99, 11854–11859.

    Article  PubMed  CAS  Google Scholar 

  49. Halbert, C. L., Allen, J. M., and Miller, A. D. (2001) Adeno-associated virus type 6 (AAV6) vectors mediate efficient transduction of airway epithelial cells in mouse lungs compared to that of AAV2 vectors, J. Virol. 75, 6615–6624.

    Article  PubMed  CAS  Google Scholar 

  50. Hauck, B., Chen, L., and Xiao, W. (2003) Generation and characterization of chimeric recombinant AAV vectors, Mol. Ther. 7, 419–425.

    Article  PubMed  CAS  Google Scholar 

  51. Stachler, M. D., and Bartlett, J. S. (2006) Mosaic vectors comprised of modified AAV1 capsid proteins for efficient vector purification and targeting to vascular endothelial cells, Gene Ther. 13, 926–931.

    PubMed  CAS  Google Scholar 

  52. Osten, P., Grinevich, V., and Cetin, A. (2007) Viral vectors: a wide range of choices and high levels of service, Handb. Exp. Pharmacol., 177–202.

    Google Scholar 

  53. Moss, R. B., Rodman, D., Spencer, L. T., Aitken, M. L., Zeitlin, P. L., Waltz, D., et al. (2004) Repeated adeno-associated virus serotype 2 aerosol-mediated cystic fibrosis transmembrane regulator gene transfer to the lungs of patients with cystic fibrosis: a multicenter, double-blind, placebo-controlled trial, Chest 125, 509–521.

    Article  PubMed  Google Scholar 

  54. Wagner, J. A., Messner, A. H., Moran, M. L., Daifuku, R., Kouyama, K., Desch, J. K., et al. (1999) Safety and biological efficacy of an adeno-associated virus vector-cystic fibrosis transmembrane regulator (AAV-CFTR) in the cystic fibrosis maxillary sinus, Laryngoscope 109, 266–274.

    Article  PubMed  CAS  Google Scholar 

  55. Moss, R. B., Milla, C., Colombo, J., Accurso, F., Zeitlin, P. L., Clancy, J. P., et al. (2007) Repeated aerosolized AAV-CFTR for treatment of cystic fibrosis: a randomized placebo-controlled phase 2B trial, Hum. Gene Ther. 18, 726–732.

    Article  PubMed  CAS  Google Scholar 

  56. Mount, J. D., Herzog, R. W., Tillson, D. M., Goodman, S. A., Robinson, N., McCleland, M. L., et al. (2002) Sustained phenotypic correction of hemophilia B dogs with a factor IX null mutation by liver-directed gene therapy, Blood 99, 2670–2676.

    Article  PubMed  CAS  Google Scholar 

  57. Manno, C. S., Pierce, G. F., Arruda, V. R., Glader, B., Ragni, M., Rasko, J. J., et al. (2006) Successful transduction of liver in hemophilia by AAV-Factor IX and limitations imposed by the host immune response, Nat. Med. 12, 342–347.

    Article  PubMed  CAS  Google Scholar 

  58. McPhee, S. W., Janson, C. G., Li, C., Samulski, R. J., Camp, A. S., Francis, J., et al. (2006) Immune responses to AAV in a phase I study for Canavan disease, J. Gene Med. 8, 577–588.

    Article  PubMed  CAS  Google Scholar 

  59. Crystal, R. G., Sondhi, D., Hackett, N. R., Kaminsky, S. M., Worgall, S., Stieg, P., et al. (2004) Clinical protocol. Administration of a replication-deficient adeno-associated virus gene transfer vector expressing the human CLN2 cDNA to the brain of ­children with late infantile neuronal ceroid lipofuscinosis, Hum. Gene Ther. 15, 1131–1154.

    Google Scholar 

  60. During, M. J., Kaplitt, M. G., Stern, M. B., and Eidelberg, D. (2001) Subthalamic GAD gene transfer in Parkinson disease patients who are candidates for deep brain stimulation, Hum. Gene Ther. 12, 1589–1591.

    PubMed  CAS  Google Scholar 

  61. Flotte, T. R., Brantly, M. L., Spencer, L. T., Byrne, B. J., Spencer, C. T., Baker, D. J., et al. (2004) Phase I trial of intramuscular injection of a recombinant adeno-associated virus alpha 1-antitrypsin (rAAV2-CB-hAAT) gene vector to AAT-deficient adults, Hum. Gene Ther. 15, 93–128.

    Article  PubMed  CAS  Google Scholar 

  62. Coffin, J. M., Hughes, S. H., and Varmus, H. E. (1997) Retroviruses, Cold Spring Harbor Laboratory Press.

    Google Scholar 

  63. Zhang, X., and Godbey, W. T. (2006) Viral vectors for gene delivery in tissue engineering, Adv. Drug Deliv. Rev. 58, 515–534.

    Article  PubMed  CAS  Google Scholar 

  64. Buchschacher, G. L. (2004) Safety conside­rations associated with development and clinical application of lentiviral vector ­systems for gene transfer, Curr. Genom. 5, 19–35.

    Article  CAS  Google Scholar 

  65. Buchschacher, G. L., Jr. (2001) Introduction to retroviruses and retroviral vectors, Somat. Cell Mol. Genet. 26, 1–11.

    Article  PubMed  Google Scholar 

  66. Hu, W. S., and Pathak, V. K. (2000) Design of retroviral vectors and helper cells for gene therapy, Pharmacol. Rev. 52, 493–511.

    PubMed  CAS  Google Scholar 

  67. Robbins, P. D., Tahara, H., and Ghivizzani, S. C. (1998) Viral vectors for gene therapy, Trends Biotechnol. 16, 35–40.

    Article  PubMed  CAS  Google Scholar 

  68. Charles, H. R., Donna, D. S., Shin-Tai, C., Thomas, A. L., Matilda, H. C. S., Jon, E. W., et al. (2008) Retroviral-based gene therapy with cyclooxygenase-2 promotes the union of bony callus tissues and accelerates fracture healing in the rat, J. Gene Med. 10, 229–241.

    Article  CAS  Google Scholar 

  69. Phillips, J. E., and García, A. J. (2008) Retroviral-mediated gene therapy for the differentiation of primary cells into a mineralizing osteoblastic phenotype, Methods Mol. Biol. 433, 333–354.

    Article  PubMed  CAS  Google Scholar 

  70. Li, Y., Tew, S. R., Russell, A. M., Gonzalez, K. R., Hardingham, T. E., and Hawkins, R. E. (2004) Transduction of passaged human articular chondrocytes with adenoviral, retroviral, and lentiviral vectors and the effects of enhanced expression of SOX9, Tissue Eng. 10, 575–584.

    Article  PubMed  CAS  Google Scholar 

  71. Tew, S. R., Li, Y., Pothacharoen, P., Tweats, L. M., Hawkins, R. E., and Hardingham, T. E. (2005) Retroviral transduction with SOX9 enhances re-expression of the chondrocyte phenotype in passaged osteoarthritic human articular chondrocytes, Osteoarthritis Cartilage 13, 80–89.

    Article  PubMed  Google Scholar 

  72. Yu, H., Eton, D., Wang, Y., Kumar, S. R., Tang, L., Terramani, T. T., et al. (1999) High efficiency in vitro gene transfer into vascular tissues using a pseudotyped retroviral vector without pseudotransduction, Gene Ther. 6, 1876–1883.

    Article  PubMed  CAS  Google Scholar 

  73. Chinen, J., Davis, J., De Ravin, S. S., Hay, B. N., Hsu, A. P., Linton, G. F., et al. (2007) Gene therapy improves immune function in preadolescents with X-linked severe combined immunodeficiency, Blood 110, 67–73.

    Article  PubMed  CAS  Google Scholar 

  74. Gaspar, H. B., Parsley, K. L., Howe, S., King, D., Gilmour, K. C., Sinclair, J., et al. (2004) Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector, Lancet 364, 2181–2187.

    Article  PubMed  CAS  Google Scholar 

  75. Cavazzana-Calvo, M., and Fischer, A. (2007) Gene therapy for severe combined immunodeficiency: are we there yet? J. Clin. Invest. 117, 1456–1465.

    Article  PubMed  CAS  Google Scholar 

  76. Naldini, L., Blomer, U., Gallay, P., Ory, D., Mulligan, R., Gage, F. H., et al. (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector, Science 272, 263–267.

    Article  PubMed  CAS  Google Scholar 

  77. Dull, T., Zufferey, R., Kelly, M., Mandel, R. J., Nguyen, M., Trono, D., et al. (1998) A third-generation lentivirus vector with a conditional packaging system, J. Virol. 72, 8463–8471.

    PubMed  CAS  Google Scholar 

  78. Zufferey, R., Dull, T., Mandel, R. J., Bukovsky, A., Quiroz, D., Naldini, L., et al. (1998) Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery, J. Virol. 72, 9873–9880.

    PubMed  CAS  Google Scholar 

  79. Malim, M. H., Hauber, J., Le, S. Y., Maizel, J. V., and Cullen, B. R. (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA, Nature 338, 254–257.

    Article  PubMed  CAS  Google Scholar 

  80. Heinzinger, N. K., Bukinsky, M. I., Haggerty, S. A., Ragland, A. M., Kewalramani, V., Lee, M. A., et al. (1994) The Vpr protein of human immunodeficiency virus type 1 influences nuclear localization of viral nucleic acids in nondividing host cells, Proc. Natl. Acad. Sci. USA 91, 7311–7315.

    Article  PubMed  CAS  Google Scholar 

  81. Feng, S., and Holland, E. C. (1988) HIV-1 tat trans-activation requires the loop sequence within tar, Nature 334, 165–167.

    Article  PubMed  CAS  Google Scholar 

  82. Miyoshi, H., Blomer, U., Takahashi, M., Gage, F. H., and Verma, I. M. (1998) Development of a self-inactivating lentivirus vector, J. Virol. 72, 8150–8157.

    PubMed  CAS  Google Scholar 

  83. Wiznerowicz, M., and Trono, D. (2005) Harnessing HIV for therapy, basic research and biotechnology, Trends Biotechnol. 23, 42–47.

    Article  PubMed  CAS  Google Scholar 

  84. Lois, C., Hong, E. J., Pease, S., Brown, E. J., and Baltimore, D. (2002) Germline transmission and tissue-specific expression of transgenes delivered by lentiviral vectors, Science 295, 868–872.

    Article  PubMed  CAS  Google Scholar 

  85. Warnock, J. N., Merten, O.-W., and Al-Rubeai, M. (2006) Cell culture processes for the production of viral vectors for gene therapy purposes, Cytotechnology 50, 141–162.

    Article  PubMed  CAS  Google Scholar 

  86. D’Costa, J., Mansfield, S. G., and Humeau, L. M. (2009) Lentiviral vectors in clinical trials: Current status, Curr. Opin. Mol. Ther. 11, 554–564.

    PubMed  Google Scholar 

  87. Levine, B. L., Humeau, L. M., Boyer, J., MacGregor, R. R., Rebello, T., Lu, X., et al. (2006) Gene transfer in humans using a conditionally replicating lentiviral vector, Proc. Natl. Acad. Sci. USA 103, 17372–17377.

    Article  PubMed  CAS  Google Scholar 

  88. Cartier, N., Hacein-Bey-Abina, S., Bartholomae, C. C., Veres, G., Schmidt, M., Kutschera, I., et al. (2009) Hematopoietic stem cell gene therapy with a lentiviral vector in X-linked adrenoleukodystrophy, Science 326, 818–823.

    Article  PubMed  CAS  Google Scholar 

  89. Williams, D. A. (2009) ESCGT 2008: progress in clinical gene therapy, Mol Ther 17, 1–2.

    Article  PubMed  CAS  Google Scholar 

  90. Bank, A., Dorazio, R., and Leboulch, P. (2005) A phase I/II clinical trial of beta-globin gene therapy for beta-thalassemia, Ann. N Y Acad. Sci. 1054, 308–316.

    Article  PubMed  CAS  Google Scholar 

  91. Li, M. J., Kim, J., Li, S., Zaia, J., Yee, J. K., Anderson, J., et al. (2005) Long-term inhibition of HIV-1 infection in primary hematopoietic cells by lentiviral vector delivery of a triple combination of anti-HIV shRNA, anti-CCR5 ribozyme, and a nucleolar-localizing TAR decoy, Mol. Ther. 12, 900–909.

    Article  PubMed  CAS  Google Scholar 

  92. Chhabra, A., Yang, L., Wang, P., Comin-Anduix, B., Das, R., Chakraborty, N. G., et al. (2008) CD4  +  CD25- T cells transduced to express MHC class I-restricted epitope-specific TCR synthesize Th1 cytokines and exhibit MHC class I-restricted cytolytic effector function in a human melanoma model, J. Immunol. 181, 1063–1070.

    PubMed  CAS  Google Scholar 

  93. Tjia, S. T., zu Altenschildesche, G. M., and Doerfler, W. (1983) Autographa californica nuclear polyhedrosis virus (AcNPV) DNA does not persist in mass cultures of mammalian cells, Virology 125, 107–117.

    Google Scholar 

  94. Volkman, L. E., and Goldsmith, P. A. (1983) In Vitro Survey of Autographa californica Nuclear Polyhedrosis Virus Interaction with Nontarget Vertebrate Host Cells, Appl. Environ. Microbiol. 45, 1085–1093.

    PubMed  CAS  Google Scholar 

  95. Smith, G. E., Summers, M. D., and Fraser, M. J. (1983) Production of human beta interferon in insect cells infected with a baculovirus expression vector, Mol. Cell Biol. 3, 2156–2165.

    PubMed  CAS  Google Scholar 

  96. Boyce, F. M., and Bucher, N. L. (1996) Baculovirus-mediated gene transfer into mammalian cells, Proc. Natl. Acad. Sci. USA 93, 2348–2352.

    Article  PubMed  CAS  Google Scholar 

  97. Condreay, J. P., Witherspoon, S. M., Clay, W. C., and Kost, T. A. (1999) Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector, Proc. Natl. Acad. Sci. USA 96, 127–132.

    Article  PubMed  CAS  Google Scholar 

  98. Hofmann, C., Lehnet, W., and Strauss, M. (1998) The baculovirus system for gene delivery into hepatocytes, Gene Ther. Mol. Biol. 1, 231–239.

    Google Scholar 

  99. Cohen, D. P. A., Marek, M., Davies, B. G., Vlak, J. M., and van Oers, M. M. (2009) Encyclopedia of Autographa californica nucleopolyhedrovirus genes, Virologica Sinica 24, 359–414.

    Article  Google Scholar 

  100. Long, G., Pan, X., Kormelink, R., and Vlak, J. M. (2006) Functional entry of baculovirus into insect and mammalian cells is dependent on clathrin-mediated endocytosis, J. Virol. 80, 8830–8833.

    Article  PubMed  CAS  Google Scholar 

  101. Matilainen, H., Rinne, J., Gilbert, L., Marjomaki, V., Reunanen, H., and Oker-Blom, C. (2005) Baculovirus entry into human hepatoma cells, J. Virol. 79, 15452–15459.

    Article  PubMed  CAS  Google Scholar 

  102. van Loo, N. D., Fortunati, E., Ehlert, E., Rabelink, M., Grosveld, F., and Scholte, B. J. (2001) Baculovirus infection of nondividing mammalian cells: mechanisms of entry and nuclear transport of capsids, J. Virol. 75, 961–970.

    Article  PubMed  Google Scholar 

  103. Hofmann, C., Sandig, V., Jennings, G., Rudolph, M., Schlag, P., and Strauss, M. (1995) Efficient gene transfer into human hepatocytes by baculovirus vectors, Proc. Natl. Acad. Sci. USA 92, 10099–10103.

    Article  PubMed  CAS  Google Scholar 

  104. Salminen, M., Airenne, K. J., Rinnankoski, R., Reimari, J., Valilehto, O., Rinne, J., et al. (2005) Improvement in nuclear entry and transgene expression of baculoviruses by disintegration of microtubules in human hepatocytes, J. Virol. 79, 2720–2728.

    Article  PubMed  CAS  Google Scholar 

  105. Abe, T., Hemmi, H., Miyamoto, H., Moriishi, K., Tamura, S., Takaku, H., et al. (2005) Involvement of the Toll-like receptor 9 signaling pathway in the induction of innate immunity by baculovirus, J. Virol. 79, 2847–2858.

    Article  PubMed  CAS  Google Scholar 

  106. Kost, T. A., Condreay, J. P., and Jarvis, D. L. (2005) Baculovirus as versatile vectors for protein expression in insect and mammalian cells, Nat. Biotechnol. 23, 567–575.

    Article  PubMed  CAS  Google Scholar 

  107. Ho, Y. C., Chung, Y. C., Hwang, S. M., Wang, K. C., and Hu, Y. C. (2005) Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells,J. Gene Med. 7, 860–868.

    Google Scholar 

  108. Sung, L. Y., Lo, W. H., Chiu, H. Y., Chen, H. C., Chung, C. K., Lee, H. P., et al. (2007) Modulation of chondrocyte phenotype via baculovirus-mediated growth factor expression, Biomaterials 28, 3437–3447.

    Article  PubMed  CAS  Google Scholar 

  109. Strauss, R., Huser, A., Ni, S., Tuve, S., Kiviat, N., Sow, P. S., et al. (2007) Baculovirus-based vaccination vectors allow for efficient induction of immune responses against plasmodium falciparum circumsporozoite protein, Mol. Ther. 15, 193–202.

    Article  PubMed  CAS  Google Scholar 

  110. Cheshenko, N., Krougliak, N., Eisensmith, R. C., and Krougliak, V. A. (2001) A novel system for the production of fully deleted adenovirus vectors that does not require helper adenovirus, Gene Ther. 8, 846–854.

    Article  PubMed  CAS  Google Scholar 

  111. Kim, Y.-K., Choi, J. Y., Jiang, H.-L., Arote, R., Jere, D., Cho, M.-H., et al. (2009) Hybrid of baculovirus and galactosylated PEI for efficient gene carrier, Virology 387, 89–97.

    Article  PubMed  CAS  Google Scholar 

  112. Yang, Y., Lo, S.-L., Yang, J., Yang, J., Goh, S. S. L., Wu, C., et al. (2009) Polyethylenimine coating to produce serum-resistant baculoviral vectors for in vivo gene delivery, Biomaterials 30, 5767–5774.

    Article  PubMed  CAS  Google Scholar 

  113. Airenne, K. J., Hiltunen, M. O., Turunen, M. P., Turunen, A. M., Laitinen, O. H., Kulomaa, M. S., et al. (2000) Baculovirus-mediated periadventitial gene transfer to rabbit carotid artery, Gene Ther. 7, 1499–1504.

    Article  PubMed  CAS  Google Scholar 

  114. Hoare, J., Waddington, S., Thomas, H. C., Coutelle, C., and McGarvey, M. J. (2005) Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice, J. Gene Med. 7, 325–333.

    Article  PubMed  CAS  Google Scholar 

  115. Huser, A., Rudolph, M., and Hofmann, C. (2001) Incorporation of decay-accelerating factor into the baculovirus envelope generates complement-resistant gene transfer vectors, Nat. Biotechnol. 19, 451–455.

    Article  PubMed  CAS  Google Scholar 

  116. Lehtolainen, P., Tyynela, K., Kannasto, J., Airenne, K. J., and Yla-Herttuala, S. (2002) Baculoviruses exhibit restricted cell type specificity in rat brain: a comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo, Gene Ther. 9, 1693–1699.

    Article  PubMed  CAS  Google Scholar 

  117. Wang, C. Y., and Wang, S. (2005) Adeno-associated virus inverted terminal repeats improve neuronal transgene expression mediated by baculoviral vectors in rat brain, Hum. Gene Ther. 16, 1219–1226.

    Article  PubMed  CAS  Google Scholar 

  118. Pieroni, L., Maione, D., and La Monica, N. (2001) In vivo gene transfer in mouse skeletal muscle mediated by baculovirus vectors, Hum. Gene Ther. 12, 871–881.

    Article  PubMed  CAS  Google Scholar 

  119. Baron, S. (1996) Medical Microbiology, 4th ed., The University of Texas Medical Branch at Galveston.

    Google Scholar 

  120. Kufe, D. W., Frei III, E., Holland, J. F., Weichselbaum, R. R., Pollock, R. E., Bast, R. C., et al. (2006) Cancer Medicine, 7th ed., BC Decker, Columbia.

    Google Scholar 

  121. Casper, D., Engstrom, S. J., Mirchandani, G. R., Pidel, A., Palencia, D., Cho, P. H., et al. (2002) Enhanced vascularization and survival of neural transplants with ex vivo angiogenic gene transfer, Cell Transplant. 11, 331–349.

    PubMed  Google Scholar 

  122. Mackett, M., Smith, G. L., and Moss, B. (1982) Vaccinia virus: a selectable eukaryotic cloning and expression vector, Proc. Natl. Acad. Sci. USA 79, 7415–7419.

    Article  PubMed  CAS  Google Scholar 

  123. Panicali, D., and Paoletti, E. (1982) Construction of poxviruses as cloning vectors: insertion of the thymidine kinase gene from herpes simplex virus into the DNA of infectious vaccinia virus, Proc. Natl. Acad. Sci. USA 79, 4927–4931.

    Article  PubMed  CAS  Google Scholar 

  124. Gomez, C. E., Najera, J. L., Krupa, M., and Esteban, M. (2008) The poxvirus vectors MVA and NYVAC as gene delivery systems for vaccination against infectious diseases and cancer, Curr. Gene Ther. 8, 97–120.

    Article  PubMed  CAS  Google Scholar 

  125. Tartaglia, J., Perkus, M. E., Taylor, J., Norton, E. K., Audonnet, J. C., Cox, W. I., et al. (1992) NYVAC: a highly attenuated strain of vaccinia virus, Virology 188, 217–232.

    Article  PubMed  CAS  Google Scholar 

  126. Moss, B. (2006) Poxvirus entry and membrane fusion, Virology 344, 48–54.

    Article  PubMed  CAS  Google Scholar 

  127. Antoine, G., Scheiflinger, F., Dorner, F., and Falkner, F. G. (1998) The complete genomic sequence of the modified vaccinia Ankara strain: comparison with other orthopoxviruses, Virology 244, 365–396.

    Article  PubMed  CAS  Google Scholar 

  128. Upton, C., Slack, S., Hunter, A. L., Ehlers, A., and Roper, R. L. (2003) Poxvirus orthologous clusters: toward defining the minimum essential poxvirus genome, J. Virol. 77, 7590–7600.

    Google Scholar 

  129. Tolonen, N., Doglio, L., Schleich, S., and Krijnse Locker, J. (2001) Vaccinia virus DNA replication occurs in endoplasmic reticulum-enclosed cytoplasmic mini-nuclei, Mol. Biol. Cell. 12, 2031–2046.

    PubMed  CAS  Google Scholar 

  130. Moss, B. (2001) Poxviridae: the viruses and their replication, in Fields Virology 4th ed., pp 2849-2883, Lippincott/The Williams & Wilkins Co, Philadelphia.

    Google Scholar 

  131. Fauci, A. S. (2001) Infectious diseases: considerations for the 21st century, Clin. Infect. Dis. 32, 675–685.

    Article  PubMed  CAS  Google Scholar 

  132. Morens, D. M., Folkers, G. K., and Fauci, A. S. (2004) The challenge of emerging and re-emerging infectious diseases, Nature 430, 242–249.

    Article  PubMed  CAS  Google Scholar 

  133. Sutter, G., and Staib, C. (2003) Vaccinia vectors as candidate vaccines: the development of modified vaccinia virus Ankara for antigen delivery, Curr. Drug Targets Infect. Disord. 3, 263–271.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Al-Rubeai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC 2011

About this protocol

Cite this protocol

Warnock, J.N., Daigre, C., Al-Rubeai, M. (2011). Introduction to Viral Vectors. In: Merten, OW., Al-Rubeai, M. (eds) Viral Vectors for Gene Therapy. Methods in Molecular Biology, vol 737. Humana Press. https://doi.org/10.1007/978-1-61779-095-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-095-9_1

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-094-2

  • Online ISBN: 978-1-61779-095-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics