Skip to main content

A Heuristic Pathophysiological Model of Tinnitus

  • Chapter
Textbook of Tinnitus

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AC:

Auditory cortex

ACC:

Anterior cingulate cortex

BA:

Brodman area

BOLD:

Blood oxygen level dependent

BPS:

Band pass small

BPW:

Band pass wide

BRAI²N:

Brain research center antwerp for innovative & interdisciplinary neuromodulation

CAS:

Complex adaptive systems

DACC:

Dorsal part of ACC

DLPFC:

Dorsolateral prefrontal cortex

EEG:

Electroencephalography

ERP:

Event related potential

FMRI:

Functional magnetic resonance imaging

Hz:

Hertz

IC:

Inferior colliculus

ICA:

Independent component analysis

IPS:

Intraparietal sulcus

IEEG:

Intracranial EEG

LORETA:

Low resolution electro tomography

LTP:

Long term potentiation

MCS:

Minimally conscious state

MD:

Mediodorsal

MEG:

Magnetoencephalography

MGB:

Medial geniculate body

NB:

Nucleus basalis

OF:

Other frequency

PET:

Positron emission tomography

PCC:

Posterior cingulate cortex

PVS:

Persistent vegetative state

RTMS:

Repetitive transcranial magnetic stimulation

SMA:

Supplementary motor area

SPL:

Superior parietal lobule

STG:

Superior temporal gyrus

STS:

Superior temporal sulcus

TF:

Tinnitus frequency

TQ:

Tinnitus questionnaire

TPJ:

Temporoparietal junction

TRI:

Tinnitus research initiative

VMPFC:

Ventromedial prefrontal cortex

VTA:

Ventral tegmental area

References

  1. Jones EG (2001) The thalamic matrix and thalamocortical synchrony. Trends Neurosci 24:595–601.

    Article  CAS  PubMed  Google Scholar 

  2. Jones EG (1998) Viewpoint: the core and matrix of thalamic organization. Neuroscience 85:331–45.

    Article  CAS  PubMed  Google Scholar 

  3. Molinari M, ME Dell’Anna, E Rausell et al (1995) Auditory thalamocortical pathways defined in monkeys by calcium-binding protein immunoreactivity. J Comp Neurol 362:171–94.

    Article  CAS  PubMed  Google Scholar 

  4. Munkle MC, HJ Waldvogel and RL Faull (2000) The distribution of calbindin, calretinin and parvalbumin immunoreactivity in the human thalamus. J Chem Neuroanat 19:155–73.

    Article  CAS  PubMed  Google Scholar 

  5. Møller AR (2003) Sensory systems: anatomy and physiology. Amsterdam: Academic Press.

    Google Scholar 

  6. He J and B Hu (2002) Differential distribution of burst and single-spike responses in auditory thalamus. J Neurophysiol 88:2152–6.

    Article  PubMed  Google Scholar 

  7. Hu B, V Senatorov and D Mooney (1994) Lemniscal and non-lemniscal synaptic transmission in rat auditory thalamus. J Physiol 479 (Pt 2):217–31.

    PubMed  Google Scholar 

  8. Chacron MJ, A Longtin and L Maler (2004) To burst or not to burst? J Comput Neurosci 17:127–36.

    Article  PubMed  Google Scholar 

  9. Oswald AM, MJ Chacron, B Doiron et al (2004) Parallel processing of sensory input by bursts and isolated spikes. J Neurosci 24:4351–62.

    Article  CAS  PubMed  Google Scholar 

  10. De Ridder D, T Menovsky and P Van de Heyning, eds. Tinnitus as a central auditory processing disorder. Current controversies in central auditory processing disorder, ed. AT Cacace and DJ McFarland. 2008, Plural Publishing: San Diego. 291–305.

    Google Scholar 

  11. Strominger NL, LR Nelson and WJ Dougherty (1977) Second order auditory pathways in the chimpanzee. J Comp Neurol 172:349–65.

    Article  CAS  PubMed  Google Scholar 

  12. Parvizi J and AR Damasio (2003) Differential distribution of calbindin D28k and parvalbumin among functionally distinctive sets of structures in the macaque brainstem. J Comp Neurol 462:153–67.

    Article  CAS  PubMed  Google Scholar 

  13. Tennigkeit F, DW Schwarz and E Puil (1996) Mechanisms for signal transformation in lemniscal auditory thalamus. J Neurophysiol 76:3597–608.

    CAS  PubMed  Google Scholar 

  14. McCormick DA and HR Feeser (1990) Functional implications of burst firing and single spike activity in lateral geniculate relay neurons. Neuroscience 39:103–13.

    Article  CAS  PubMed  Google Scholar 

  15. Jones EG (2003) Chemically defined parallel pathways in the monkey auditory system. Ann N Y Acad Sci 999:218–33.

    Article  CAS  PubMed  Google Scholar 

  16. Chiry O, E Tardif, PJ Magistretti et al (2003) Patterns of calcium-binding proteins support parallel and hierarchical organization of human auditory areas. Eur J Neurosci 17:397–410.

    Article  PubMed  Google Scholar 

  17. Bordi F and JE LeDoux (1994) Response properties of single units in areas of rat auditory thalamus that project to the amygdala. I. Acoustic discharge patterns and frequency receptive fields. Exp Brain Res 98:261–74.

    Article  CAS  PubMed  Google Scholar 

  18. Calford MB (1983) The parcellation of the medial geniculate body of the cat defined by the auditory response properties of single units. J Neurosci 3:2350–64.

    CAS  PubMed  Google Scholar 

  19. Sherman SM and C Koch (1998) The synaptic organization of the brain. ed. G Shepherd. Oxford: Oxford University Press.

    Google Scholar 

  20. Disterhoft JF and J Olds (1972) Differential development of conditioned unit changes in thalamus and cortex of rat. J Neurophysiol 35:665–79.

    CAS  PubMed  Google Scholar 

  21. Bordi F, J LeDoux, MC Clugnet et al (1993) Single-unit activity in the lateral nucleus of the amygdala and overlying areas of the striatum in freely behaving rats: rates, discharge patterns, and responses to acoustic stimuli. Behav Neurosci 107:757–69.

    Article  CAS  PubMed  Google Scholar 

  22. Bartlett EL and PH Smith (1999) Anatomic, intrinsic, and synaptic properties of dorsal and ventral division neurons in rat medial geniculate body. J Neurophysiol 81:1999–2016.

    CAS  PubMed  Google Scholar 

  23. Mooney DM, L Zhang, C Basile et al (2004) Distinct forms of cholinergic modulation in parallel thalamic sensory pathways. Proc Natl Acad Sci USA 101:320–4.

    Article  CAS  PubMed  Google Scholar 

  24. Sherman SM (2001) A wake-up call from the thalamus. Nat Neurosci 4:344–6.

    Article  CAS  PubMed  Google Scholar 

  25. Sherman SM (2001) Tonic and burst firing: dual modes of thalamocortical relay. Trends Neurosci 24:122–6.

    Article  CAS  PubMed  Google Scholar 

  26. Swadlow HA and AG Gusev (2001) The impact of ‘bursting’ thalamic impulses at a neocortical synapse. Nat Neurosci 4:402–8.

    Article  CAS  PubMed  Google Scholar 

  27. Ramcharan EJ, CL Cox, XJ Zhan et al (2000) Cellular mechanisms underlying activity patterns in the monkey thalamus during visual behavior. J Neurophysiol 84:1982–7.

    CAS  PubMed  Google Scholar 

  28. Tardif E, O Chiry, A Probst et al (2003) Patterns of calcium-binding proteins in human inferior colliculus: identification of subdivisions and evidence for putative parallel systems. Neuroscience 116:1111–21.

    Article  CAS  PubMed  Google Scholar 

  29. Syka J (2002) Plastic changes in the central auditory system after hearing loss, restoration of function, and during learning. Physiol Rev 82:601–36.

    PubMed  Google Scholar 

  30. Forster CR and RB Illing (2000) Plasticity of the auditory brainstem: cochleotomy-induced changes of calbindin-D28k expression in the rat. J Comp Neurol 416:173–87.

    Article  CAS  PubMed  Google Scholar 

  31. Caicedo A, C d’Aldin, M Eybalin et al (1997) Temporary sensory deprivation changes calcium-binding proteins levels in the auditory brainstem. J Comp Neurol 378:1–15.

    Article  CAS  PubMed  Google Scholar 

  32. Garcia MM, R Edward, GB Brennan et al (2000) Deafferentation-induced changes in protein kinase C expression in the rat cochlear nucleus. Hear Res 147:113–24.

    Article  CAS  PubMed  Google Scholar 

  33. Itoh K, H Kamiya, A Mitani et al (1987) Direct projections from the dorsal column nuclei and the spinal trigeminal nuclei to the cochlear nuclei in the cat. Brain Res 400:145–50.

    Article  CAS  PubMed  Google Scholar 

  34. Møller AR (2000) Hearing: its physiology and pathophysiology. San Diego: Academic Press.

    Google Scholar 

  35. Szczepaniak WS and AR Møller (1993) Interaction between auditory and somatosensory systems: a study of evoked potentials in the inferior colliculus. Electroencephalogr Clin Neurophysiol 88:508–15.

    Article  CAS  PubMed  Google Scholar 

  36. Leinonen L, J Hyvarinen and AR Sovijarvi (1980) Functional properties of neurons in the temporo-parietal association cortex of awake monkey. Exp Brain Res 39:203–15.

    Article  CAS  PubMed  Google Scholar 

  37. Kawaguchi Y and Y Kubota (1993) Correlation of physiological subgroupings of nonpyramidal cells with parvalbumin- and calbindinD28k-immunoreactive neurons in layer V of rat frontal cortex. J Neurophysiol 70:387–96.

    CAS  PubMed  Google Scholar 

  38. Kawaguchi Y (2001) Distinct firing patterns of neuronal subtypes in cortical synchronized activities. J Neurosci 21:7261–72.

    CAS  PubMed  Google Scholar 

  39. Solbach S and MR Celio (1991) Ontogeny of the calcium binding protein parvalbumin in the rat nervous system. Anat Embryol 184:103–24.

    Article  CAS  PubMed  Google Scholar 

  40. Baimbridge KG, MR Celio and JH Rogers (1992) Calcium-binding proteins in the nervous system. Trends Neurosci 15:303–8.

    Article  CAS  PubMed  Google Scholar 

  41. Caillard O, H Moreno, B Schwaller et al (2000) Role of the calcium-binding protein parvalbumin in short-term synaptic plasticity. Proc Natl Acad Sci USA 97:13372–7.

    Article  CAS  PubMed  Google Scholar 

  42. Rausell E, CG Cusick, E Taub et al (1992) Chronic deafferentation in monkeys differentially affects nociceptive and nonnociceptive pathways distinguished by specific calcium-binding proteins and down-regulates gamma-aminobutyric acid type A receptors at thalamic levels. Proc Natl Acad Sci USA 89:2571–5.

    Article  CAS  PubMed  Google Scholar 

  43. De Ridder D, E van der Loo, K Van der Kelen et al (2007) Do tonic and burst TMS modulate the lemniscal and extralemniscal system differentially? Int J Med Sci 4:242–6.

    Article  PubMed  Google Scholar 

  44. Phillips ML, WC Drevets, SL Rauch et al (2003) Neurobiology of emotion perception I: The neural basis of normal emotion perception. Biol Psychiatry 54:504–14.

    Article  PubMed  Google Scholar 

  45. Phan KL, T Wager, SF Taylor et al (2002) Functional neuroanatomy of emotion: a meta-analysis of emotion activation studies in PET and fMRI. Neuroimage 16:331–48.

    Article  PubMed  Google Scholar 

  46. Dalgleish T (2004) The emotional brain. Nat Rev Neurosci 5:583–9.

    Article  PubMed  CAS  Google Scholar 

  47. Ghashghaei HT, CC Hilgetag and H Barbas (2007) Sequence of information processing for emotions based on the anatomic dialogue between prefrontal cortex and amygdala. Neuroimage 34:905–23.

    Article  CAS  PubMed  Google Scholar 

  48. Baxter MG and EA Murray (2002) The amygdala and reward. Nat Rev Neurosci 3:563–73.

    Article  CAS  PubMed  Google Scholar 

  49. Craig AD (2002) How do you feel? Interoception: the sense of the physiological condition of the body. Nat Rev Neurosci 3:655–66.

    CAS  PubMed  Google Scholar 

  50. Kringelbach ML (2005) The human orbitofrontal cortex: linking reward to hedonic experience. Nat Rev Neurosci 6:691–702.

    Article  CAS  PubMed  Google Scholar 

  51. Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78.

    Article  CAS  PubMed  Google Scholar 

  52. Summerfield C, T Egner, M Greene et al (2006) Predictive codes for forthcoming perception in the frontal cortex. Science 314:1311–4.

    Article  CAS  PubMed  Google Scholar 

  53. Ullsperger M and DY von Cramon (2003) Error monitoring using external feedback: specific roles of the habenular complex, the reward system, and the cingulate motor area revealed by functional magnetic resonance imaging. J Neurosci 23:4308–14.

    CAS  PubMed  Google Scholar 

  54. Behrens TE, MW Woolrich, ME Walton et al (2007) Learning the value of information in an uncertain world. Nat Neurosci 10:1214–21.

    Article  CAS  PubMed  Google Scholar 

  55. Critchley HD (2005) Neural mechanisms of autonomic, affective, and cognitive integration. J Comp Neurol 493:154–66.

    Article  PubMed  Google Scholar 

  56. Kennerley SW, ME Walton, TE Behrens et al (2006) Optimal decision making and the anterior cingulate cortex. Nat Neurosci 9:940–7.

    Article  CAS  PubMed  Google Scholar 

  57. Margulies DS, AM Kelly, LQ Uddin et al (2007) Mapping the functional connectivity of anterior cingulate cortex. Neuroimage 37:579–88.

    Article  PubMed  Google Scholar 

  58. Mottaghy FM, K Willmes, B Horwitz et al (2006) Systems level modeling of a neuronal network subserving intrinsic alertness. Neuroimage 29:225–33.

    Article  PubMed  Google Scholar 

  59. Critchley HD, DR Corfield, MP Chandler et al (2000) Cerebral correlates of autonomic cardiovascular arousal: a functional neuroimaging investigation in humans. J Physiol 523 (Pt 1):259–70.

    Article  CAS  PubMed  Google Scholar 

  60. Critchley HD, RN Melmed, E Featherstone et al (2002) Volitional control of autonomic arousal: a functional magnetic resonance study. Neuroimage 16:909–19.

    Article  PubMed  Google Scholar 

  61. Critchley HD, CJ Mathias and RJ Dolan (2001) Neural activity in the human brain relating to uncertainty and arousal during anticipation. Neuron 29:537–45.

    Article  CAS  PubMed  Google Scholar 

  62. Boly M, E Balteau, C Schnakers et al (2007) Baseline brain activity fluctuations predict somatosensory perception in humans. Proc Natl Acad Sci USA 104:12187–92.

    Article  CAS  PubMed  Google Scholar 

  63. Sridharan D, DJ Levitin and V Menon (2008) A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proc Natl Acad Sci USA 105:12569–74.

    Article  CAS  PubMed  Google Scholar 

  64. Craig AD (2003) Interoception: the sense of the physiological condition of the body. Curr Opin Neurobiol 13:500–5.

    Article  CAS  PubMed  Google Scholar 

  65. Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27.

    CAS  PubMed  Google Scholar 

  66. Schultz W, P Dayan and PR Montague (1997) A neural substrate of prediction and reward. Science 275:1593–9.

    Article  CAS  PubMed  Google Scholar 

  67. Critchley HD, S Wiens, P Rotshtein et al (2004) Neural systems supporting interoceptive awareness. Nat Neurosci 7:189–95.

    Article  CAS  PubMed  Google Scholar 

  68. Sander D, J Grafman and T Zalla (2003) The human amygdala: an evolved system for relevance detection. Rev Neurosci 14:303–16.

    PubMed  Google Scholar 

  69. Hansel A and R von Kanel (2008) The ventro-medial prefrontal cortex: a major link between the autonomic nervous system, regulation of emotion, and stress reactivity? Biopsychosoc Med 2:21.

    Article  PubMed  Google Scholar 

  70. Vermetten E, C Schmahl, SM Southwick et al (2007) Positron tomographic emission study of olfactory induced emotional recall in veterans with and without combat-related posttraumatic stress disorder. Psychopharmacol Bull 40:8–30.

    PubMed  Google Scholar 

  71. Etkin A and TD Wager (2007) Functional neuroimaging of anxiety: a meta-analysis of emotional processing in PTSD, social anxiety disorder, and specific phobia. Am J Psychiatry 164:1476–88.

    Article  PubMed  Google Scholar 

  72. Schlee W, N Weisz, O Bertrand et al (2008) Using auditory steady state responses to outline the functional connectivity in the tinnitus brain. PLoS One 3:e3720.

    Article  PubMed  CAS  Google Scholar 

  73. Goebel G and W Hiller (1994) [The tinnitus questionnaire. A standard instrument for grading the degree of tinnitus. Results of a multicenter study with the tinnitus questionnaire]. HNO 42:166–72.

    CAS  PubMed  Google Scholar 

  74. Plewnia C, M Reimold, A Najib et al (2007) Moderate therapeutic efficacy of positron emission tomography-navigated repetitive transcranial magnetic stimulation for chronic tinnitus: a randomised, controlled pilot study. J Neurol Neurosurg Psychiatr 78:152–6.

    Article  CAS  PubMed  Google Scholar 

  75. Lockwood AH, RJ Salvi, ML Coad et al (1998) The functional neuroanatomy of tinnitus: evidence for limbic system links and neural plasticity. Neurology 50:114–20.

    Article  CAS  PubMed  Google Scholar 

  76. Oppenheimer S (1993) The anatomy and physiology of cortical mechanisms of cardiac control. Stroke 24:I3–5.

    CAS  PubMed  Google Scholar 

  77. Critchley HD, R Elliott, CJ Mathias et al (2000) Neural activity relating to generation and representation of galvanic skin conductance responses: a functional magnetic resonance imaging study. J Neurosci 20:3033–40.

    CAS  PubMed  Google Scholar 

  78. Cerqueira JJ, OF Almeida and N Sousa (2008) The stressed prefrontal cortex. Left? Right! Brain Behav Immun 22:630–8.

    Google Scholar 

  79. Hilz MJ, O Devinsky, H Szczepanska et al (2006) Right ventromedial prefrontal lesions result in paradoxical cardiovascular activation with emotional stimuli. Brain 129:3343–55.

    Article  PubMed  Google Scholar 

  80. Hilz MJ, M Dutsch, K Perrine et al (2001) Hemispheric influence on autonomic modulation and baroreflex sensitivity. Ann Neurol 49:575–84.

    Article  CAS  PubMed  Google Scholar 

  81. Pascual-Marqui RD, CM Michel and D Lehmann (1994) Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. Int J Psychophysiol 18:49–65.

    Article  CAS  PubMed  Google Scholar 

  82. Moisset X and D Bouhassira (2007) Brain imaging of neuropathic pain. Neuroimage 37 Suppl 1:S80–8.

    Article  PubMed  Google Scholar 

  83. Price DD (2000) Psychological and neural mechanisms of the affective dimension of pain. Science 288:1769–72.

    Article  CAS  PubMed  Google Scholar 

  84. Kulkarni B, DE Bentley, R Elliott et al (2005) Attention to pain localization and unpleasantness discriminates the functions of the medial and lateral pain systems. Eur J Neurosci 21:3133–42.

    Article  CAS  PubMed  Google Scholar 

  85. Landgrebe M, W Barta, K Rosengarth et al (2008) Neuronal correlates of symptom formation in functional somatic syndromes: a fMRI study. Neuroimage 41:1336–44.

    Article  PubMed  Google Scholar 

  86. von Leupoldt A, T Sommer, S Kegat et al (2009) Dyspnea and pain share emotion-related brain network. Neuroimage 48:200–6.

    Article  Google Scholar 

  87. Bavelier D and H Neville (2002) Developmental neuroplasticity. in Encyclopedia of the human brain, V Ramachandran, Editor. Academic Press: Amsterdam. 561–78.

    Chapter  Google Scholar 

  88. Whitehead MC and DK Morest (1985) The development of innervation patterns in the avian cochlea. Neuroscience 14:255–76.

    Article  CAS  PubMed  Google Scholar 

  89. Kandel ER (1991) Cellular mechanisms of hearing and the biological basis of individiuality. in Principles of neural science, E Kandel, J Schwartz and T Jessell, Editors. Appleton & Lange: Norwalk, CT. 1009–31.

    Google Scholar 

  90. Snyder RL and PA Leake (1997) Topography of spiral ganglion projections to cochlear nucleus during postnatal development in cats. J Comp Neurol 384:293–311.

    Article  CAS  PubMed  Google Scholar 

  91. Staecker H, V Galinovic-Schwartz, W Liu et al (1996) The role of the neurotrophins in maturation and maintenance of postnatal auditory innervation. Am J Otol 17:486–92.

    CAS  PubMed  Google Scholar 

  92. Rubsamen R (1992) Postnatal development of central auditory frequency maps. J Comp Physiol A 170:129–43.

    Article  CAS  PubMed  Google Scholar 

  93. Harrison RV, D Ibrahim and RJ Mount (1998) Plasticity of tonotopic maps in auditory midbrain following partial cochlear damage in the developing chinchilla. Exp Brain Res 123:449–60.

    Article  CAS  PubMed  Google Scholar 

  94. Sininger YS, KJ Doyle and JK Moore (1999) The case for early identification of hearing loss in children. Auditory system development, experimental auditory deprivation, and development of speech perception and hearing. Pediatr Clin North Am 46:1–14.

    Article  CAS  PubMed  Google Scholar 

  95. Deacon T, (1997) Evolution and intelligence: beyond the argument from design. in The origin and evolution of intelligence, A Scheibel and J Schopf, Editors. 1997, Jones and Bartlett: Boston. 103–36.

    Google Scholar 

  96. Sanes DH, J Song and J Tyson (1992) Refinement of dendritic arbors along the tonotopic axis of the gerbil lateral superior olive. Brain Res Dev Brain Res 67:47–55.

    Article  CAS  PubMed  Google Scholar 

  97. Gao E and N Suga (1998) Experience-dependent corticofugal adjustment of midbrain frequency map in bat auditory system. Proc Natl Acad Sci USA 95:12663–70.

    Article  CAS  PubMed  Google Scholar 

  98. Suga N, E Gao, Y Zhang et al (2000) The corticofugal system for hearing: recent progress. Proc Natl Acad Sci USA 97:11807–14.

    Article  CAS  PubMed  Google Scholar 

  99. Weinberger NM and JS Bakin (1998) Learning-induced physiological memory in adult primary auditory cortex: receptive fields plasticity, model, and mechanisms. Audiol Neurootol 3:145–67.

    Article  CAS  PubMed  Google Scholar 

  100. Recanzone GH, CE Schreiner and MM Merzenich (1993) Plasticity in the frequency representation of primary auditory cortex following discrimination training in adult owl monkeys. J Neurosci 13:87–103.

    CAS  PubMed  Google Scholar 

  101. Cohen YE and JC Saunders (1994) The effect of acoustic overexposure on the tonotopic organization of the nucleus magnocellularis. Hear Res 81:11–21.

    Article  CAS  PubMed  Google Scholar 

  102. Dietrich V, M Nieschalk, W Stoll et al (2001) Cortical reorganization in patients with high frequency cochlear hearing loss. Hear Res 158:95–101.

    Article  CAS  PubMed  Google Scholar 

  103. Muhlnickel W, T Elbert, E Taub et al (1998) Reorganization of auditory cortex in tinnitus. Proc Natl Acad Sci USA 95:10340–3.

    Article  CAS  PubMed  Google Scholar 

  104. Chowdhury SA and N Suga (2000) Reorganization of the frequency map of the auditory cortex evoked by cortical electrical stimulation in the big brown bat. J Neurophysiol 83:1856–63.

    CAS  PubMed  Google Scholar 

  105. Zhang Y and N Suga (2000) Modulation of responses and frequency tuning of thalamic and collicular neurons by cortical activation in mustached bats. J Neurophysiol 84:325–33.

    CAS  PubMed  Google Scholar 

  106. Zhang Y, N Suga and J Yan (1997) Corticofugal modulation of frequency processing in bat auditory system. Nature 387:900–3.

    Article  CAS  PubMed  Google Scholar 

  107. Ma CL, JB Kelly and SH Wu (2002) AMPA and NMDA receptors mediate synaptic excitation in the rat’s inferior colliculus. Hear Res 168:25–34.

    Article  CAS  PubMed  Google Scholar 

  108. Xiao Z and N Suga (2002) Modulation of cochlear hair cells by the auditory cortex in the mustached bat. Nat Neurosci 5:57–63.

    Article  CAS  PubMed  Google Scholar 

  109. Kilgard MP and MM Merzenich (1998) Cortical map reorganization enabled by nucleus basalis activity. Science 279:1714–8.

    Article  CAS  PubMed  Google Scholar 

  110. Bao S, VT Chan and MM Merzenich (2001) Cortical remodelling induced by activity of ventral tegmental dopamine neurons. Nature 412:79–83.

    Article  CAS  PubMed  Google Scholar 

  111. Ji W and N Suga (2007) Serotonergic modulation of plasticity of the auditory cortex elicited by fear conditioning. J Neurosci 27:4910–8.

    Article  CAS  PubMed  Google Scholar 

  112. Eggermont JJ and H Komiya (2000) Moderate noise trauma in juvenile cats results in profound cortical topographic map changes in adulthood. Hear Res 142:89–101.

    Article  CAS  PubMed  Google Scholar 

  113. Norena AJ, M Tomita and JJ Eggermont (2003) Neural changes in cat auditory cortex after a transient pure-tone trauma. J Neurophysiol 90:2387–401.

    Article  PubMed  Google Scholar 

  114. Norena AJ and JJ Eggermont (2005) Enriched acoustic environment after noise trauma reduces hearing loss and prevents cortical map reorganization. J Neurosci 25:699–705.

    Article  CAS  PubMed  Google Scholar 

  115. Seki S and JJ Eggermont (2003) Changes in spontaneous firing rate and neural synchrony in cat primary auditory cortex after localized tone-induced hearing loss. Hear Res 180:28–38.

    Article  PubMed  Google Scholar 

  116. Norena AJ and JJ Eggermont (2003) Changes in spontaneous neural activity immediately after an acoustic trauma: implications for neural correlates of tinnitus. Hear Res 183:137–53.

    Article  CAS  PubMed  Google Scholar 

  117. Norena AJ and JJ Eggermont (2006) Enriched acoustic environment after noise trauma abolishes neural signs of tinnitus. Neuroreport 17:559–63.

    Article  PubMed  Google Scholar 

  118. Flor H, T Elbert, S Knecht et al (1995) Phantom-limb pain as a perceptual correlate of cortical reorganization following arm amputation. Nature 375:482–4.

    Article  CAS  PubMed  Google Scholar 

  119. Rajan R (1998) Receptor organ damage causes loss of cortical surround inhibition without topographic map plasticity. Nat Neurosci 1:138–43.

    Article  CAS  PubMed  Google Scholar 

  120. Chen GD and PJ Jastreboff (1995) Salicylate-induced abnormal activity in the inferior colliculus of rats. Hear Res 82:158–78.

    Article  CAS  PubMed  Google Scholar 

  121. Eggermont JJ and M Kenmochi (1998) Salicylate and quinine selectively increase spontaneous firing rates in secondary auditory cortex. Hear Res 117:149–60.

    Article  CAS  PubMed  Google Scholar 

  122. Eggermont JJ (2003) Central tinnitus. Auris Nasus Larynx 30 Suppl:S7–12.

    Article  PubMed  Google Scholar 

  123. Jeanmonod D, M Magnin and A Morel (1996) Low-threshold calcium spike bursts in the human thalamus. Common physiopathology for sensory, motor and limbic positive symptoms. Brain 119 (Pt 2):363–75.

    Article  PubMed  Google Scholar 

  124. Gopal KV and GW Gross (2004) Unique responses of auditory cortex networks in vitro to low concentrations of quinine. Hear Res 192:10–22.

    Article  CAS  PubMed  Google Scholar 

  125. Møller AR (1984) Pathophysiology of tinnitus. Ann Otol Rhinol Laryngol 93:39–44.

    PubMed  Google Scholar 

  126. Cazals Y, KC Horner and ZW Huang (1998) Alterations in average spectrum of cochleoneural activity by long-term salicylate treatment in the guinea pig: a plausible index of tinnitus. J Neurophysiol 80:2113–20.

    CAS  PubMed  Google Scholar 

  127. Martin WH, JW Schwegler, J Scheibelhoffer et al (1993) Salicylate-induced changes in cat auditory nerve activity. Laryngoscope 103:600–4.

    Article  CAS  PubMed  Google Scholar 

  128. Ochi K and JJ Eggermont (1996) Effects of salicylate on neural activity in cat primary auditory cortex. Hear Res 95:63–76.

    Article  CAS  PubMed  Google Scholar 

  129. Ochi K and JJ Eggermont (1997) Effects of quinine on neural activity in cat primary auditory cortex. Hear Res 105:105–18.

    Article  CAS  PubMed  Google Scholar 

  130. Brozoski TJ, CA Bauer and DM Caspary (2002) Elevated fusiform cell activity in the dorsal cochlear nucleus of chinchillas with psychophysical evidence of tinnitus. J Neurosci 22:2383–90.

    CAS  PubMed  Google Scholar 

  131. Zhang JS and JA Kaltenbach (1998) Increases in spontaneous activity in the dorsal cochlear nucleus of the rat following exposure to high-intensity sound. Neurosci Lett 250:197–200.

    Article  CAS  PubMed  Google Scholar 

  132. Zacharek MA, JA Kaltenbach, TA Mathog et al (2002) Effects of cochlear ablation on noise induced hyperactivity in the hamster dorsal cochlear nucleus: implications for the origin of noise induced tinnitus. Hear Res 172:137–43.

    Article  PubMed  Google Scholar 

  133. Kaltenbach JA and CE Afman (2000) Hyperactivity in the dorsal cochlear nucleus after intense sound exposure and its resemblance to tone-evoked activity: a physiological model for tinnitus. Hear Res 140:165–72.

    Article  CAS  PubMed  Google Scholar 

  134. Kaltenbach JA, DA Godfrey, JB Neumann et al (1998) Changes in spontaneous neural activity in the dorsal cochlear nucleus following exposure to intense sound: relation to threshold shift. Hear Res 124:78–84.

    Article  CAS  PubMed  Google Scholar 

  135. Kaltenbach JA, MA Zacharek, J Zhang et al (2004) Activity in the dorsal cochlear nucleus of hamsters previously tested for tinnitus following intense tone exposure. Neurosci Lett 355:121–5.

    Article  CAS  PubMed  Google Scholar 

  136. Jastreboff PJ (1990) Phantom auditory perception (tinnitus): mechanisms of generation and perception. Neurosci Res 8:221–54.

    Article  CAS  PubMed  Google Scholar 

  137. Jastreboff PJ, JF Brennan and CT Sasaki (1988) An animal model for tinnitus. Laryngoscope 98:280–6.

    Article  CAS  PubMed  Google Scholar 

  138. Jastreboff PJ and CT Sasaki (1986) Salicylate-induced changes in spontaneous activity of single units in the inferior colliculus of the guinea pig. J Acoust Soc Am 80:1384–91.

    Article  CAS  PubMed  Google Scholar 

  139. Gerken GM (1996) Central tinnitus and lateral inhibition: an auditory brainstem model. Hear Res 97:75–83.

    CAS  PubMed  Google Scholar 

  140. Komiya H and JJ Eggermont (2000) Spontaneous firing activity of cortical neurons in adult cats with reorganized tonotopic map following pure-tone trauma. Acta Otolaryngol 120:750–6.

    Article  CAS  PubMed  Google Scholar 

  141. Ulanovsky N, L Las and I Nelken (2003) Processing of low-probability sounds by cortical neurons. Nat Neurosci 6:391–8.

    Article  CAS  PubMed  Google Scholar 

  142. Naatanen R, P Paavilainen, H Tiitinen et al (1993) Attention and mismatch negativity. Psychophysiology 30:436–50.

    Article  CAS  PubMed  Google Scholar 

  143. Zeman A (2002) Consciousness, a user’s guide. 2002, New Haven: Yale University Press. 77–110.

    Google Scholar 

  144. Steriade M (2000) Corticothalamic resonance, states of vigilance and mentation. Neuroscience 101:243–76.

    Article  CAS  PubMed  Google Scholar 

  145. Gray CM, P Konig, AK Engel et al (1989) Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties. Nature 338:334–7.

    Article  CAS  PubMed  Google Scholar 

  146. Gray CM and W Singer (1989) Stimulus-specific neuronal oscillations in orientation columns of cat visual cortex. Proc Natl Acad Sci USA 86:1698–702.

    Article  CAS  PubMed  Google Scholar 

  147. Tiitinen H, J Sinkkonen, K Reinikainen et al (1993) Selective attention enhances the auditory 40-Hz transient response in humans. Nature 364:59–60.

    Article  CAS  PubMed  Google Scholar 

  148. Joliot M, U Ribary and R Llinas (1994) Human oscillatory brain activity near 40 Hz coexists with cognitive temporal binding. Proc Natl Acad Sci USA 91:11748–51.

    Article  CAS  PubMed  Google Scholar 

  149. Llinas R, U Ribary, D Contreras et al (1998) The neuronal basis for consciousness. Philos Trans R Soc Lond B Biol Sci 353:1841–9.

    Article  CAS  PubMed  Google Scholar 

  150. Llinas R, U Ribary, M Joliot et al (1994) Content and context in temporal thalamocortical binding. in Temporal coding in the brain, G Buzsaki, R Llinas and W singer, Editors. Springer-Verlag: Berlin. 251–72.

    Google Scholar 

  151. Ribary U, AA Ioannides, KD Singh et al (1991) Magnetic field tomography of coherent thalamocortical 40-Hz oscillations in humans. Proc Natl Acad Sci USA 88:11037–41.

    Article  CAS  PubMed  Google Scholar 

  152. Crone NE, D Boatman, B Gordon et al (2001) Induced electrocorticographic gamma activity during auditory perception. Brazier Award-winning article, 2001. Clin Neurophysiol 112:565–82.

    Article  CAS  PubMed  Google Scholar 

  153. Steriade M, F Amzica and D Contreras (1996) Synchronization of fast (30–40 Hz) spontaneous cortical rhythms during brain activation. J Neurosci 16:392–417.

    CAS  PubMed  Google Scholar 

  154. MacDonald KD and DS Barth (1995) High frequency (gamma-band) oscillating potentials in rat somatosensory and auditory cortex. Brain Res 694:1–12.

    Article  CAS  PubMed  Google Scholar 

  155. Menon V, WJ Freeman, BA Cutillo et al (1996) Spatio-temporal correlations in human gamma band electrocorticograms. Electroencephalogr Clin Neurophysiol 98:89–102.

    Article  CAS  PubMed  Google Scholar 

  156. Llinas R, FJ Urbano, E Leznik et al (2005) Rhythmic and dysrhythmic thalamocortical dynamics: GABA systems and the edge effect. Trends Neurosci 28:325–33.

    Article  CAS  PubMed  Google Scholar 

  157. Gaillard R, S Dehaene, C Adam et al (2009) Converging intracranial markers of conscious access. PLoS Biol 7:e61.

    Article  PubMed  CAS  Google Scholar 

  158. Melloni L, C Molina, M Pena et al (2007) Synchronization of neural activity across cortical areas correlates with conscious perception. J Neurosci 27:2858–65.

    Article  CAS  PubMed  Google Scholar 

  159. Freeman WJ (2003) The wave packet: an action potential for the 21st century. J Integr Neurosci 2:3–30.

    Article  PubMed  Google Scholar 

  160. Freeman WJ and LJ Rogers (2002) Fine temporal resolution of analytic phase reveals episodic synchronization by state transitions in gamma EEGs. J Neurophysiol 87:937–45.

    PubMed  Google Scholar 

  161. Van der Loo E, M Congedo, M Plazier et al (2007) Correlation between independent components of scalp EEG and intra-cranial EEG (iEEG) time series. International Journal of Bioelectromagnetism 9:270–5.

    Google Scholar 

  162. Weisz N, S Muller, W Schlee et al (2007) The neural code of auditory phantom perception. J Neurosci 27:1479–84.

    Article  CAS  PubMed  Google Scholar 

  163. Llinas RR, U Ribary, D Jeanmonod et al (1999) Thalamocortical dysrhythmia: a neurological and neuropsychiatric syndrome characterized by magnetoencephalography. Proc Natl Acad Sci USA 96:15222–7.

    Article  CAS  PubMed  Google Scholar 

  164. Hughes SW and V Crunelli (2005) Thalamic mechanisms of EEG alpha rhythms and their pathological implications. Neuroscientist 11:357–72.

    Article  PubMed  Google Scholar 

  165. van der Loo E, S Gais, M Congedo et al (2009) Tinnitus intensity dependent gamma oscillations of the contralateral auditory cortex. PLoS One 4:e7396.

    Article  PubMed  CAS  Google Scholar 

  166. Lisman J and G Buzsaki (2008) A neural coding scheme formed by the combined function of gamma and theta oscillations. Schizophr Bull 34:974–80.

    Article  PubMed  Google Scholar 

  167. Weisz N, S Voss, P Berg et al (2004) Abnormal auditory mismatch response in tinnitus sufferers with high-frequency hearing loss is associated with subjective distress level. BMC Neurosci 5:8.

    Article  PubMed  Google Scholar 

  168. Eggermont JJ and LE Roberts (2004) The neuroscience of tinnitus. Trends Neurosci 27:676–82.

    Article  CAS  PubMed  Google Scholar 

  169. El-Amamy H and PC Holland (2007) Dissociable effects of disconnecting amygdala central nucleus from the ventral tegmental area or substantia nigra on learned orienting and incentive motivation. Eur J Neurosci 25:1557–67.

    Article  PubMed  Google Scholar 

  170. Holland PC (2007) Disconnection of the amygdala central nucleus and the substantia innominata/nucleus basalis magnocellularis disrupts performance in a sustained attention task. Behav Neurosci 121:80–9.

    Article  PubMed  Google Scholar 

  171. Maddux JM, EC Kerfoot, S Chatterjee et al (2007) Dissociation of attention in learning and action: effects of lesions of the amygdala central nucleus, medial prefrontal cortex, and posterior parietal cortex. Behav Neurosci 121:63–79.

    Article  PubMed  Google Scholar 

  172. Oades RD and GM Halliday (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434:117–65.

    CAS  PubMed  Google Scholar 

  173. Onn SP and XB Wang (2005) Differential modulation of anterior cingulate cortical activity by afferents from ventral tegmental area and mediodorsal thalamus. Eur J Neurosci 21:2975–92.

    Article  PubMed  Google Scholar 

  174. Seeley WW, V Menon, AF Schatzberg et al (2007) Dissociable intrinsic connectivity networks for salience processing and executive control. J Neurosci 27:2349–56.

    Article  CAS  PubMed  Google Scholar 

  175. Taylor KS, DA Seminowicz and KD Davis (2009) Two ­systems of resting state connectivity between the insula and cingulate cortex. Hum Brain Mapp. 30:2731–45.

    Google Scholar 

  176. Mulert C, G Leicht, O Pogarell et al (2007) Auditory cortex and anterior cingulate cortex sources of the early evoked gamma-band response: relationship to task difficulty and mental effort. Neuropsychologia 45:2294–306.

    Article  PubMed  Google Scholar 

  177. Montaron MF, JJ Bouyer, A Rougeul et al (1982) Ventral mesencephalic tegmentum (VMT) controls electrocortical beta rhythms and associated attentive behaviour in the cat. Behav Brain Res 6:129–45.

    Article  CAS  PubMed  Google Scholar 

  178. Bamiou DE, FE Musiek and LM Luxon (2003) The insula (Island of Reil) and its role in auditory processing. Literature review. Brain Res Brain Res Rev 42:143–54.

    Article  PubMed  Google Scholar 

  179. Engelien A, D Silbersweig, E Stern et al (1995) The functional anatomy of recovery from auditory agnosia. A PET study of sound categorization in a neurological patient and normal controls. Brain 118 ( Pt 6):1395–409.

    Article  PubMed  Google Scholar 

  180. Habib M, G Daquin, L Milandre et al (1995) Mutism and auditory agnosia due to bilateral insular damage – role of the insula in human communication. Neuropsychologia 33:327–39.

    Article  CAS  PubMed  Google Scholar 

  181. Fifer RC (1993) Insular stroke causing unilateral auditory processing disorder: case report. J Am Acad Audiol 4:364–9.

    CAS  PubMed  Google Scholar 

  182. Lisman JE and AA Grace (2005) The hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron 46:703–13.

    Article  CAS  PubMed  Google Scholar 

  183. Boutros NN, R Mears, ME Pflieger et al (2008) Sensory gating in the human hippocampal and rhinal regions: regional differences. Hippocampus 18:310–6.

    Article  CAS  PubMed  Google Scholar 

  184. Engelien A, E Stern, N Isenberg et al (2000) The parahippocampal region and auditory-mnemonic processing. Ann N Y Acad Sci 911:477–85.

    Article  CAS  PubMed  Google Scholar 

  185. Muller BW, M Juptner, W Jentzen et al (2002) Cortical activation to auditory mismatch elicited by frequency deviant and complex novel sounds: a PET study. Neuroimage 17:231–9.

    Article  CAS  PubMed  Google Scholar 

  186. Engelien A, O Tuscher, W Hermans et al (2006) Functional neuroanatomy of non-verbal semantic sound processing in humans. J Neural Transm 113:599–608.

    Article  CAS  PubMed  Google Scholar 

  187. Tanaka E, K Inui, T Kida et al (2008) A transition from unimodal to multimodal activations in four sensory modalities in humans: an electrophysiological study. BMC Neurosci 9:116.

    Article  PubMed  Google Scholar 

  188. Hoffman RE, AW Anderson, M Varanko et al (2008) Time course of regional brain activation associated with onset of auditory/verbal hallucinations. Br J Psychiatry 193:424–5.

    Article  PubMed  Google Scholar 

  189. Shergill SS, MJ Brammer, E Amaro et al (2004) Temporal course of auditory hallucinations. Br J Psychiatry 185:516–7.

    Article  PubMed  Google Scholar 

  190. Anderson AK and EA Phelps (2001) Lesions of the human amygdala impair enhanced perception of emotionally salient events. Nature 411:305–9.

    Article  CAS  PubMed  Google Scholar 

  191. Mulert C, G Juckel, M Brunnmeier et al (2007) Rostral anterior cingulate cortex activity in the theta band predicts response to antidepressive medication. Clin EEG Neurosci 38:78–81.

    Article  PubMed  Google Scholar 

  192. Kurthen M, P Trautner, T Rosburg et al (2007) Towards a functional topography of sensory gating areas: invasive P50 recording and electrical stimulation mapping in epilepsy surgery candidates. Psychiatry Res 155:121–33.

    Article  PubMed  Google Scholar 

  193. Norena A, C Micheyl, S Chery-Croze et al (2002) Psychoacoustic characterization of the tinnitus spectrum: implications for the underlying mechanisms of tinnitus. Audiol Neurootol 7:358–69.

    Article  PubMed  Google Scholar 

  194. Ramachandran VS and W Hirstein (1998) The perception of phantom limbs. The D. O. Hebb lecture. Brain 121 (Pt 9):1603–30.

    Article  PubMed  Google Scholar 

  195. De Ridder D and P Van de Heyning (2007) The Darwinian plasticity hypothesis for tinnitus and pain. Prog Brain Res 166:55–60.

    Article  PubMed  Google Scholar 

  196. Ogawa S, TM Lee, AR Kay et al (1990) Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc Natl Acad Sci USA 87:9868–72.

    Article  CAS  PubMed  Google Scholar 

  197. Brookes MJ, AM Gibson, SD Hall et al (2005) GLM-beamformer method demonstrates stationary field, alpha ERD and gamma ERS co-localisation with fMRI BOLD response in visual cortex. Neuroimage 26:302–8.

    Article  PubMed  Google Scholar 

  198. Nir Y, L Fisch, R Mukamel et al (2007) Coupling between neuronal firing rate, gamma LFP, and BOLD fMRI is related to interneuronal correlations. Curr Biol 17:1275–85.

    Article  CAS  PubMed  Google Scholar 

  199. Mukamel R, H Gelbard, A Arieli et al (2005) Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. Science 309:951–4.

    Article  CAS  PubMed  Google Scholar 

  200. Smits M, S Kovacs, D De Ridder et al (2004) Lateralization of signal change in the auditory pathway in patients with lateralized tinnitus studied with functional Magnetic Resonance Imaging (fMRI). Radiology 233, supplement:abstract 12-06.

    Google Scholar 

  201. Crick F and C Koch (2003) A framework for consciousness. Nat Neurosci 6:119–26.

    Article  CAS  PubMed  Google Scholar 

  202. Crick F and C Koch (1990) Toward a neurobiological theory of consciousness. Semin Neurosci 2:263–75.

    Google Scholar 

  203. Crick F and C Koch (1995) Are we aware of neural activity in primary visual cortex? Nature 375:121–3.

    Article  CAS  PubMed  Google Scholar 

  204. Laureys S (2007) Eyes open, brain shut. Sci Am 296:84–9.

    Article  PubMed  Google Scholar 

  205. Laureys S, S Goldman, C Phillips et al (1999) Impaired effective cortical connectivity in vegetative state: preliminary investigation using PET. Neuroimage 9:377–82.

    Article  CAS  PubMed  Google Scholar 

  206. Laureys S, ME Faymonville, A Luxen et al (2000) Restoration of thalamocortical connectivity after recovery from persistent vegetative state. Lancet 355:1790–1.

    Article  CAS  PubMed  Google Scholar 

  207. Laureys S, M Boly and P Maquet (2006) Tracking the recovery of consciousness from coma. J Clin Invest 116:1823–5.

    Article  CAS  PubMed  Google Scholar 

  208. Boly M, ME Faymonville, P Peigneux et al (2004) Auditory processing in severely brain injured patients: differences between the minimally conscious state and the persistent vegetative state. Arch Neurol 61:233–8.

    Article  PubMed  Google Scholar 

  209. Boly M, ME Faymonville, P Peigneux et al (2005) Cerebral processing of auditory and noxious stimuli in severely brain injured patients: differences between VS and MCS. Neuropsychol Rehabil 15:283–9.

    Article  PubMed  Google Scholar 

  210. Baars BJ (1993) How does a serial, integrated and very limited stream of consciousness emerge from a nervous system that is mostly unconscious, distributed, parallel and of enormous capacity? Ciba Found Symp 174:282–90; discussion 91–303.

    CAS  PubMed  Google Scholar 

  211. Dehaene S, M Kerszberg and JP Changeux (1998) A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA 95:14529–34.

    Article  CAS  PubMed  Google Scholar 

  212. Dehaene S and L Naccache (2001) Towards a cognitive neuroscience of consciousness: basic evidence and a workspace framework. Cognition 79:1–37.

    Article  CAS  PubMed  Google Scholar 

  213. Dehaene S, JP Changeux, L Naccache et al (2006) Conscious, preconscious, and subliminal processing: a testable taxonomy. Trends Cogn Sci 10:204–11.

    Article  PubMed  Google Scholar 

  214. Edelman GM (1993) Neural Darwinism: selection and reentrant signaling in higher brain function. Neuron 10:115–25.

    Article  CAS  PubMed  Google Scholar 

  215. Liegeois-Chauvel C, A Musolino, JM Badier et al (1994) Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol 92:204–14.

    Article  CAS  PubMed  Google Scholar 

  216. Yvert B, A Crouzeix, O Bertrand et al (2001) Multiple supratemporal sources of magnetic and electric auditory evoked middle latency components in humans. Cereb Cortex 11:411–23.

    Article  CAS  PubMed  Google Scholar 

  217. Zouridakis G, PG Simos and AC Papanicolaou (1998) Multiple bilaterally asymmetric cortical sources account for the auditory N1m component. Brain Topogr 10:183–9.

    Article  CAS  PubMed  Google Scholar 

  218. Loveless N, S Levanen, V Jousmaki et al (1996) Temporal integration in auditory sensory memory: neuromagnetic evidence. Electroencephalogr Clin Neurophysiol 100:220–8.

    Article  CAS  PubMed  Google Scholar 

  219. Jaaskelainen IP, J Ahveninen, G Bonmassar et al (2004) Human posterior auditory cortex gates novel sounds to consciousness. Proc Natl Acad Sci USA 101:6809–14.

    Article  PubMed  Google Scholar 

  220. Saletu M, P Anderer, GM Saletu-Zyhlarz et al (2008) Event-related-potential low-resolution brain electromagnetic tomography (ERP-LORETA) suggests decreased energetic resources for cognitive processing in narcolepsy. Clin Neurophysiol 119:1782–94.

    Article  PubMed  Google Scholar 

  221. Korzyukov O, ME Pflieger, M Wagner et al (2007) Generators of the intracranial P50 response in auditory sensory gating. Neuroimage 35:814–26.

    Article  PubMed  Google Scholar 

  222. Grunwald T, NN Boutros, N Pezer et al (2003) Neuronal substrates of sensory gating within the human brain. Biol Psychiatry 53:511–9.

    Article  PubMed  Google Scholar 

  223. Frot M, F Mauguiere, M Magnin et al (2008) Parallel processing of nociceptive A-delta inputs in SII and midcingulate cortex in humans. J Neurosci 28:944–52.

    Article  CAS  PubMed  Google Scholar 

  224. Rosburg T, P Trautner, OA Korzyukov et al (2004) Short-term habituation of the intracranially recorded auditory evoked potentials P50 and N100. Neurosci Lett 372:245–9.

    Article  CAS  PubMed  Google Scholar 

  225. Clementz BA, LD Blumenfeld and S Cobb (1997) The gamma band response may account for poor P50 suppression in schizophrenia. Neuroreport 8:3889–93.

    Article  CAS  PubMed  Google Scholar 

  226. Grau C, L Fuentemilla and J Marco-Pallares (2007) Functional neural dynamics underlying auditory event-related N1 and N1 suppression response. Neuroimage 36:522–31.

    Article  CAS  PubMed  Google Scholar 

  227. Meyer M, S Baumann and L Jancke (2006) Electrical brain imaging reveals spatio-temporal dynamics of timbre perception in humans. Neuroimage 32:1510–23.

    Article  PubMed  Google Scholar 

  228. Atcherson SR, HJ Gould, MA Pousson et al (2006) Long-term stability of N1 sources using low-resolution electromagnetic tomography. Brain Topogr 19:11–20.

    Article  PubMed  Google Scholar 

  229. Potts GF, J Dien, AL Hartry-Speiser et al (1998) Dense sensor array topography of the event-related potential to task-relevant auditory stimuli. Electroencephalogr Clin Neurophysiol 106:444–56.

    Article  CAS  PubMed  Google Scholar 

  230. Volpe U, A Mucci, P Bucci et al (2007) The cortical generators of P3a and P3b: a LORETA study. Brain Res Bull 73:220–30.

    Article  CAS  PubMed  Google Scholar 

  231. Mulert C, O Pogarell, G Juckel et al (2004) The neural basis of the P300 potential. Focus on the time-course of the underlying cortical generators. Eur Arch Psychiatry Clin Neurosci 254:190–8.

    Article  CAS  PubMed  Google Scholar 

  232. Frisch S, SA Kotz, DY von Cramon et al (2003) Why the P600 is not just a P300: the role of the basal ganglia. Clin Neurophysiol 114:336–40.

    Article  PubMed  Google Scholar 

  233. Andreassi J (2000) Psychophysiology, human behavior and physiological response. Mahwah, NJ: Lawrence Erlbaum Associates.

    Google Scholar 

  234. Cromwell HC, RP Mears, L Wan et al (2008) Sensory gating: a translational effort from basic to clinical science. Clin EEG Neurosci 39:69–72.

    Article  PubMed  Google Scholar 

  235. Vincent JL, I Kahn, AZ Snyder et al (2008) Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. J Neurophysiol 100:3328–42.

    Article  PubMed  Google Scholar 

  236. Vincent JL, AZ Snyder, MD Fox et al (2006) Coherent spontaneous activity identifies a hippocampal-parietal memory network. J Neurophysiol 96:3517–31.

    Article  PubMed  Google Scholar 

  237. Fox MD, M Corbetta, AZ Snyder et al (2006) Spontaneous neuronal activity distinguishes human dorsal and ventral attention systems. Proc Natl Acad Sci USA 103:10046–51.

    Article  CAS  PubMed  Google Scholar 

  238. Fox MD, AZ Snyder, JL Vincent et al (2005) The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proc Natl Acad Sci USA 102:9673–8.

    Article  CAS  PubMed  Google Scholar 

  239. Buckner RL, JR Andrews-Hanna and DL Schacter (2008) The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci 1124:1–38.

    Article  PubMed  Google Scholar 

  240. Raichle ME, AM MacLeod, AZ Snyder et al (2001) A default mode of brain function. Proc Natl Acad Sci USA 98:676–82.

    Article  CAS  PubMed  Google Scholar 

  241. Kahn I, JR Andrews-Hanna, JL Vincent et al (2008) Distinct cortical anatomy linked to subregions of the medial temporal lobe revealed by intrinsic functional connectivity. J Neurophysiol 100:129–39.

    Article  PubMed  Google Scholar 

  242. Greicius MD and V Menon (2004) Default-mode activity during a passive sensory task: uncoupled from deactivation but impacting activation. J Cogn Neurosci 16:1484–92.

    Article  PubMed  Google Scholar 

  243. Miller EK (2000) The prefrontal cortex and cognitive ­control. Nat Rev Neurosci 1:59–65.

    Article  CAS  PubMed  Google Scholar 

  244. Stein JL, LM Wiedholz, DS Bassett et al (2007) A validated network of effective amygdala connectivity. Neuroimage 36:736–45.

    Article  PubMed  Google Scholar 

  245. Maquet P, P Ruby, A Maudoux et al (2005) Human cognition during REM sleep and the activity profile within frontal and parietal cortices: a reappraisal of functional neuroimaging data. Prog Brain Res 150:219–27.

    Article  PubMed  Google Scholar 

  246. Corbetta M, G Patel and GL Shulman (2008) The reorienting system of the human brain: from environment to theory of mind. Neuron 58:306–24.

    Article  CAS  PubMed  Google Scholar 

  247. Manes F, B Sahakian, L Clark et al (2002) Decision-making processes following damage to the prefrontal cortex. Brain 125:624–39.

    Article  PubMed  Google Scholar 

  248. Dehaene S, C Sergent and JP Changeux (2003) A neuronal network model linking subjective reports and objective physiological data during conscious perception. Proc Natl Acad Sci USA 100:8520–5.

    Article  CAS  PubMed  Google Scholar 

  249. de Lafuente V and R Romo (2005) Neuronal correlates of subjective sensory experience. Nat Neurosci 8:1698–703.

    Article  PubMed  CAS  Google Scholar 

  250. de Lafuente V and R Romo (2006) Neural correlate of subjective sensory experience gradually builds up across cortical areas. Proc Natl Acad Sci USA 103:14266–71.

    Article  PubMed  CAS  Google Scholar 

  251. de Lafuente V and R Romo (2002) A hidden sensory function for motor cortex. Neuron 36:785–6.

    Article  PubMed  Google Scholar 

  252. O’Regan K and A Noë (2001) A sensorimotor account of vision and visual consciousness. Behav Brain Sci 24:883–917.

    Google Scholar 

  253. Noë A (2004) Action in Perception. Cambridge, MA: MIT Press.

    Google Scholar 

  254. Aquinas ST (1268) Commentaries on Aristotle’s on sense and what is sensed and on memory and recollection. Washington, DC: The Catholic University of America Press.

    Google Scholar 

  255. Freeman WJ (1999) How brains make up their minds. London: Phoenix.

    Google Scholar 

  256. Attias J, D Urbach, S Gold et al (1993) Auditory event related potentials in chronic tinnitus patients with noise induced hearing loss. Hear Res 71:106–13.

    Article  CAS  PubMed  Google Scholar 

  257. Attias J, V Furman, Z Shemesh et al (1996) Impaired brain processing in noise-induced tinnitus patients as measured by auditory and visual event-related potentials. Ear Hear 17:327–33.

    Article  CAS  PubMed  Google Scholar 

  258. Shiraishi T, K Sugimoto, T Kubo et al (1991) Contingent negative variation enhancement in tinnitus patients. Am J Otolaryngol 12:267–71.

    Article  CAS  PubMed  Google Scholar 

  259. Delb W, DJ Strauss, YF Low et al (2008) Alterations in Event Related Potentials (ERP) associated with tinnitus distress and attention. Appl Psychophysiol Biofeedback 33:211–21.

    Article  PubMed  Google Scholar 

  260. Norena A, H Cransac and S Chery-Croze (1999) Towards an objectification by classification of tinnitus. Clin Neurophysiol 110:666–75.

    Article  CAS  PubMed  Google Scholar 

  261. Hoke M, H Feldmann, C Pantev et al (1989) Objective evidence of tinnitus in auditory evoked magnetic fields. Hear Res 37:281–6.

    Article  CAS  PubMed  Google Scholar 

  262. Pantev C, M Hoke, B Lutkenhoner et al (1989) Tinnitus remission objectified by neuromagnetic measurements. Hear Res 40:261–4.

    Article  CAS  PubMed  Google Scholar 

  263. Jacobson GP, BK Ahmad, J Moran et al (1991) Auditory evoked cortical magnetic field (M100–M200) measurements in tinnitus and normal groups. Hear Res 56:44–52.

    Article  CAS  PubMed  Google Scholar 

  264. Arnold W, P Bartenstein, E Oestreicher et al (1996) Focal metabolic activation in the predominant left auditory cortex in patients suffering from tinnitus: a PET study with [18F]deoxyglucose. ORL J Otorhinolaryngol Relat Spec 58:195–9.

    Article  CAS  PubMed  Google Scholar 

  265. Lockwood AH, RJ Salvi, RF Burkard et al (1999) Neuroanatomy of tinnitus. Scand Audiol Suppl 51:47–52.

    CAS  PubMed  Google Scholar 

  266. Eichhammer P, G Hajak, T Kleinjung et al (2007) Functional imaging of chronic tinnitus: the use of positron emission tomography. Prog Brain Res 166:83–8.

    Article  CAS  PubMed  Google Scholar 

  267. Langguth B, P Eichhammer, A Kreutzer et al (2006) The impact of auditory cortex activity on characterizing and treating patients with chronic tinnitus – first results from a PET study. Acta Otolaryngol Suppl 84–8.

    Google Scholar 

  268. Giraud AL, S Chery-Croze, G Fischer et al (1999) A selective imaging of tinnitus. Neuroreport 10:1–5.

    Article  CAS  PubMed  Google Scholar 

  269. Plewnia C, M Reimold, A Najib et al (2007) Dose-dependent attenuation of auditory phantom perception (tinnitus) by PET-guided repetitive transcranial magnetic stimulation. Hum Brain Mapp 28:238–46.

    Article  PubMed  Google Scholar 

  270. Mirz F, A Gjedde, K Ishizu et al (2000) Cortical networks subserving the perception of tinnitus – a PET study. Acta Otolaryngol Suppl 543:241–3.

    Article  CAS  PubMed  Google Scholar 

  271. Mirz F, T Ovesen, K Ishizu et al (1999) Stimulus-dependent central processing of auditory stimuli: a PET study. Scand Audiol 28:161–9.

    Article  CAS  PubMed  Google Scholar 

  272. Muhlau M, JP Rauschecker, E Oestreicher et al (2006) Structural brain changes in tinnitus. Cereb Cortex 16:1283–8.

    Article  CAS  PubMed  Google Scholar 

  273. Landgrebe M, B Langguth, K Rosengarth et al (2009) Structural brain changes in tinnitus: grey matter decrease in auditory and non-auditory brain areas. Neuroimage 46:213–8.

    Article  PubMed  Google Scholar 

  274. Melcher JR, IS Sigalovsky, JJ Guinan, Jr. et al (2000) Lateralized tinnitus studied with functional magnetic resonance imaging: abnormal inferior colliculus activation. J Neurophysiol 83:1058–72.

    CAS  PubMed  Google Scholar 

  275. Smits M, S Kovacs, D De Ridder et al (2007) Lateralization of functional magnetic resonance imaging (fMRI) activation in the auditory pathway of patients with lateralized tinnitus. Neuroradiology 49:669–79.

    Article  PubMed  Google Scholar 

  276. Weisz N, S Moratti, M Meinzer et al (2005) Tinnitus perception and distress is related to abnormal spontaneous brain activity as measured by magnetoencephalography. PLoS Med 2:e153.

    Article  PubMed  Google Scholar 

  277. Mirz F, A Gjedde, H Sodkilde-Jrgensen et al (2000) Functional brain imaging of tinnitus-like perception induced by aversive auditory stimuli. Neuroreport 11:633–7.

    Article  CAS  PubMed  Google Scholar 

  278. Zald DH and JV Pardo (2002) The neural correlates of aversive auditory stimulation. Neuroimage 16:746–53.

    Article  PubMed  Google Scholar 

  279. De Ridder D, H Ryu, G De Mulder et al (2005) Frequency specific hearing improvement in microvascular decompression of the cochlear nerve. Acta Neurochir (Wien) 147:495–501; discussion 501.

    Article  Google Scholar 

  280. De Ridder D, K Heijneman, B Haarman et al (2007) Tinnitus in vascular conflict of the eighth cranial nerve: a surgical pathophysiological approach to ABR changes. Prog Brain Res 166:401–11.

    Article  PubMed  Google Scholar 

  281. Møller MB, AR Møller, PJ Jannetta et al (1993) Vascular decompression surgery for severe tinnitus: selection criteria and results. Laryngoscope 103:421–7.

    Article  PubMed  Google Scholar 

  282. De Ridder D, H Ryu, AR Møller et al (2004) Functional anatomy of the human cochlear nerve and its role in microvascular decompressions for tinnitus. Neurosurgery 54:381–8; discussion 8–90.

    Article  PubMed  Google Scholar 

  283. Jannetta P, (1997) Outcome after microvascular decompression for typical trigeminal neuralgia, hemifacial spasm, tinnitus, disabling positional vertigo, and glossopharyngeal neuralgia. in Clinical neurosurgery, S Grady, Editor. 1997, Williams and Wilkins: Baltimore. 331–84.

    Google Scholar 

  284. Ryu H, S Yamamoto, K Sugiyama et al (1998) Neurovascular compression syndrome of the eighth cranial nerve. What are the most reliable diagnostic signs? Acta Neurochir (Wien) 140:1279–86.

    Article  CAS  Google Scholar 

  285. Brookes GB (1996) Vascular-decompression surgery for severe tinnitus. Am J Otol 17:569–76.

    CAS  PubMed  Google Scholar 

  286. De Ridder D, E Verstraeten, K Van der Kelen et al (2005) Transcranial magnetic stimulation for tinnitus: influence of tinnitus duration on stimulation parameter choice and maximal tinnitus suppression. Otol Neurotol 26:616–9.

    Article  PubMed  Google Scholar 

  287. Kleinjung T, T Steffens, P Sand et al (2007) Which tinnitus patients benefit from transcranial magnetic stimulation? Otolaryngol Head Neck Surg 137:589–95.

    Article  PubMed  Google Scholar 

  288. Khedr EM, JC Rothwell, MA Ahmed et al (2008) Effect of daily repetitive transcranial magnetic stimulation for treatment of tinnitus: comparison of different stimulus frequencies. J Neurol Neurosurg Psychiatr 79:212–5.

    Article  CAS  PubMed  Google Scholar 

  289. Schlee W, T Hartmann, B Langguth et al (2009) Abnormal resting-state cortical coupling in chronic tinnitus. BMC Neurosci 10:11.

    Article  PubMed  Google Scholar 

  290. Sterling P and J Eyer (1988) Allostasis: a new paradigm to explain arousal pathology. in Handbook of life stress, cognition and health, S Fisher and J Reason, Editors. 1988, Wiley: New York. 629–49

    Google Scholar 

  291. McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904.

    Article  PubMed  Google Scholar 

  292. McEwen BS (2008) Central effects of stress hormones in health and disease: understanding the protective and damaging effects of stress and stress mediators. Eur J Pharmacol 583:174–85.

    Article  CAS  PubMed  Google Scholar 

  293. Cannon W (1929) Organization for physiological homeostasis. Physiol Rev 9:399–431.

    Google Scholar 

  294. Bernard C (1865) Introduction a l’Etude de la Médicine Expérimentale. Paris: JB Baillière.

    Google Scholar 

  295. Koob GF and M Le Moal (2008) Addiction and the brain antireward system. Annu Rev Psychol 59:29–53.

    Article  PubMed  Google Scholar 

  296. Koob GF and M Le Moal (2001) Drug addiction, dysregulation of reward, and allostasis. Neuropsychopharmacology 24:97–129.

    Article  CAS  PubMed  Google Scholar 

  297. Korte SM, JM Koolhaas, JC Wingfield et al (2005) The Darwinian concept of stress: benefits of allostasis and costs of allostatic load and the trade-offs in health and disease. Neurosci Biobehav Rev 29:3–38.

    Article  PubMed  Google Scholar 

  298. McEwen BS (2002) Protective and damaging effects of stress mediators: the good and bad sides of the response to stress. Metabolism 51:2–4.

    Article  CAS  PubMed  Google Scholar 

  299. Celerier E, JP Laulin, JB Corcuff et al (2001) Progressive enhancement of delayed hyperalgesia induced by repeated heroin administration: a sensitization process. J Neurosci 21:4074–80.

    CAS  PubMed  Google Scholar 

  300. Walton ME, PL Croxson, TE Behrens et al (2007) Adaptive decision making and value in the anterior cingulate cortex. Neuroimage 36 Suppl 2:T142–54.

    Article  PubMed  Google Scholar 

  301. Holroyd CB, OE Krigolson, R Baker et al (2009) When is an error not a prediction error? An electrophysiological investigation. Cogn Affect Behav Neurosci 9:59–70.

    Article  PubMed  Google Scholar 

  302. Gosselin N, S Samson, R Adolphs et al (2006) Emotional responses to unpleasant music correlates with damage to the parahippocampal cortex. Brain 129:2585–92.

    Article  PubMed  Google Scholar 

  303. Eichenbaum H and PA Lipton (2008) Towards a functional organization of the medial temporal lobe memory system: role of the parahippocampal and medial entorhinal cortical areas. Hippocampus 18:1314–24.

    Article  PubMed  Google Scholar 

  304. Aminoff E, N Gronau and M Bar (2007) The parahippocampal cortex mediates spatial and nonspatial associations. Cereb Cortex 17:1493–503.

    Article  CAS  PubMed  Google Scholar 

  305. Portas CM, BA Strange, KJ Friston et al (2000) How does the brain sustain a visual percept? Proc Biol Sci 267:845–50.

    Article  CAS  PubMed  Google Scholar 

  306. De Ridder D, H Fransen, O Francois et al (2006) Amygdalohippocampal involvement in tinnitus and auditory memory.Acta Otolaryngol Suppl 50–3.

    Google Scholar 

  307. Strogatz SH (2001) Exploring complex networks. Nature 410:268–76.

    Article  CAS  PubMed  Google Scholar 

  308. Watts DJ and SH Strogatz (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–2.

    Article  CAS  PubMed  Google Scholar 

  309. Albert R and AL Barabasi (2000) Topology of evolving networks: local events and universality. Phys Rev Lett 85:5234–7.

    Article  CAS  PubMed  Google Scholar 

  310. Albert R and AL Barabasi (2000) Dynamics of complex systems: scaling laws for the period of boolean networks. Phys Rev Lett 84:5660–3.

    Article  CAS  PubMed  Google Scholar 

  311. Barabasi AL and R Albert (1999) Emergence of scaling in random networks. Science 286:509–12.

    Article  PubMed  Google Scholar 

  312. Achard S, R Salvador, B Whitcher et al (2006) A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. J Neurosci 26:63–72.

    Article  CAS  PubMed  Google Scholar 

  313. Bassett DS, E Bullmore, BA Verchinski et al (2008) Hierarchical organization of human cortical networks in health and schizophrenia. J Neurosci 28:9239–48.

    Article  CAS  PubMed  Google Scholar 

  314. Bassett DS, A Meyer-Lindenberg, S Achard et al (2006) Adaptive reconfiguration of fractal small-world human brain functional networks. Proc Natl Acad Sci USA 103:19518–23.

    Article  CAS  PubMed  Google Scholar 

  315. Bullmore E and O Sporns (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10:186–98.

    Article  CAS  PubMed  Google Scholar 

  316. Salvador R, J Suckling, C Schwarzbauer et al (2005) Undirected graphs of frequency-dependent functional connectivity in whole brain networks. Philos Trans R Soc Lond B Biol Sci 360:937–46.

    Article  PubMed  Google Scholar 

  317. Stam CJ and JC Reijneveld (2007) Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed Phys 1:3.

    Article  PubMed  Google Scholar 

  318. van den Heuvel MP, CJ Stam, M Boersma et al (2008) Small-world and scale-free organization of voxel-based resting-state functional connectivity in the human brain. Neuroimage 43:528–39.

    Article  PubMed  Google Scholar 

  319. Barabasi AL (2009) Scale-free networks: a decade and beyond. Science 325:412–3.

    Article  CAS  PubMed  Google Scholar 

  320. Oltvai ZN and AL Barabasi (2002) Systems biology. Life’s complexity pyramid. Science 298:763–4.

    Article  CAS  PubMed  Google Scholar 

  321. Hagmann P, L Cammoun, X Gigandet et al (2008) Mapping the structural core of human cerebral cortex. PLoS Biol 6:e159.

    Article  PubMed  CAS  Google Scholar 

  322. Ponten SC, L Douw, F Bartolomei et al (2009) Indications for network regularization during absence seizures: weighted and unweighted graph theoretical analyses. Exp Neurol 217:197–204.

    Article  CAS  PubMed  Google Scholar 

  323. Humphries MD, K Gurney and TJ Prescott (2006) The brainstem reticular formation is a small-world, not scale-free, network. Proc Biol Sci 273:503–11.

    Article  CAS  PubMed  Google Scholar 

  324. Buzsaki G (2006) Rhythms of the brain. Oxford: Oxford University Press.

    Book  Google Scholar 

  325. Yu S, D Huang, W Singer et al (2008) A small world of neuronal synchrony. Cereb Cortex 18:2891–901.

    Article  PubMed  Google Scholar 

  326. Eguiluz VM, DR Chialvo, GA Cecchi et al (2005) Scale-free brain functional networks. Phys Rev Lett 94:018102.

    Article  PubMed  CAS  Google Scholar 

  327. Miller KJ, LB Sorensen, JG Ojemann et al (2009) Power-law scaling in the brain surface electric potential. PLoS Comput Biol 5:e1000609.

    Article  PubMed  CAS  Google Scholar 

  328. Schlee W, N Mueller, T Hartmann et al (2009) Mapping cortical hubs in tinnitus. BMC Biol 7:80.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk De Ridder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

De Ridder, D. (2011). A Heuristic Pathophysiological Model of Tinnitus. In: Møller, A.R., Langguth, B., De Ridder, D., Kleinjung, T. (eds) Textbook of Tinnitus. Springer, New York, NY. https://doi.org/10.1007/978-1-60761-145-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-60761-145-5_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-60761-144-8

  • Online ISBN: 978-1-60761-145-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics