Skip to main content

Glucose Transporters in Parasitic Protozoa

  • Protocol
  • First Online:
Membrane Transporters in Drug Discovery and Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 637))

Abstract

Glucose and related hexoses play central roles in the biochemistry and metabolism of single-cell parasites such as Leishmania, Trypanosoma, and Plasmodium that are the causative agents of leishmaniasis, African sleeping sickness, and malaria. Glucose transporters and the genes that encode them have been identified in each of these parasites and their functional properties have been scrutinized. These transporters are related in sequence and structure to mammalian facilitative glucose transporters of the SLC2 family, but they are nonetheless quite divergent in sequence. Hexose transporters have been shown to be essential for the viability of the infectious stage of each of these parasites and thus may represent targets for development of novel anti-parasitic drugs. The study of these transporters also illuminates many aspects of the basic biology of Leishmania, trypanosomes, and malaria parasites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Stuart, K., Brun, R., Croft, S., Fairlamb, A., Gurtler, R.E., McKerrow, J., Reed, S., and Tarleton, R. (2008) Kinetoplastids: related protozoan pathogens, different diseases. J. Clin. Invest. 118, 1301–1310.

    Article  CAS  PubMed  Google Scholar 

  2. Schlein, Y. (1986) Sandfly diet and Leishmania. Parasitol. Today 2, 175–177.

    Article  CAS  PubMed  Google Scholar 

  3. Burchmore, R.J. and Barrett, M.P. (2001) Life in vacuoles – nutrient acquisition by Leishmania amastigotes. Int. J. Parasitol. 31, 1311–1320.

    Article  CAS  PubMed  Google Scholar 

  4. McConville, M.J., de Souza, D., Saunders, E., Likic, V.A., and Naderer, T. (2007) Living in a phagolysosome; metabolism of Leishmania amastigotes. Trends Parasitol. 23, 368–375.

    Article  CAS  PubMed  Google Scholar 

  5. Naderer, T. and McConville, M.J. (2008) The Leishmania–macrophage interaction: a metabolic perspective. Cell Microbiol. 10, 301–308.

    Article  CAS  PubMed  Google Scholar 

  6. Burchmore, R.J.S. and Landfear, S.M. (1998) Differential regulation of multiple glucose transporter genes in the parasitic protozoan Leishmania mexicana. J. Biol. Chem. 273, 29118–29126.

    Article  CAS  PubMed  Google Scholar 

  7. Rodriguez-Contreras, D., Feng, X., Keeney, K.M., Bouwer, H.G., and Landfear, S.M. (2007) Phenotypic characterization of a glucose transporter null mutant in Leishmania mexicana. Mol. Biochem. Parasitol. 153, 9–18.

    Article  CAS  PubMed  Google Scholar 

  8. Manolescu, A.R., Witkowska, K., Kinnaird, A., Cessford, T., and Cheeseman, C. (2007) Facilitated hexose transporters: new perspectives on form and function. Physiology (Bethesda) 22, 234–240.

    CAS  Google Scholar 

  9. Ter Kuile, B.H. (1993) Glucose and proline transport in kinetoplastids. Parasitol. Today 9, 206–210.

    Article  Google Scholar 

  10. Ter Kuile, B.H. (1994) Membrane-related processes and overall energy metabolism in Trypanosoma brucei and other kinetoplastid species. J. Bioenerg. Biomembr. 26, 167–172.

    Article  PubMed  Google Scholar 

  11. Zilberstein, D. and Dwyer, D. (1984) Glucose transport in Leishmania donovani promastigotes. Mol. Biochem. Parasitol. 12, 327–336.

    Article  CAS  PubMed  Google Scholar 

  12. Zilberstein, D. and Dwyer, D. (1985) Proton force-driven active transport of D-glucose and L-proline in the protozoan parasite Leishmania donovani. Proc. Natl. Acad. Sci. USA 82, 1716–1720.

    Article  CAS  PubMed  Google Scholar 

  13. Burchmore, R.J.S. and Hart, D.T. (1995) Glucose transport in promastigotes and amastigotes of Leishmania mexicana: characterization and comparison with host glucose transporters. Mol. Biochem. Parasitol. 74, 77–86.

    Article  CAS  PubMed  Google Scholar 

  14. Mukherjee, T., Mandal, D., and Bhaduri, A. (2001) Leishmania plasma membrane Mg+2 ATPase is a H+/K+-antiporter involved in glucose symport. J. Biol. Chem. 276, 5563–5569.

    Article  CAS  PubMed  Google Scholar 

  15. Langford, C.K., Kavanaugh, M.P., Stenberg, P.E., Drew, M.E., Zhang, W., and Landfear, S.M. (1995) Functional expression and subcellular localization of a high-Km hexose transporter from Leishmania donovani. Biochemistry 34, 11814–11821.

    Article  CAS  PubMed  Google Scholar 

  16. Drew, M.E., Langford, C.K., Klamo, E.M., Russell, D.G., Kavanaugh, M.P., and Landfear, S.M. (1995) Functional expression of a myo-inositol/H+ symporter from Leishmania donovani. Mol. Cell. Biol. 15, 5508–5515.

    CAS  PubMed  Google Scholar 

  17. Hart, D.T. and Coombs, G.H. (1982) Leishmania mexicana: energy metabolism of amastigotes and promastigotes. Exp. Parasitol. 54, 397–409.

    Article  CAS  PubMed  Google Scholar 

  18. Rainey, P.M. and MacKenzie, N.E. (1991) A carbon-13 nuclear magnetic resonance analysis of the products of glucose metabolism in Leishmania pifano amastigotes and promastigotes. Mol. Biochem. Parasitol. 45, 307–316.

    Article  CAS  PubMed  Google Scholar 

  19. Nasser, M.I.A. and Landfear, S.M. (2004) Sequences required for the flagellar targeting of an integral membrane protein. Mol. Biochem. Parasitol. 135, 89–100.

    Article  CAS  PubMed  Google Scholar 

  20. Landfear, S.M. and Ignatushchenko, M. (2001) The flagellum and flagellar pocket of trypanosomatids. Mol. Biochem. Parasitol. 115, 1–17.

    Article  CAS  PubMed  Google Scholar 

  21. Johnston, M. and Kim, J.H. (2005) Glucose as a hormone: receptor-mediated glucose sensing in the yeast Saccharomyces cerevisiae. Biochem. Soc. Trans. 33, 247–252.

    Article  CAS  PubMed  Google Scholar 

  22. Burchmore, R.J.S., Rodriguez-Contreras, D., McBride, K., Merkel, P., Barrett, M.P., Modi, G., Sacks, D.L., and Landfear, S.M. (2003) Genetic characterization of glucose transporter function in Leishmania mexicana. Proc. Natl. Acad. Sci. USA 100, 3901–3906.

    Article  CAS  PubMed  Google Scholar 

  23. Feng, X., Rodriguez-Contreras, D., Buffalo, C., Bouwer, A., Kruvand, E., Beverley, S.M., and Landfear, S.M. (2009) Amplification of an alternate transporter gene suppresses the avirulent phenotype of glucose transporter null mutants in Leishmania mexicana. Mol. Microbiol. 71: 369–381.

    Google Scholar 

  24. Naderer, T., Ellis, M.I., Sernee, M.F., De Souza, D.P., Curtis, J., Handman, E., and McConville, M.J. (2006) Virulence of Leishmania major in macrophages and mice requires the gluconeogenic enzyme fructose-1,6-bisphosphatase. Proc. Natl. Acad. Sci. U.S.A. 103, 5502–5507.

    Article  CAS  PubMed  Google Scholar 

  25. Rodriguez-Contreras, D. and Landfear, S.M. (2006) Metabolic changes in glucose transporter-deficient Leishmania mexicana and parasite virulence. J. Biol. Chem. 281, 20068–20076.

    Article  CAS  PubMed  Google Scholar 

  26. Ralton, J.E., Naderer, T., Piraino, H.L., Bashtannyk, T.A., Callaghan, J.M., and McConville, M.J. (2003) Evidence that intracellular {beta}1-2 mannan is a virulence vector in Leishmania parasites. J. Biol. Chem. 278, 40757–40763.

    Article  CAS  PubMed  Google Scholar 

  27. Beverley, S.M. (1991) Gene amplification in Leishmania. Annu. Rev. Microbiol. 45, 417–444.

    Article  CAS  PubMed  Google Scholar 

  28. Bringaud, F. and Baltz, T. (1992) A potential hexose transporter gene expressed predominantly in the bloodstream form of Trypanosoma brucei. Mol. Biochem. Parasitol. 52, 111–122.

    Article  CAS  PubMed  Google Scholar 

  29. Woodrow, C.J., Penny, J.I., and Krishna, S. (1999) Intraerythrocytic Plasmodium falciparum expresses a high affinity facilitative hexose transporter. J. Biol. Chem. 274, 7272–7277.

    Article  CAS  PubMed  Google Scholar 

  30. Mueckler, M., Caruso, C., Baldwin, S.A., Panico, M., Blench, I., Morris, H.R., Allard, W.J., Lienhard, G.E., and Lodish, H.F. (1985) Sequence and structure of a human glucose transporter. Science 229, 941–945.

    Article  CAS  PubMed  Google Scholar 

  31. Feistel, T., Hodson, C.A., Peyton, D.H., and Landfear, S.M. (2008) An expression system to screen for inhibitors of parasite glucose transporters. Mol. Biochem. Parasitol. 162, 71–76.

    Article  CAS  PubMed  Google Scholar 

  32. Joet, T., Eckstein-Ludwig, U., Morin, C., and Krishna, S. (2003) Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc. Natl. Acad. Sci. USA 100, 7476–7479.

    Article  CAS  PubMed  Google Scholar 

  33. Ionita, M., Krishna, S., Leo, P.M., Morin, C., and Patel, A.P. (2007) Interaction of O-(undec-10-en)-yl-d-glucose derivatives with the Plasmodium falciparum hexose transporter (PfHT). Bioorg. Med. Chem. Lett. 17, 4934–4937.

    Article  CAS  PubMed  Google Scholar 

  34. Ter Kuile, B.H. and Opperdoes, F.R. (1991) Glucose uptake by Trypanosoma brucei. J. Biol. Chem. 266, 857–862.

    PubMed  Google Scholar 

  35. Ter Kuile, B.H. (1991) Glucose uptake mechanisms as potential targets for drugs against trypanosomatids. In Biochemical Protozoology (Coombs, G.H. and North, M., eds.). Taylor and Francis, London and Washington, pp 635.

    Google Scholar 

  36. Bakker, B.M., Westerhoff, H.V., Opperdoes, F.R., and Michels, P.A. (2000) Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol. Biochem. Parasitol. 106, 1–10.

    Article  CAS  PubMed  Google Scholar 

  37. Bayele, H.K. (2001) Triazinyl derivatives that are potent inhibitors of glucose transport in Trypanosoma brucei. Parasitol. Res. 87, 911–914.

    CAS  PubMed  Google Scholar 

  38. Azema, L., Claustre, S., Alric, I., Blonski, C., Willson, M., Perie, J., Baltz, T., Tetaud, E., Bringaud, F., Cottem, D., Opperdoes, F.R., and Barrett, M.P. (2004) Interaction of substituted hexose analogues with the Trypanosoma brucei hexose transporter. Biochem. Pharmacol. 67, 459–467.

    Article  CAS  PubMed  Google Scholar 

  39. Eisenthal, R., Game, S., and Holman, G.D. (1988) Specificity of hexose transport in Trypanosoma brucei. Biochim. Biophys. Acta. 985, 81–89.

    Google Scholar 

  40. Munoz-Antonia, T., Richards, F.F., and Ullu, E. (1991) Differences in glucose transport between bloodstream and procyclic forms of Trypanosoma brucei rhodesiense. Mol. Biochem. Parasitol. 47, 73–82.

    Article  CAS  PubMed  Google Scholar 

  41. Seyfang, A. and Duszenko, M. (1991) Specificity of glucose transport in Trypanosoma brucei: effective inhibition by phloretin and cytochalasin B. Eur. J. Biochem. 202, 191–196.

    Article  CAS  PubMed  Google Scholar 

  42. Parsons, M. and Nielsen, B. (1990) Active transport of 2-deoxy-D-glucose in Trypanosoma brucei. Mol. Biochem. Parasitol. 42, 197–204.

    Article  CAS  PubMed  Google Scholar 

  43. Bringaud, F. and Baltz, T. (1993) Differential regulation of two distinct families of glucose transporter genes in Trypanosoma brucei. Mol. Cell. Biol. 13, 1146–1154.

    CAS  PubMed  Google Scholar 

  44. Barrett, M.P., Tetaud, E., Seyfang, A., Brignaud, F., and Baltz, T. (1998) Trypanosome glucose transporters. Mol. Biochem. Parasitol. 91, 195–205.

    Article  CAS  PubMed  Google Scholar 

  45. Barrett, M.P., Tetaud, E., Seyfang, A., Bringaud, F., and Baltz, T. (1995) Functional expression and characterization of the Trypanosoma brucei procyclic glucose transporter, THT2. Biochem. J. 312, 687–691.

    CAS  PubMed  Google Scholar 

  46. Winzeler, E.A. (2008) Malaria research in the post-genomic era. Nature 455, 751–756.

    Article  CAS  PubMed  Google Scholar 

  47. Sherman, I.W. (1979) Biochemistry of Plasmodium (malarial parasites), Microbiol. Rev. 43, 453–495.

    CAS  PubMed  Google Scholar 

  48. Roth, E.F., Jr. (1987) Malarial parasite hexokinase and hexokinase-dependent glutathione reduction in the Plasmodium falciparum-infected human erythrocyte. J. Biol. Chem. 262, 15678–15682.

    CAS  PubMed  Google Scholar 

  49. Sherman, I.W. (1988) The Wellcome Trust lecture. Mechanisms of molecular trafficking in malaria. Parasitology (96 Suppl), S57–S81.

    Google Scholar 

  50. Tanabe, K. (1990) Glucose transport in malaria infected erythrocytes. Parasitol. Today 6, 225–229.

    Article  CAS  PubMed  Google Scholar 

  51. Kirk, K. and Saliba, K.J. (2007) Targeting nutrient uptake mechanisms in Plasmodium. Curr. Drug. Targets 8, 75–88.

    Article  CAS  PubMed  Google Scholar 

  52. Becker, K. and Kirk, K. (2004) Of malaria, metabolism and membrane transport. Trends Parasitol. 20, 590–596.

    Article  CAS  PubMed  Google Scholar 

  53. Staines, H.M., Alkhalil, A., Allen, R.J., De Jonge, H.R., Derbyshire, E., Egee, S., Ginsburg, H., Hill, D.A., Huber, S.M., Kirk, K., Lang, F., Lisk, G., Oteng, E., Pillai, A.D., Rayavara, K., Rouhani, S., Saliba, K.J., Shen, C., Solomon, T., Thomas, S.L., Verloo, P., and Desai, S.A. (2007) Electrophysiological studies of malaria parasite-infected erythrocytes: current status. Int. J. Parasitol. 37, 475–482.

    Article  CAS  PubMed  Google Scholar 

  54. Desai, S.A., Krogstad, D.J., and McCleskey, E.W. (1993) A nutrient-permeable channel on the intraerythrocytic malaria parasite. Nature 362, 643–646.

    Article  CAS  PubMed  Google Scholar 

  55. Izumo, A., Tanabe, K., Kato, M., Doi, S., Maekawa, K., and Takada, S. (1989) Transport processes of 2-deoxy-D-glucose in erythrocytes infected with Plasmodium yoelii, a rodent malaria parasite. Parasitology 98 (Pt 3), 371–379.

    Article  CAS  PubMed  Google Scholar 

  56. Kirk, K., Horner, H.A., and Kirk, J. (1996) Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol. Biochem. Parasitol. 82, 195–205.

    Article  CAS  PubMed  Google Scholar 

  57. Goodyer, I.D., Hayes, D.J., and Eisenthal, R. (1997) Efflux of 6-deoxy-D-glucose from Plasmodium falciparum-infected erythrocytes via two saturable carriers. Mol. Biochem. Parasitol. 84, 229–239.

    Article  CAS  PubMed  Google Scholar 

  58. Penny, J.I., Hall, S.T., Woodrow, C.J., Cowan, G.M., Gero, A.M., and Krishna, S. (1998) Expression of substrate-specific transporters encoded by Plasmodium falciparum in Xenopus laevis oocytes. Mol. Biochem. Parasitol. 93, 81–89.

    Article  CAS  PubMed  Google Scholar 

  59. Woodrow, C.J., Burchmore, R.J., and Krishna, S. (2000) Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 97, 9931–9936.

    Article  CAS  PubMed  Google Scholar 

  60. Martin, R.E., Henry, R.I., Abbey, J.L., Clements, J.D., and Kirk, K. (2005) The ‘permeome’ of the malaria parasite: an overview of the membrane transport proteins of Plasmodium falciparum. Genome Biol. 6, R26.

    Google Scholar 

  61. Seyfang, A. and Landfear, S.M. (1999) Substrate depletion upregulates uptake of myo-inositol, glucose and adenosine in Leishmania. Mol. Biochem. Parasitol. 104, 121–130.

    Article  CAS  PubMed  Google Scholar 

  62. Nugent, P.G., Karsani, S.A., Wait, R., Tempero, J., and Smith, D.F. (2004) Proteomic analysis of Leishmania mexicana differentiation. Mol. Biochem. Parasitol. 136, 51–62.

    Article  CAS  PubMed  Google Scholar 

  63. Landfear, S.M. (2008) Drugs and transporters in kinetoplastid protozoa. Adv. Exp. Med. Biol. 625, 22–32.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Richard Burchmore for communicating unpublished data regarding murine infections with L. mexicana glucose transporter null mutants and protein expression in these null mutants and for providing a critical reading of the chapter. Images for figures included in this chapter were provided by Cosmo Buffalo, Dayana Rodriguez-Contreras, and Marco Sanchez in the author’s laboratory. This work was supported by grant number AI25920 from the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this protocol

Cite this protocol

Landfear, S.M. (2010). Glucose Transporters in Parasitic Protozoa. In: Yan, Q. (eds) Membrane Transporters in Drug Discovery and Development. Methods in Molecular Biology, vol 637. Humana Press. https://doi.org/10.1007/978-1-60761-700-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-700-6_13

  • Published:

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-60761-699-3

  • Online ISBN: 978-1-60761-700-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics