Skip to main content

Ex Vivo Generation of Regulatory T Cells: Characterization and Therapeutic Evaluation in a Model of Chronic Colitis

  • Protocol
  • First Online:
Suppression and Regulation of Immune Responses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 677))

Abstract

Naturally occurring regulatory T cells (nTregs; CD4+CD25+Foxp3+) are capable of suppressing the chronic inflammation observed in a variety of different animal models of autoimmune and chronic inflammatory diseases such as inflammatory bowel diseases, diabetes, and arthritis. A major limitation in exploring how and where nTregs exert their suppression in vivo is the relative paucity of these regulatory cells. Although several laboratories have described different methods to expand flow-purified nTregs or convert conventional/naïve T cells (CD4+Foxp3) to Foxp3-expressing “induced” Tregs (iTregs; CD4+Foxp3+) ex vivo, we have found that many of these approaches are encumbered with their own limitations. Therefore, we sought to develop a relatively simple ex vivo method to generate large numbers of Foxp3-expressing iTregs that can be used to evaluate their trafficking properties, suppressive activity, and therapeutic efficacy in a mouse model of chronic gut inflammation in vivo. We present a detailed protocol demonstrating that polyclonal activation of conventional CD4+ T cells in the presence of IL-2, TGFβ, and all trans retinoic acid induces >90% conversion of these T cells to Foxp3-expressing iTregs as well as promotes a three- to fourfold increase in proliferation following a 4-day incubation period in vitro. This protocol enhances modestly the surface expression of the gut-homing adhesion molecule CCR9 but not α4β7. Furthermore, we provide preliminary data demonstrating that these iTregs are significantly more potent at suppressing T-cell activation in vitro and are equally effective as freshly isolated nTregs at attenuating chronic colitis in vivo. Finally, we report that this protocol has the potential to generate 30–40 million iTregs from one healthy mouse spleen.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakaguchi, S. et al. (2006) Foxp3+ CD25+ CD4+ natural regulatory T cells in dominant self-tolerance and autoimmune disease. Immunol. Rev. 212, 8–27.

    Article  PubMed  CAS  Google Scholar 

  2. Scheffold, A., Murphy, K.M. & Hofer, T. (2007) Competition for cytokines: T(reg) cells take all. Nat. Immunol. 8, 1285–1287.

    Article  PubMed  CAS  Google Scholar 

  3. Uhlig, H.H. et al. (2006) Characterization of Foxp3+CD4+CD25+ and IL-10-secreting CD4+CD25+ T cells during cure of colitis. J. Immunol. 177, 5852–5860.

    PubMed  CAS  Google Scholar 

  4. Vignali, D.A., Collison, L.W. & Workman, C.J. (2008) How regulatory T cells work. Nat. Rev. Immunol. 8, 523–532.

    Article  PubMed  CAS  Google Scholar 

  5. Earle, K.E. et al. (2005) In vitro expanded human CD4+CD25+ regulatory T cells suppress effector T cell proliferation. Clin. Immunol. 115, 3–9.

    Article  PubMed  CAS  Google Scholar 

  6. Tang, Q. et al. (2004) In vitro-expanded antigen-specific regulatory T cells suppress autoimmune diabetes. J. Exp. Med. 199, 1455–1465.

    Article  PubMed  CAS  Google Scholar 

  7. Battaglia, M., Stabilini, A. & Roncarolo, M.G. (2005) Rapamycin selectively expands CD4+CD25+FoxP3+ regulatory T cells. Blood 105, 4743–4748.

    Article  PubMed  CAS  Google Scholar 

  8. Taylor, P.A., Lees, C.J. & Blazar, B.R. (2002) The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 99, 3493–3499.

    Article  PubMed  CAS  Google Scholar 

  9. Chen, W. et al. (2003) Conversion of peripheral CD4+. J. Exp. Med. 198, 1875–1886.

    Article  PubMed  CAS  Google Scholar 

  10. Benson, M.J., Pino-Lagos, K., Rosemblatt, M. & Noelle, R.J. (2007) All-trans retinoic acid mediates enhanced T reg cell growth, differentiation, and gut homing in the face of high levels of co-stimulation. J. Exp. Med. 204, 1765–1774.

    Article  PubMed  CAS  Google Scholar 

  11. Fantini, M.C., Dominitzki, S., Rizzo, A., Neurath, M.F. & Becker, C. (2007) In vitro generation of CD4+ CD25+ regulatory cells from murine naive T cells. Nat. Protoc. 2, 1789–1794.

    Article  PubMed  CAS  Google Scholar 

  12. Kang, S.G., Lim, H.W., Andrisani, O.M., Broxmeyer, H.E. & Kim, C.H. (2007) Vitamin A metabolites induce gut-homing FoxP3+ regulatory T cells. J. Immunol. 179, 3724–3733.

    PubMed  CAS  Google Scholar 

  13. Mucida, D. et al. (2007) Reciprocal TH17 and regulatory T cell differentiation mediated by retinoic acid. Science 317, 256–260.

    Article  PubMed  CAS  Google Scholar 

  14. Fontenot, J.D. et al. (2005) Regulatory T cell lineage specification by the forkhead transcription factor foxp3. Immunity 22, 329–341.

    Article  PubMed  CAS  Google Scholar 

  15. Zheng, S.G., Wang, J.H., Wang, P., Gray, J.D. & Horwitz, D.A. (2007) IL-2 is essential for TGF-beta to convert naive CD4(+)CD25(−) cells to CD25(+)Foxp3(+) regulatory T cells and for expansion of these cells. J. Immunol. 178, 2018–2027.

    PubMed  CAS  Google Scholar 

  16. Sun, C.M. et al. (2007) Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J. Exp. Med. 204, 1775–1785.

    Article  PubMed  CAS  Google Scholar 

  17. Hill, J.A. et al. (2008) Retinoic acid enhances Foxp3 induction indirectly by relieving inhibition from CD4+CD44hi Cells. Immunity 29, 758–770.

    Article  PubMed  CAS  Google Scholar 

  18. Mucida, D. et al. (2009) Retinoic acid can directly promote TGF-beta-mediated Foxp3(+) Treg cell conversion of naive T cells. Immunity 30, 471–472.

    Article  PubMed  CAS  Google Scholar 

  19. Thornton, A.M. & Shevach, E.M. (1998) CD4+CD25+ immunoregulatory T cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 production. J. Exp. Med. 188, 287–296.

    Article  PubMed  CAS  Google Scholar 

  20. Ostanin, D.V. et al. (2009) T cell transfer model of chronic colitis: concepts, considerations, and tricks of the trade. Am. J. Physiol. Gastrointest. Liver Physiol. 296, G135–G146.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Humana Press

About this protocol

Cite this protocol

Karlsson, F., Robinson-Jackson, S.A., Gray, L., Zhang, S., Grisham, M.B. (2010). Ex Vivo Generation of Regulatory T Cells: Characterization and Therapeutic Evaluation in a Model of Chronic Colitis. In: Cuturi, M., Anegon, I. (eds) Suppression and Regulation of Immune Responses. Methods in Molecular Biology, vol 677. Humana Press, Totowa, NJ. https://doi.org/10.1007/978-1-60761-869-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-869-0_4

  • Published:

  • Publisher Name: Humana Press, Totowa, NJ

  • Print ISBN: 978-1-60761-868-3

  • Online ISBN: 978-1-60761-869-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics