Skip to main content

Minimizing Preanalytical Variation of Plasma Samples by Proper Blood Collection and Handling

  • Protocol
  • First Online:
Serum/Plasma Proteomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 728))

Abstract

Blood samples collected for proteome studies are subject to a variety of preanalytical instability, among which intrinsic proteolysis activities cause a broad spectrum of protein and peptide degradation. This chapter describes two MALDI MS-based methods for plasma peptidomic analyses; a direct MALDI-TOF MS and an LC MALDI-TOF MS. Using these methods, we compared peptides and their time-dependent changes in traditional serum, four plasma samples with different anticoagulants and additives: EDTA-based, citrate-based, or heparin-based, and EDTA-based with protease inhibitors. For minimizing plasma sample instability and preanalytical variation, we suggest using an optimized blood collection device, minimizing the dwell time during blood collection and handling, controlling centrifugation and handling at room temperature, and saving plasma samples for use at most one freeze/thaw cycle. We have optimized our protocol to achieve reproducibility in peptidomic analyses of plasma samples using MALDI-TOF MS by minimizing preanalytical and analytical variability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Omenn, G. S. (2004) Advancement of biomarker discovery and validation through the HUPO plasma proteome project, Disease Markers 20, 131–134.

    PubMed  Google Scholar 

  2. Anderson, N. L., Anderson, N. G. (2002) The human plasma proteome-History, character, and diagnostics preospects, Mol. Cell. Proteomics 1, 845–867.

    Article  PubMed  CAS  Google Scholar 

  3. Yi, J., Kim, C., and Gelfand, C. A. (2007) Inhibition of intrinsic proteolytic activities moderates preanalytical variability and instability of human plasma, J Proteome Res 6, 1768–1781.

    Article  PubMed  CAS  Google Scholar 

  4. Rai, A. J., Gelfand, C. A., Haywood, B. C. et al. (2005) HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples, Proteomics 5, 3262–3277.

    Article  PubMed  CAS  Google Scholar 

  5. West-Nielsen, M., Høgdall, E. V., Marchiori, E., et al. (2005) Sample Handling for Mass Spectrometric Proteomic Investigations of Human Sera, Analy Chem 77, 5114–5123.

    Article  CAS  Google Scholar 

  6. Bowen, R. A. , Hotin, G., Csako, G., et al. (2010) Impact of blood collection devices on clinical chemistry assays., Clin Biochem, 43, 4–25.

    Article  PubMed  CAS  Google Scholar 

  7. Yi, J., Liu, Z., Craft, D., et al. (2008) Intrinsic peptidase activity causes a sequential multi-step reaction (SMSR) in digestion of human plasma peptides, J Proteome Res 7, 5112–5118.

    Article  PubMed  CAS  Google Scholar 

  8. Findeisen, P., Peccerella, T., Post, S,, et al. (2008) Spiking of serum specimens with exogenous reporter peptides for mass spectrometry based protease profiling as diagnostic tool, Rapid Commun Mass Spectrom 22, 1223–1230.

    Article  PubMed  CAS  Google Scholar 

  9. Villanueva, J, Nazarian, A., Lawlor, K., Yi, S. S., Robbins, R. J., Tempst, P. (2008) A sequence-specific exopeptidase activity test (SSEAT) for “functional” biomarker discovery, Mol Cell Proteomics 7, 509–518.

    PubMed  CAS  Google Scholar 

  10. Petricoin, E. F., Belluco, C., Araujo, R. P., and Liotta, L. A. (2006) The blood peptidome: a higher dimension of information content for cancer biomarker discovery, Nature Reviews. Cancer 6, 961–967.

    Article  PubMed  CAS  Google Scholar 

  11. Villanueva, J., Shaffer, D. R., Philip, J. et al. (2006) Differential exoprotease activities confer tumor-specific serum peptidome patterns, Journal of Clinical Investigation 116, 271–284.

    Article  PubMed  CAS  Google Scholar 

  12. Bensalah, K, Lotan, Y., Karam, J. A., Shariat, S. F. (2008) New circulating biomarkers for prostate cancer, Prostate Cancer Prostatic Dis 11, 112–121.

    Article  PubMed  CAS  Google Scholar 

  13. Bierhaus, A., and Nawroth, P. P. (2005) Posttranslational modification of lipoproteins – A fatal attraction in metabolic disease?: Commentary on: Hone et al., Alzheimer’s disease amyloid-beta peptide modulates apolipoprotein E isoform specific receptor binding, Journal of Alzheimer’s Disease 7, 315–317.

    Google Scholar 

  14. Elbatarny, H. S., Netherton, S. J., Ovens, J. D., Ferguson, A. V., and Maurice, D. H. (2007) Adiponectin, ghrelin, and leptin differentially influence human platelet and human vascular endothelial cell functions: implication in obesity-associated cardiovascular diseases, Eur J Pharmacol 558, 7–13.

    Article  PubMed  CAS  Google Scholar 

  15. Lorenzo, O., Martín-Ventura, J. L., Blanco-Colio, L. M., et al. (2009) The proteomic approach in the development of prognostic biomarkers in atherothrombosis. Recent Pat Cardiovasc Drug Discov 4, 25-31.

    Article  PubMed  CAS  Google Scholar 

  16. Fu, Q, Van Eyk, J. E. (2006) Proteomics and heart disease: identifying biomarkers of clinical utility. Expert Rev Proteomics 3, 237–250.

    Article  PubMed  CAS  Google Scholar 

  17. Mitchell, B. L., Yasui, Y., Li, C. I., et al. (2005) Impact of Freeze-thaw Cycles and Storage Time on Plasma Samples Used in Mass Spectrometry Based Biomarker Discovery Projects, Cancer Informatics 1, 98–104.

    PubMed  CAS  Google Scholar 

  18. Hsieh, S.-Y., Chen, R.-K., Pan, Y.-H., and Lee, H.-L. (2006) Systematical evaluation of the effects of sample collection procedures on low-molecular-weight serum/plasma proteome profiling, Proteomics 6, 3189–3198.

    Article  PubMed  CAS  Google Scholar 

  19. Craft, D., Yi, J., and Gelfand, C. A. (2009) Time-Dependent and Sample-to-Sample Variations in Human Plasma Peptidome are Both Minimized Through Use of Protease Inhibitors, Analytical Letters 42, 1398–1406.

    Article  CAS  Google Scholar 

  20. Yi, J, Liu, Z. X., Gelfand C. A, Craft, D. (2011) Investigation of Peptide Biomarker Stability in Plasma Sample using Time-course MS Analysis, Ed. Simpson Richard J, Greening David, Serum/Plasma Proteomics: Method and Protocols. Humana Press.

    Google Scholar 

  21. O’Mullan, P., Craft, D., Yi, J., and Gelfand, C. A. (2009) Thrombin induces broad spectrum proteolysis in human serum samples, Clin Chem Lab Med. 47 , 685–697.

    Google Scholar 

  22. Tammen, H., Schulte, I., Hess, R. et al. (2005) Peptidomic analysis of human blood specimens: comparison between plasma specimens and serum by differential peptide display, Proteomics 5, 3414–3422.

    Article  PubMed  CAS  Google Scholar 

  23. Guder W G, N. S., Wilsser H, Zawta B. (1996) Samples: From the Patient to the Laboratory GIT VERLAG.

    Google Scholar 

  24. Slichter, S. J. (1978) Preservation of platelet viability and function during storage of concentrates., Prog Clin Biol Res 28, 83–101.

    PubMed  CAS  Google Scholar 

  25. Ayukawa, O., Nakamura, K., Kariyazono, H. et al. (2009) Enhanced platelet responsiveness due to chilling and its relation to CD40 ligand level and platelet-leukocyte aggregate formation, Blood Coagul Fibrinolysis 20, 176–185.

    Article  PubMed  CAS  Google Scholar 

  26. Gulliksson, H., van der Meer, P. F. (2009) Storage of whole blood overnight in different blood bags preceding preparation of blood components: in vitro effects on red blood cells., Blood Transfus 7, 210–235.

    PubMed  Google Scholar 

  27. Rossignol, P., Cambillau, M. l., Bissery, A. et al. (2008) Influence of blood sampling procedure on plasma concentrations of matrix metalloproteinases and their tissue inhibitors. Clinical & Experimental Pharmacology & Physiology 35, 464–469.

    Google Scholar 

Download references

Acknowledgment

The authors appreciate the stimulation and encouragement from James Down and Robert Pierce, the critical discussions from Patrick O’Mullan, David Warunek, Bruce Haywood, and Maria Saluta, and support from Lisa Gevirtz and Lena Khumush.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jizu Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Yi, J., Craft, D., Gelfand, C.A. (2011). Minimizing Preanalytical Variation of Plasma Samples by Proper Blood Collection and Handling. In: Simpson, R., Greening, D. (eds) Serum/Plasma Proteomics. Methods in Molecular Biology, vol 728. Humana Press. https://doi.org/10.1007/978-1-61779-068-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-61779-068-3_8

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-61779-067-6

  • Online ISBN: 978-1-61779-068-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics