Skip to main content

Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy

  • Chapter
  • First Online:
Oxidative Stress and Free Radical Damage in Neurology

Abstract

Despite improvements in the care of asphyxiated neonates, neonatal or perinatal hypoxia-ischemia remains a challenge to clinical practitioners. In this multisystem dysfunction, hypoxic-ischemic encephalopathy contributes to short- and long-term morbidity of these critically ill neonates. In the developing brain of premature and term neonates, there are immature responses to hypoxia-ischemia in the context of selective vulnerability of different brain structures and neural cells at different stages of development. This difference explains at least in part the diversity of clinical presentations and sequelae of neonatal hypoxic-ischemic brain injury. In addition to hypoxic-ischemic damage, cerebral reoxygenation or reperfusion injury plays an important role in the pathophysiology of hypoxic-ischemic brain injury. Mechanisms of cell death and apoptosis operate at multiple levels including oxygen-derived free radical damage and excitotoxicity. Cerebral oxidative stress and neurochemical changes are related in hypoxia-ischemia of the neonatal brain. Controlled reoxygenation to avoid hyperoxia and its related cerebral damage, and novel antioxidative agents such as N-acetylcysteine, are potential therapeutic interventions that may show promise in the improvement of clinical outcome of these asphyxiated neonates with cerebral hypoxic-ischemic injury. The effects of controlled reoxygenation and N-acetylcysteine on the neurochemistry of asphyxiated neonatal brain are discussed.

P.-Y. Cheung is a Clinical Investigator of the Canadian Institutes of Health Research and the Alberta Heritage Foundation for Medical Research (AHFMR).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 229.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sankaran K, Chien LY, Walker R, Seshia M, Ohlsson A, Canadian Neonatal Network. Variations in mortality rates among Canadian neonatal intensive care units. CMAJ. 2002;166:173–8.

    PubMed  Google Scholar 

  2. Carter B, Haverkamp A, Merenstein G. The definition of acute perinatal asphyxia. Clin Perinatol. 1993;20:287–304.

    PubMed  CAS  Google Scholar 

  3. Sunshine P. Perinatal asphyxia: an overview. In: Stevenson DK, Benitz WE, Sunshine P, editors. Fetal and neonatal brain injury: mechanisms, management and the risks of practice. Cambridge: Cambridge University Press; 2003. p. 2–29.

    Google Scholar 

  4. Adcock L, Papile LA. Perinatal asphyxia. In: Cloherty J, Eichenwald E, Stark A, editors. Manual of neonatal care. Philadelphia: Lippincott Williams & Wilkins; 2008. p. 518–28.

    Google Scholar 

  5. Vannucci RC. Hypoxic-ischemic encephalopathy. Am J Perinatol. 2000;17:113–9.

    Article  PubMed  CAS  Google Scholar 

  6. Johnston MV, Nakajima W, Hagberg H. Mechanisms of hypoxic neurodegeneration in the developing brain. Neuroscientist. 2002;8:212–20.

    PubMed  CAS  Google Scholar 

  7. Johnston MV, Trescher WH, Ishida A, Nakajima W. Neurobiology of hypoxic-ischemic injury in the developing rat brain. Pediatr Res. 2001;49:735–41.

    Article  PubMed  CAS  Google Scholar 

  8. Schubert S, Brandl U, Brodhun M, Ulrich C, Spaltmann J, Fiedler N, et al. Neuroprotective effects of topiramate after hypoxia-ischemia in newborn piglets. Brain Res. 2005;1058:129–36.

    Article  PubMed  CAS  Google Scholar 

  9. McLean C, Ferriero D. Mechanisms of hypoxic-ischemic injury in the term infant. Semin Perinatol. 2004;28:425–32.

    Article  PubMed  Google Scholar 

  10. Ferriero D. Neonatal brain injury. N Engl J Med. 2004;351:1985–95.

    Article  PubMed  CAS  Google Scholar 

  11. Squier W, Cowan FM. The value of autopsy in determining the cause of failure to respond to resuscitation at birth. Semin Neonatol. 2004;9:331–45.

    Article  PubMed  Google Scholar 

  12. Jensen F. Developmental factors regulating susceptibility to perinatal brain injury and seizures. Curr Opinion Pediatr. 2006;18:628–33.

    Article  PubMed  Google Scholar 

  13. McQuillen PS, Ferriero D. Selective vulnerability in the developing central nervous system. Pediatr Neurol. 2004;30:227–35.

    Article  PubMed  Google Scholar 

  14. McQuillen PS, Sheldon RA, Shatz CT, Ferriero D. Selective vulnerability of subplate neurons after early neonatal hypoxia-ischemia. J Neurosci. 2003;23:3308–15.

    PubMed  CAS  Google Scholar 

  15. Kanold PO, Kara P, Reid R. Shatz CJ. Role of subplate neurons in functional maturation of visual cortical columns. Science. 2003;301:521–5.

    Article  PubMed  CAS  Google Scholar 

  16. Soul JS, Taylor GA, Wypij D, Duplessis AJ, Volpe JJ. Noninvasive detection of changes in cerebral blood flow by near-infrared spectroscopy in a piglet model of hydrocephalus. Pediatr Res. 2000;48:445–9.

    Article  PubMed  CAS  Google Scholar 

  17. Back SA, Luo NL, Borenstein NS, Levine JM, Volpe JJ, Kinney HC. Late oligodendrocyte progenitors coincide with the developmental window of vulnerability for human perinatal white matter injury. J Neurosci. 2001;21:1302–12.

    PubMed  CAS  Google Scholar 

  18. Kinney HC, Back SA. Human oligodendroglial development: relationship to periventricular leukomalacia. Semin Pediatr Neurol. 1998;5:180–9.

    Article  PubMed  CAS  Google Scholar 

  19. Khwaja O, Volpe JJ. Pathogenesis of cerebral white matter injury of prematurity. Arch Dis Child Fetal Neonatal Ed. 2008;93:F153–61.

    Article  PubMed  CAS  Google Scholar 

  20. Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. I. Rodent cerebral white matter and cortex. J Comp Neurol. 2006;497:42–60.

    Article  PubMed  CAS  Google Scholar 

  21. Talos DM, Follett PL, Folkerth RD, Fishman RE, Trachtenberg FL, Volpe JJ, et al. Developmental regulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazole-proprionic acid receptor subunit expression in forebrain and relationship to regional susceptibility to hypoxic/ischemic injury. II. Human cerebral white matter and cortex. J Comp Neurol. 2006;497:61–77.

    Article  PubMed  CAS  Google Scholar 

  22. Deng W, Rosenberg PA, Volpe JJ, Jensen FE. Calcium-permeable AMPA/kainate receptors mediate toxicity and preconditioning by oxygen-glucose deprivation in oligodendrocyte precursors. Proc Natl Acad Sci U S A. 2003;100:6801–6.

    Article  PubMed  CAS  Google Scholar 

  23. Follett PL, Deng W, Dai W, Talos DM, Massillon LJ, Rosenberg PA, et al. Glutamate receptor-mediated oligodendrocyte toxicity in periventricular leukomalacia: a protective role for topiramate. J Neurosci. 2004;24:4412–20.

    Article  PubMed  CAS  Google Scholar 

  24. Felderhoff-Mueser U, Rutherford MA, Squier WV, Cox P, Maalouf EF, Counsell SJ, et al. Relationship between MR imaging and histopathologic findings of the brain in extremely sick preterm infants. AJNR Am J Neuroradiol. 1999;20:1349–57.

    PubMed  CAS  Google Scholar 

  25. Pasternak JF, Gorey MT. The syndrome of acute near-total intrauterine asphyxia in the term infant. Pediatr Neurol. 1998;18:391–8.

    Article  PubMed  CAS  Google Scholar 

  26. Vannucci RC. Experimental biology of cerebral hypoxia-ischemia: relation to perinatal brain damage. Pediatr Res. 1990;27:317–26.

    Article  PubMed  CAS  Google Scholar 

  27. Vannucci RC. Mechanisms of perinatal hypoxic-ischemic brain damage. Semin Perinatol. 1993;17:330–7.

    PubMed  CAS  Google Scholar 

  28. Nestler EJ, Hyman SE, Malenka RC. Seizures and stroke. In: Nestler EJ, Hyman SE, Malenka RC, editors. Molecular neuropharmacology: a foundation for clinical neuroscience. New York: McGraw Hill; 2001.

    Google Scholar 

  29. Vannucci RC. Experimental models of perinatal hypoxic-ischemic brain damage. APMIS Suppl. 1993;40:89–95.

    PubMed  CAS  Google Scholar 

  30. Vannucci RC, Christensen MA, Yager JY. Nature, time-course, and extent of cerebral edema in perinatal hypoxic-ischemic brain damage. Pediatr Neurol. 1993;9:29–34.

    Article  PubMed  CAS  Google Scholar 

  31. Vexler ZS, Ferriero D. Molecular and biochemical mechanisms of perinatal brain injury. Semin Neonatol. 2001;6:99–108.

    Article  PubMed  CAS  Google Scholar 

  32. Dirnagl U, Iadecola C, Moskowitz MA. Pathobiology of ischemic stroke: an integrated view. Trends Neurosci. 1999;22:391–7.

    Article  PubMed  CAS  Google Scholar 

  33. Katsura K, Kristian T, Siesjo BK. Energy metabolism, ion homeostasis, and cell damage in the brain. Biochem Soc Trans. 1994;22:991–6.

    PubMed  CAS  Google Scholar 

  34. Dani C, Masini E, Bertini G, di Felice AM, Pezzati M, Ciofini S, et al. Role of heme oxygenase and bilirubin in oxidative stress in preterm infants. Pediatr Res. 2004;56:873–7.

    Article  PubMed  CAS  Google Scholar 

  35. Buhimschi IA, Buhimschi C, Pupkin M, Weiner CP. Beneficial impact of term labor: nonenzymatic antioxidant reserve in the human fetus. Am J Obstet Gynecol. 2003;189:181–8.

    Article  PubMed  Google Scholar 

  36. Dani C, Cecchi A, Bertini G. Role of oxidative stress as physiopathologic factor in the preterm infant. Minerva Pediatr. 2004;56:381–94.

    PubMed  CAS  Google Scholar 

  37. Jantzie LL, Cheung PY, Obaid L, Emara M, Johnson ST, Bigam DL, et al. Persistent neurochemical changes in neonatal piglets after hypoxia-ischemia and resuscitation with 100%, 21% or 18% oxygen. Resuscitation. 2008;77:111–20.

    Article  PubMed  CAS  Google Scholar 

  38. Chan PH, Schmidley JW, Fishman RA, Longar SM. Brain injury, edema, and vascular permeability changes induced by oxygen-derived free radicals. Neurology. 1984;34:315–20.

    PubMed  CAS  Google Scholar 

  39. Delanty N, Dichter MA. Antioxidant therapy in neurologic disease. Arch Neurol. 2000;57:1265–70.

    Article  PubMed  CAS  Google Scholar 

  40. Palmer C, Vannucci RC. Cellular and molecular biology of perinatal hypoxic-ischemic brain damage. In: Stevenson DK, Benitz WE, Sunshine P, editors. Fetal and neonatal brain injury: mechanisms, management and the risks of practice. Cambridge: Cambridge University Press; 2003. p. 58–82.

    Google Scholar 

  41. Leffler CW, Busija DW, Armstead WM, Shanklin DR, Mirro R, Thelin O. Activated oxygen and arachidonate effects on newborn cerebral arterioles. Am J Physiol. 1990;259:H1230–8.

    PubMed  CAS  Google Scholar 

  42. Schleien CL, Koehler RC, Shaffner DH, Traystman RJ. Blood–brain barrier integrity during cardiopulmonary resuscitation in dogs. Stroke. 1990;21:1185–91.

    PubMed  CAS  Google Scholar 

  43. Wei EP, Ellison MD, Kontos HA, Povlishock JT. O2 radicals in arachidonate-induced increased blood–brain barrier permeability to proteins. Am J Physiol. 1986;251:H693–9.

    PubMed  CAS  Google Scholar 

  44. Back SA, Rivkees SA. Emerging concepts in periventricular white matter injury. Semin Perinatol. 2004;28:405–14.

    Article  PubMed  Google Scholar 

  45. Janero DR. Malondialdehyde and thiobarbituric acid-reactivity as diagnostic indices of lipid peroxidation and peroxidative tissue injury. Free Radic Biol Med. 1990;9:515–40.

    Article  PubMed  CAS  Google Scholar 

  46. Hasegawa K, Yoshioka H, Sawada T, Nishikawa H. Lipid peroxidation in neonatal mouse brain subjected to two different types of hypoxia. Brain Dev. 1991;13:101–3.

    PubMed  CAS  Google Scholar 

  47. Montine KS, Quinn JF, Zhang J, Fessel JP, Roberts LJII, Morrow JD, et al. Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem Phys Lipids. 2004;128:117–24.

    Article  PubMed  CAS  Google Scholar 

  48. Haynes RL, Folkerth RD, Keefe RJ, Sung I, Swzeda LI, Rosenberg PA, et al. Nitrosative and oxidative injury to premyelinating oligodendrocytes in periventricular leukomalacia. J Neuropathol Exp Neurol. 2003;62:441–50.

    PubMed  Google Scholar 

  49. Brault S, Martinez-Bermudez AK, Roberts J II, Cui QL, Fragoso G, Hemdan S, et al. Cytotoxicity of the E(2)-isoprostane 15-E(2t)-IsoP on oligodendrocyte progenitors. Free Radic Biol Med. 2004;37:358–66.

    Article  PubMed  CAS  Google Scholar 

  50. Halliwell B, Gutteridge JM. Role of free radicals and catalytic metal ions in human disease: an overview. Methods Enzymol. 1990;186:1–85.

    Article  PubMed  CAS  Google Scholar 

  51. Kelly FJ. Free radical disorders of preterm infants. Br Med Bull. 1993;49:668–78.

    PubMed  CAS  Google Scholar 

  52. Folkerth RD, Haynes RL, Borenstein NS, Belliveau RA, Trachtenberg F, Rosenberg PA, et al. Developmental lag in superoxide dismutases relative to other antioxidant enzymes in premyelinated human telencephalic white matter. J Neuropathol Exp Neurol. 2004;63(9):990–9.

    PubMed  CAS  Google Scholar 

  53. Fiskum G. Mechanisms of neuronal death and neuroprotection. J Neurosurg Anesthesiol. 2004;16:108–10.

    Article  PubMed  Google Scholar 

  54. Lipton P. Ischemic cell death in brain neurons. Physiol Rev. 1999;79:1431–568.

    PubMed  CAS  Google Scholar 

  55. Ferrer I, Planas AM. Signaling of cell death and cell survival following focal cerebral ischemia: life and death struggle in the penumbra. J Neuropathol Exp Neurol. 2003;62:329–39.

    PubMed  Google Scholar 

  56. Ashe PC, Berry MD. Apoptotic signaling cascades. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27:199–214.

    Article  PubMed  CAS  Google Scholar 

  57. Eldadah BA, Faden AI. Caspase pathways, neuronal apoptosis, and CNS injury. J Neurotrauma. 2000;17:811–29.

    Article  PubMed  CAS  Google Scholar 

  58. MacManus JP, Linnik MD. Gene expression induced by cerebral ischemia: an apoptotic perspective. J Cereb Blood Flow Metab. 1997;17:815–32.

    Article  PubMed  CAS  Google Scholar 

  59. Daugas E, Nochy D, Ravagnan L, Loeffler M, Susin SA, Zamzami N, et al. Apoptosis-inducing factor (AIF): a ubiquitous mitochondrial oxidoreductase involved in apoptosis. FEBS Lett. 2000;476:118–23.

    Article  PubMed  CAS  Google Scholar 

  60. Zhu C, Qiu L, Wang X, Hallin U, Candé C, Kroemer G, et al. Involvement of apoptosis-inducing factor in neuronal death after hypoxia-ischemia in the neonatal rat brain. J Neurochem. 2003;86:306–17.

    Article  PubMed  CAS  Google Scholar 

  61. Zhu C, Wang X, Qiu L, Peeters-Scholte C, Hagberg H, Blomgren K. Nitrosylation precedes caspase-3 activation and translocation of apoptosis-inducing factor in neonatal rat cerebral hypoxia-ischaemia. J Neurochem. 2004;90:462–71.

    Article  PubMed  CAS  Google Scholar 

  62. American Heart Association, American Academy of Pediatrics. 2005 American Heart Association (AHA) guidelines for cardiopulmonary resuscitation (CPR) and emergency cardiovascular care (ECC) of pediatric and neonatal patients: neonatal resuscitation guidelines. Pediatrics. 2006;117:e1029–38.

    Article  Google Scholar 

  63. Davis PG, Tan A, O’Donnell C, Schulze A. Resuscitation of newborn infants with 100% oxygen or air: a systematic review and meta-analysis. Lancet. 2004;364:1329–33.

    Article  PubMed  Google Scholar 

  64. Tan A, Schulze A, O’Donnell C, Davis PG. Air versus oxygen for resuscitation of infants at birth. Cochrane Database Syst Rev. 2005;CD002273[AU1].

    PubMed  CAS  Google Scholar 

  65. Martin RJ, Walsh MC, Carlo WA. Reevaluating neonatal resuscitation with 100% oxygen. Am J Respir Crit Care Med. 2005;172:1360.

    Article  PubMed  Google Scholar 

  66. Corff KE, McCann DL. Room air resuscitation versus oxygen resuscitation in the delivery room. J Perinat Neonatal Nurs. 2005;19:379–90.

    PubMed  Google Scholar 

  67. Munkeby BH, Børke WB, Bjørnland K, Sikkeland LI, Borge GI, Halvorsen B, et al. Resuscitation with 100% O2 increases cerebral injury in hypoxemic piglets. Pediatr Res. 2004;56:783–90.

    Article  PubMed  CAS  Google Scholar 

  68. Presti AL, Kishkurno SV, Slinko SK, Randis TM, Ratner VI, Polin RA, et al. Reoxygenation with 100% oxygen versus room air: late neuroanatomical and neurofunctional outcome in neonatal mice with hypoxic-ischemic brain injury. Pediatr Res. 2006;60:55–9.

    Article  PubMed  CAS  Google Scholar 

  69. Saugstad OD. Room air resuscitation: two decades of neonatal research. Early Hum Dev. 2005;81:111–6.

    Article  PubMed  Google Scholar 

  70. Saugstad OD, Ramji S, Vento M. Resuscitation of depressed newborn infants with ambient air or pure oxygen: a meta analysis. Biol Neonate. 2005;87:27–34.

    Article  PubMed  Google Scholar 

  71. Vento M, Asensi M, Sastre J, García-Sala F, Pallardó FV, Viña J. Resuscitation with room air instead of 100% oxygen prevents oxidative stress in moderately asphyxiated term infants. Pediatrics. 2001;107:642–7.

    Article  PubMed  CAS  Google Scholar 

  72. Vento M, Asensi M, Sastre J, García-Sala F, Viña J. Six years experience in the use of room air for the resuscitation of asphyxiated newly born term infants. Biol Neonate. 2001;79:261–7.

    Article  PubMed  CAS  Google Scholar 

  73. Vento M, Sastre J, Asensi M, Vina J. Room-air resuscitation causes less damage to heart and kidney than 100% oxygen. Am J Respir Crit Care Med. 2005;172:1393–8.

    Article  PubMed  Google Scholar 

  74. Ben-Ari Y, Khazipov R, Leinekugel X, Caillard O, Gaiarsa JL. GABA-A, NMDA, and AMPA receptors: a developmentally regulated “menage a trios.” Trends Neurosci. 1997;20:523–9.

    Article  PubMed  CAS  Google Scholar 

  75. Cooper JR, Bloom FE, Roth RH. The biochemical basis of neuropharmacology. 8th ed. New York: Oxford University Press; 2003.

    Google Scholar 

  76. Herlenius E, Lagercrantz H. Neurotransmitters and neuromodulators during early human development. Early Hum Dev. 2001;65:21–37.

    Article  PubMed  CAS  Google Scholar 

  77. Ikonomidou C, Bittigau P, Koch C, Genz K, Hoerster F, Felderhoff-Mueser U, et al. Neurotransmitters and apoptosis in the developing brain. Biochem Pharmacol. 2001;62:401–5.

    Article  PubMed  CAS  Google Scholar 

  78. Johnston MV. Neurotransmitters and vulnerability of the developing brain. Brain Dev. 1995;17:301–6.

    Article  PubMed  CAS  Google Scholar 

  79. Johnston MV, Ishiwa S. Ischemia and excitotoxins in development. Mental Retard Dev Disabil Res Rev. 1995;1:193–200.

    Article  Google Scholar 

  80. McDonald JW, Johnston MV. Physiological and pathological roles of excitatory amino acids during central nervous system development. Brain Res Rev. 1990;15:41–70.

    Article  PubMed  Google Scholar 

  81. Solås AB, Kutzsche S, Vinje M, Saugstad OD. Cerebral hypoxemia-ischemia and reoxygenation with 21% or 100% oxygen in newborn piglets: effects on extracellular levels of excitatory amino acids and microcirculation. Pediatr Crit Care Med. 2001;2:340–5.

    Article  PubMed  Google Scholar 

  82. Huang CC, Yonetani M, Lajevardi N, Delivoria-Papadopoulos M, Wilson DF, Pastuszko A. Comparison of postasphyxial resuscitation with 100% and 21% oxygen on cortical oxygen pressure and striatal dopamine metabolism in newborn piglets. J Neurochem. 1995;64:292–8.

    Article  PubMed  CAS  Google Scholar 

  83. Jatana M, Singh I, Singh A, Jenkins D. Combination of systemic hypothermia and N-acetylcysteine attenuates hypoxic-ischemic brain injury in neonatal rats. Pediatr Res. 2006;59:684–9.

    Article  PubMed  CAS  Google Scholar 

  84. Payton KS, Sheldon RA, Mack DW, Zhu C, Blomgren K, Ferriero DM, et al. Antioxidant status alters levels of Fas-associated death domain-like IL-1B-converting enzyme inhibitory protein following neonatal hypoxia-ischemia. Dev Neurosci. 2007;29:403–11.

    Article  PubMed  CAS  Google Scholar 

  85. Yesilirmak DC, Kumral A, Tugyan K, Cilaker S, Baskin H, Yilmaz O, et al. Effects of activated protein C on neonatal hypoxic ischemic brain injury. Brain Res. 2008;1210:56–62.

    Article  PubMed  CAS  Google Scholar 

  86. Johnson L, Bowen FW Jr, Abbasi S, Herrmann N, Weston M, Sacks L, et al. Relationship of prolonged pharmacologic serum levels of vitamin E to incidence of sepsis and necrotizing enterocolitis in infants with birth weight 1,500 grams or less. Pediatrics. 1985;75:619–38.

    PubMed  CAS  Google Scholar 

  87. Lorch V, Murphy D, Hoersten LR, Harris E, Fitzgerald J, Sinha SN. Unusual syndrome among premature infants: association with a new intravenous vitamin E product. Pediatrics. 1985;75:598–602.

    PubMed  CAS  Google Scholar 

  88. Jankov RP, Negus A, Tanswell AK. Antioxidants as therapy in the newborn: some words of caution. Pediatr Res. 2001;50:681–7.

    Article  PubMed  CAS  Google Scholar 

  89. Allen RG, Tresini M. Oxidative stress and gene regulation. Free Radic Biol Med. 2000;28:463–99.

    Article  PubMed  CAS  Google Scholar 

  90. Zafarullah M, Li WQ, Sylvester J, Ahmad M. Molecular mechanisms of N-acetylcysteine actions. Cell Mol Life Sci. 2003;60:6–20.

    Article  PubMed  CAS  Google Scholar 

  91. Buhimschi I, Buhimschi C, Weiner C. Protective effect of N-acetylcysteine against fetal death and preterm labor induced maternal inflammation. Am J Obstet Gynecol. 2003;188:203–8.

    Article  PubMed  CAS  Google Scholar 

  92. Farr SA, Poon HF, Dogrukol-Ak D, Drake J, Banks WA, Eyerman E, et al. The antioxidants alpha-lipoic acid and N-acetylcysteine reverse memory impairment and brain oxidative stress in aged SAMP8 mice. J Neurochem. 2003;84:1173–83.

    Article  PubMed  CAS  Google Scholar 

  93. Wang X, Svedin P, Nie C, Lapatto R, Zhu C, Gustavsson M, et al. N-Acetylcysteine reduces lipopolysaccharide-sensitized hypoxic-ischemic brain injury. Ann Neurol. 2007;61:263–71.

    Article  PubMed  CAS  Google Scholar 

  94. Beloosesky R, Gayle DA, Amidi F, Nunez SE, Babu J, Desai M, et al. N-Acetyl-cysteine suppresses amniotic fluid and placenta inflammatory cytokine responses to lipopolysaccharide in rats. Am J Obstet Gynecol. 2006;194:268–73.

    Article  PubMed  CAS  Google Scholar 

  95. Beloosesky R, Gayle DA, Ross MG. Maternal N-acetylcysteine suppresses fetal inflammatory cytokine responses to maternal lipopolysaccharide. Am J Obstet Gynecol. 2006;195:1053–7.

    Article  PubMed  CAS  Google Scholar 

  96. Horowitz RS, Dart RC, Jarvie DR, Bearer CF, Gupta U. Placental transfer of N-acetylcysteine following human maternal acetaminophen toxicity. J Toxicol Clin Toxicol. 1997;35:447–51.

    Article  PubMed  CAS  Google Scholar 

  97. Riggs BS, Bronstein AC, Kulig K, Archer PG, Rumack BH. Acute acetaminophen overdose during pregnancy. Obstet Gynecol. 1989;74:247–53.

    PubMed  CAS  Google Scholar 

  98. Cheung PY, Danial H, Jong J, Schulz R. Thiols protect the inhibition of myocardial aconitase by peroxynitrite. Arch Biochem Biophys. 1998;350:104–8.

    Article  PubMed  CAS  Google Scholar 

  99. Johnson ST, Bigam DL, Emara M, Obaid L, Slack G, Korbutt G, et al. N-Acetylcysteine improves the hemodynamics and oxidative stress in hypoxic newborn pigs reoxygenated with 100% oxygen. Shock. 2007;28:484–90.

    Article  PubMed  CAS  Google Scholar 

  100. Ferrer JV, Ariceta J, Guerrero D, Gomis T, Larrea MM, Balén E, et al. Allopurinol and N-acetylcysteine avoid 60% of intestinal necrosis in an ischemia-reperfusion experimental model. Transplant Proc. 2672;1998;30.

    Google Scholar 

  101. Chan E, Obaid L, Johnson ST, Bigam DL, Cheung PY. N-Acetylcysteine administration improves platelet aggregation in hypoxia-reoxygenation injury. Proc West Pharmacol Soc. 2007;50:53–7.

    PubMed  CAS  Google Scholar 

  102. Lin CH, Kuo SC, Huang LJ, Gean PW. Neuroprotective effect of N-acetylcysteine on neuronal apoptosis induced by a synthetic gingerdione compound: involvement of ERK and p38 phosphorylation. J Neurosci Res. 2006;84:1485–94.

    Article  PubMed  CAS  Google Scholar 

  103. Lee TF, Jantzie LL, Todd KG, Cheung PY. Postresuscitation N-acetylcysteine treatment reduces cerebral hydrogen peroxide in the hypoxic piglet brain. Intensive Care Med. 2008;34:190–7.

    Article  PubMed  CAS  Google Scholar 

  104. Lee TF, Tymafichuk CN, Bigam DL, Cheung PY. Effects of post-resuscitation N-acetylcysteine on cerebral free radical production and perfusion during reoxygenation of hypoxic newborn piglets. Pediatr Res. 2008;64:256–61.

    Article  PubMed  CAS  Google Scholar 

  105. Ytrebø LM, Korvald C, Nedredal GI, Elvenes OP, Nielsen Grymyr OJ, Revhaug A. N-Acetylcysteine increases cerebral perfusion pressure in pigs with fulminant hepatic failure. Crit Care Med. 2001;29:1989–95.

    Article  PubMed  Google Scholar 

  106. Khan M, Sekhon B, Jatana M, Giri S, Gilg AG, Sekhon C, et al. Administration of N-acetylcysteine after focal cerebral ischemia protects brain and reduces inflammation in rat model of experimental stroke. J Neurosci Res. 2004;76:519–27.

    Article  PubMed  CAS  Google Scholar 

  107. Yip L, Dart RC, Hurlbut KM. Intravenous administration of oral N-acetylcysteine. Crit Care Med. 1998;26:40–3.

    Article  PubMed  CAS  Google Scholar 

  108. Jantzie LL, Todd KG, Johnson ST, Bigam DL, Cheung P-Y. The use of N-acetylcysteine in the reoxygenation cerebral injury of asphyxiated newborn piglets (abstract). EPAS. 2007;617932.20.

    Google Scholar 

  109. Walker PD, Brokering KL, Theobald JC. Fenoldopam and N-acetylcysteine for the prevention of radiographic contrast material-induced nephropathy: a review. Pharmacotherapy. 2003;23:1617–26.

    Article  PubMed  CAS  Google Scholar 

  110. Sadowska AM, Manuel-Y-Keenoy B, De Backer WA. Antioxidant and anti-inflammatory efficacy of NAC in the treatment of COPD: discordant in vitro and in vivo dose-effects: a review. Pulm Pharmacol Ther. 2007;20:9–22.

    Article  PubMed  CAS  Google Scholar 

  111. Viña J, Vento M, García-Sala F, Puertes IR, Gascó E, Sastre J, et al. l-Cysteine and glutathione metabolism are impaired in premature infants due to cystathionase deficiency. Am J Clin Nutr. 1995;61:1067–9.

    PubMed  Google Scholar 

  112. Soghier LM, Brion LP. Cysteine, cystine or N-acetylcysteine supplementation in parenterally fed neonates. Cochrane Database Syst Rev. 2006;4:CD004869.

    PubMed  Google Scholar 

  113. Asfar P, De Backer D, Meier-Hellmann A, Radermacher P, Sakka SG. Clinical review: influence of vasoactive and other therapies on intestinal and hepatic circulations in patients with septic shock. Crit Care. 2004;8:170–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Po-Yin Cheung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Todd, K.G., Jantzie, L.L., Cheung, PY. (2011). Oxidative Stress in Neonatal Hypoxic-Ischemic Encephalopathy. In: Gadoth, N., Göbel, H. (eds) Oxidative Stress and Free Radical Damage in Neurology. Oxidative Stress in Applied Basic Research and Clinical Practice. Humana Press. https://doi.org/10.1007/978-1-60327-514-9_4

Download citation

Publish with us

Policies and ethics