Skip to main content

Cardiomyocytes From Human and Mouse Embryonic Stem Cells

  • Protocol
Tissue Engineering

Summary

Human and mouse embryonic stem (ES) cells have the potential to differentiate to cardiomyo- cytes in culture. They are therefore of interest for studying early human and mouse heart development, as well as properties of cardiomyocytes from both species, including their responses to cardiac drugs, and, at some point in the future, may represent a source of transplantable cells for cardiac muscle repair. The differentiation protocols that are effective depend in part on the species from which the ES cell lines were derived, and in part on the individual cell lines and the methods used for their propagation prior to differentiation. Here, several methods for generating and characterizing cardiomyocytes from mouse and human ES cells are described, as well as methods for dissociation of cardiomyocytes into single-cell suspensions which are useful both for characterizing cells by antibody staining and electrophysiological measurements, as well as preparing cells for transplantation into (animal) hearts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boheler. K. R., Czyz, J., Tweedie, D., Yang, H. T., Anisimov, S. V., and Wobus, A. M. (2002) Differentiation of pluripotent embryonic stem cells into cardiomyocytes. Circ. Res. 91, 189ā€“201.

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Mummery, C., Ward, D., van den Brink, C. E., Bird, S. D., Doevendans, P. A., Opthof, T., Brutel de la Riviere, A., Tertoolen, L., van der Heyden, M., and Pera, M. (2002) Cardiomyocyte differentiation of mouse and human embryonic stem cells. J. Anat. 200, 233ā€“242.

    ArticleĀ  CASĀ  Google ScholarĀ 

  3. Rathjen, J., Lake, J. A., Bettess, M. D., Washington, J. M., Chapman, G., and Rathjen, P. D. (1999) Formation of a primitive ectoderm like cell population, EPL cells, from ES cells in response to biologically derived factors. J. Cell Sci. 112, 601ā€“612.

    CASĀ  Google ScholarĀ 

  4. Rathjen, J. and Rathjen, P. D. (2001) Mouse ES cells: experimental exploitation of pluripotent differentiation potential. Curr. Opin. Genet. Dev. 11, 587ā€“594.

    ArticleĀ  CASĀ  Google ScholarĀ 

  5. Hescheler, J., Fleischmann, B. K., Lentini, S., Maltsev, V. A., Rohwedel, J., Wobus, A. M., and Addicks, K. (1997) Embryonic stem cells: a model to study structural and functional properties in cardiomyogenesis. Cardiovasc. Res. 36, 149ā€“162.

    ArticleĀ  CASĀ  Google ScholarĀ 

  6. Maltsev, V. A., Ji, G. J., Wobus, A. M., Fleischmann, B. K., and Hescheler, J. (1999) Establishment of beta-adrenergic modulation of L-type Ca2+ current in the early stages of cardiomyocyte development. Circ. Res. 84, 136ā€“145.

    CASĀ  Google ScholarĀ 

  7. Kehat, I., Kenyagin-Karsenti, D., Snir, M., Segev, H., Amit, M., Gepstein, A., Livne, E., Binah, O., Itskovitch-Eldor, J., and Gepstein, L. (2001) Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407ā€“414.

    CASĀ  Google ScholarĀ 

  8. Thomson, J. A., Itskovitch-Eldor, J., Shapiro, S. S., Waknitz, M. A., Marshall, V. S., and Jones, J. M. (1998) Embryonic stem cell lines derived from human blastocysts. Science 282, 1145ā€“1147.

    ArticleĀ  CASĀ  Google ScholarĀ 

  9. Xu, C., Police. S., Rao. N., and Carpenter, M. K. (2002) Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501ā€“508.

    ArticleĀ  CASĀ  Google ScholarĀ 

  10. He, J. Q., Ma, Y., Lee, Y., Thomson, J. A., and Kamp, T. J. (2003) Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 93, 32ā€“39.

    ArticleĀ  CASĀ  Google ScholarĀ 

  11. Zeng, X., Miura, T., Luo, Y., Bhattacharya, B., Condie, B., Chen, J., Ginis, I., Lyons, I., Mejido, J., Puri, R. K., Rao, M. S., and Freed, W. J. (2004) Properties of pluripotent human embryonic stem cells BG01 and BG02. Stem Cells 22, 292ā€“312.

    ArticleĀ  CASĀ  Google ScholarĀ 

  12. Denning, C., Allegrucci, C., Priddle, H., Barbadillo-Munoz, M. D., Anderson, D., Self, T., Smith, N. M., Parkin, C. T., and Young, L. E. (2006) Common culture conditions for maintenance and cardiomyocyte differentiation of the human embryonic stem cell lines, BG01 and HUES-7. Int. J. Dev. Biol. 50, 27ā€“37.

    ArticleĀ  CASĀ  Google ScholarĀ 

  13. Mummery, C., Ward-van Oostwaard, D., Doevendans, P., Spijker, R., van den Brink, S., Hassink, R., van der Heyden, M., Opthof, T., Pera, M., de la Riviere, A. B., Passier, R., and Tertoolen, L. (2003) Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 733ā€“2740.

    ArticleĀ  Google ScholarĀ 

  14. van den Eijden-vanRaaij, A. J., van Achterberg, T. A., van der Kruijssen, C. M., Piersma, A. H., Huylebroeck, D., de Laat, S. W., and Mummery, C. L. (1991) Differentiation of aggregated murine P19 embryonal carcinoma cells is induced by a novel visceral-endoderm specific FGF-like factor and inhibited by activin A. Mech. Dev. 33, 157ā€“165.

    ArticleĀ  Google ScholarĀ 

  15. Pera, M. F., Andreade, J., Houssami, S., Reubinoff, B., Trounson, A., Stanley, E. G., Ward-van Oostwaard, D., and Mummery, C. (2004) Regulation of human embryonic stem cell differentiation by BMP-2 and its antagonist noggin. J. Cell Sci. 117, 1269ā€“1280.

    ArticleĀ  CASĀ  Google ScholarĀ 

  16. Sachinidis, A., Gissel, C., Nierhoff, D., Hippler-Altenburg, R., Sauer, H., Wartenberg, M., and Hesheler, J. (2003) Identification of platelet-derived growth factor BB as cardiogenesis-inducing factor in mouse embryonic stem cells under serum free conditions Cell Physiol. Biochem. 13, 423ā€“429.

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Passier, R., Ward-van Oostwaard, D., Snapper, J., Kloots, J., Hassink, R., Kuijk, E., Roelen, B., Brutel de la Riviere, A., and Mummery, C. (2005) Increased cardiomyocyte differentiation from human embryonic stem cells in serum-free cultures. Stem Cells 23, 772ā€“780.

    ArticleĀ  CASĀ  Google ScholarĀ 

  18. Lebkowski, J. S., Gold, J., Xu, C., Funk, W., Chiu, C. P., Carpenter, M. K. (2001) Human embryonic stem cells: culture, differentiation, and genetic modification for regenerative medicine applications. Cancer J. 7(Suppl. 2), S83ā€“S93.

    Google ScholarĀ 

  19. Reubinoff, B. E., Pera, M. F., Fong, C. Y., Trounson, A., and Bongso, A. (2002) Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro. Nat. Biotechnol. 18, 399ā€“404.

    Google ScholarĀ 

  20. Cowan, C. A., Klimanskaya, I., McMahon, J., Atienza, J., Witmyer, J., Zucker, J. P., Wang, S., Morton, C. C., McMahon, A..P, Powers, D., and Melton, D. A. (2004). Derivation of embryonic stem-cell lines from human blastocysts. N. Engl. J. Med. 350, 1353ā€“1356.

    ArticleĀ  CASĀ  Google ScholarĀ 

  21. Rosler, E. S., Fisk, G. J., Ares, X., Irving, J., Miura, T., Rao, M. S., and Carpenter, M. K. (2004) Long-term culture of human embryonic stem cells in feeder-free conditions. Dev. Dyn. 229, 259ā€“274.

    ArticleĀ  CASĀ  Google ScholarĀ 

  22. Xu, C., Inokuma, M. S., Denham, J., Golds, K., Kundu, P., Gold, J. D., and Carpenter, M. K. (2001) Feeder-free growth of undifferentiated human embryonic stem cells. Nat. Biotechnol. 19, 971ā€“974.

    ArticleĀ  CASĀ  Google ScholarĀ 

  23. Mummery, C. L., Slager, H., Kruijer, W., Feijen, A., Freund, E., Koornneef, I., and van den Eijnden-van Raaij, A. J. (1990) Expression of transforming growth factor Ɵ2 during the differentiation of murine embryonal carcinoma and embryonic stem cells. Dev. Biol. 137, 161ā€“170.

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2007 Humana Press Inc.

About this protocol

Cite this protocol

Mummery, C. et al. (2007). Cardiomyocytes From Human and Mouse Embryonic Stem Cells. In: Hauser, H., Fussenegger, M. (eds) Tissue Engineering. Methods in Molecular Medicineā„¢, vol 140. Humana Press. https://doi.org/10.1007/978-1-59745-443-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-443-8_14

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-756-3

  • Online ISBN: 978-1-59745-443-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics