Skip to main content

Cardiovascular Autonomic Neuropathy

  • Chapter
Diabetic Neuropathy

Part of the book series: Clinical Diabetes ((CLD))

Abstract

Cardiovascular autonomic neuropathy (CAN) is a common but frequently overlooked complication of diabetes, which can lead to a diverse spectrum of disabling clinical manifestations ranging from mild exercise intolerance to sudden cardiac death. Although traditionally diagnosed using indirect cardiovascular reflex tests, new direct scintigraphic imaging techniques have demonstrated that a cardiac “dysinnervation” can occur early in the course of diabetes, which may have considerable implications for myocardial stability and function. Indeed recent studies have demonstrated that cardiovascular sympathetic tone may be altered very early in the cause of diabetes, and can be associated with altered myocardial blood flow regulation and impaired left ventricular (LV) function. Although convincing evidence has yet to be generated that any therapeutic intervention is capable of reversing CAN complicating diabetes once established, the development and progression of CAN has recently been shown to be sensitive to the simultaneous management of multiple cardiovascular risk factors. This chapter will review the clinical importance of CAN in diabetes, with a particular focus on its impact on the heart.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Wild S, Roglic G, Green A, Sicree R, King H. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care 2003;27:1047–1053.

    Article  Google Scholar 

  2. Vinik AI, Maser RE, Mitchell BD, Freeman R. Diabetic autonomic neuropathy. Diabetes Care 2003;26:1553–1579.

    Article  PubMed  Google Scholar 

  3. Stevens MJ. New imaging techniques for cardiovascular autonomic neuropathy: a window on the heart. Diab Technol Ther 2001;3:9–22.

    Article  CAS  Google Scholar 

  4. Pop-Busui R, Kirkwood I, Schmid H, et al. Sympathetic dysfunction in type 1 diabetes: association with impaired myocardial blood flow reserves and diastolic dysfunction. J Am Coll Cardiol 2004;44:2368–2374.

    Article  PubMed  CAS  Google Scholar 

  5. Kreiner G, Wolzt M, Fasching P, et al. Myocardial m-[123I]iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Comparison with cardiovascular reflex tests and relationship to left ventricular function. Diabetes 1995; 44:543–549.

    Article  PubMed  CAS  Google Scholar 

  6. Mustonen J, Mantysaari M, Kuikka J, et al. Decreased myocardial 1231-metaiodobenzylguanidine uptake is associated with disturbed left ventricular diastolic filling in diabetes. Am Heart J 1992;123:804–805.

    Article  PubMed  CAS  Google Scholar 

  7. Gaede P, Vedel P, Larsen N, Jensen GV, Parving HH, Pedersen O. Multifactorial intervention and cardiovascular disease in patients with type 2 diabetes. N Engl J Med 2003;348: 383–393.

    Article  PubMed  Google Scholar 

  8. American Diabetes Association and American Academy of Neurology. Report and recommendations of the San Antonio Conference on diabetic neuropathy (Consensus Statement) Diabetes 1988;37:1000–1004.

    Google Scholar 

  9. Hilsted J, Jeensen SB. A simple test for autonomic neuropathy in juvenile diabetics. Acta MedScand 1979;205:385–387.

    CAS  Google Scholar 

  10. Dyberg T, Benn J, Christiansen JS, Hilsted J, Nerup J. Prevalence of diabetic autonomic neuropathy measured by simple bedside tests. Diabetologia 1981;20:190–194.

    Google Scholar 

  11. Ewing DJ, Martyn CN, Young RJ, Clarke BF. The value of cardiovascular autonomic function tests: 10 years experience in diabetes. Diabetes Care 1985;8:491–498.

    Article  PubMed  CAS  Google Scholar 

  12. Kennedy WR, Navarro X, Sakuta M, Mandell H, Knox C, Sutherland DE. Physiological and clinical correlates of cardiovascular reflexes in diabetes mellitus. Diabetes Care 1989; 12:399–408.

    Article  PubMed  CAS  Google Scholar 

  13. Neil HA, Thomson AV, John S, McCarty ST, Mann JL. Diabetic autonomic neuropathy: the prevalence of impaired heart rate variability in a geographically defined population. Diabet Med 1989;6:20–24.

    PubMed  CAS  Google Scholar 

  14. Eurodiab IDDM Complication Group. Microvascular and acute complications in IDDM patients: the EURODIAB IDDM complications study. Diabetologia 1994;37:278–285.

    Google Scholar 

  15. Ziegler D, Dannehl K, Muhlen H, Spuler M, Gries FA. Prevalence of cardiovascular autonomic dysfunction assessed by spectral analysis, vector analysis, and standard tests of heart rate variation and blood pressure responses at various stages of diabetic neuropathy. Diabet Med 1992;9:806–814.

    PubMed  CAS  Google Scholar 

  16. Ziegler D, Gries FA, Spuler M, Lessmann F. Diabetic Cardiovascular Autonomic Neuropathy Multicenter Study Group: The epidemiology of diabetic neuropathy. J Diab Compl 1992;6:49–57.

    Article  CAS  Google Scholar 

  17. The DCCT Research Group. Factors in the development of diabetic neuropathy: baseline analysis of neuropathy in the feasibility phase of the Diabetes Control and Complications Trial (DCCT). Diabetes 1988;37:476–481.

    Article  Google Scholar 

  18. The Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes therapy on the development and progression of neuropathy. Ann Intern Med 1995; 122:561–568.

    Google Scholar 

  19. The Diabetes Control and Complications Trial Research Group. The effect of intensive diabetes therapy on measures of autonomic nervous system function in the Diabetes Control and Complications Trial (DCCT). Diabetologia 1998;41:416–423.

    Article  Google Scholar 

  20. Valensi P, Paries J, Attali JR. French Group for Research and Study of Diabetic Neuropathy. Cardiac autonomic neuropathy in diabetic patients: influence of diabetes duration, obesity, and microangiopathic complications—the French multicenter study. Metab Clin Exp 2003;52:815–820.

    PubMed  CAS  Google Scholar 

  21. Toyry JP, Niskanen LK, Mantysaari MJ, Lansimies EA, Uusitupa MI. Occurrence, predictors and clinical significance of autonomic neuropathy in NIDDM. Diabetes 1996;45:308–315.

    Article  PubMed  CAS  Google Scholar 

  22. Stevens MJ, Dayanikli F, Raffel DM, et al. Scintigraphic assessment of regionalized defects in myocardial sympathetic innervation and blood flow regulation in diabetic patients with autonomic neuropathy. JAm Coll Cardiol 1998;31:1575–1584.

    Article  CAS  Google Scholar 

  23. Mantysaari M, Kuikka J, Mustonen J, et al. Noninvasive detection of cardiac sympathetic nervous dysfunction in diabetic patients using [123I] metaiodobenzylguanidine. Diabetes 1992;41:1069–1075.

    Article  PubMed  CAS  Google Scholar 

  24. Kreiner G, Wolzt M, Fasching P, et al. Myocardial m-[123I] iodobenzylguanidine scintigraphy for the assessment of adrenergic cardiac innervation in patients with IDDM. Diabetes 1995; 44:543–549.

    Article  PubMed  CAS  Google Scholar 

  25. Langer A, Freeman ME, Josse RG, Armstrong PW. Metaiodobenzylguanidine imaging in diabetes mellitus: assessment of cardiac sympathetic denervation and its relation to autonomic dysfunction and silent myocardial ischemia. J Am Coll Cardiol 1995;25:610–618.

    Article  PubMed  CAS  Google Scholar 

  26. Allman KC, Stevens MJ, Wieland DM, et al. Noninvasive assessment of cardiac diabetic neuropathy by C-11 hydroxyephedrine and positron emission tomography. J Am Coll Cardiol 1993;22:1425–1432.

    PubMed  CAS  Google Scholar 

  27. Schnell O, Kirsch CM, Stemplinger J, Haslbeck M, Standl E. Scintigraphic evidence for cardiac sympathetic dysinnervation in long-term IDDM patients with and without ECG-based autonomic neuropathy. Diabetologia 1995;38:1345–1352.

    Article  PubMed  CAS  Google Scholar 

  28. Schnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E. Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes 1996; 45:801–805.

    Article  PubMed  CAS  Google Scholar 

  29. Stevens MJ, Raffel DM, Allman K, et al. Cardiac sympathetic dysinnervation in diabetesan explanation for enhanced cardiovascular risk? Circulation 1998;98:961–968.

    PubMed  CAS  Google Scholar 

  30. Ziegler D, Weise F, Langen KJ, et al. Effect of glycemic control on myocardial sympathetic innervation assessed by [123]metaiodobenzylguanidine scintigraphy: a 4-year prospective study in IDDM patients. Diabetologia 1998;41:443–451.

    Article  PubMed  CAS  Google Scholar 

  31. Stevens MJ, Raffel DM, Allman KC, Schwaiger M, Wieland DM. Regression and progression of cardiac sympathetic dysinnervation in diabetic patients with autonomic neuropathy. Metabolism 1999;48:92–101.

    Article  PubMed  CAS  Google Scholar 

  32. Schnell O, Muhr D, Weiss M, Dresel S, Haslbeck M, Standl E. Reduced myocardial 123I-metaiodobenzylguanidine uptake in newly diagnosed IDDM patients. Diabetes 1996; 45:801–805.

    Article  PubMed  CAS  Google Scholar 

  33. Verrotti A, Chiarelli F, Blasetti A, Morgese G. Autonomic neuropathy in diabetic children. JPaediatr Child Health 1995;31:545–548.

    CAS  Google Scholar 

  34. Ziegler D, Dannehl K, Wiefels K, Gries FA. Differential effects of near-normoglycaemia for 4 years on somatic nerve dysfunction and heart rate variation in type I diabetic patients. Diabet Med 1992;9:622–629.

    PubMed  CAS  Google Scholar 

  35. Jakobsen J, Christiansen JS, Kristoffersen I, et al. Autonomic and somatosensory nerve function after 2 years of continuous subcutaneous insulin infusion in type 1 diabetes. Diabetes 1988;37:452–455.

    Article  PubMed  CAS  Google Scholar 

  36. Sampson MJ, Wilson S, Karagiannis P, Edmonds M, Watkins PJ. Progression of diabetic autonomic neuropathy over a decade of insulin-dependent diabetics. Q J Med 1990;75:635–646.

    PubMed  CAS  Google Scholar 

  37. Levitt NS, Stansberry KB, Wynchank S, Vinik AI. The natural progression of autonomic neuropathy and autonomic function tests in a cohort of people with IDDM. Diabetes Care 1996; 19:751–754.

    Article  PubMed  CAS  Google Scholar 

  38. Forsen A, Kangro M, Sterner G, et al. A 14-year prospective study of autonomic nerve function in Type 1 diabetic patients: association with nephropathy. Diabet Med 2004;21: 852–858.

    Article  PubMed  CAS  Google Scholar 

  39. Ewing DJ, Campbell IW, Clarke BF. The natural history of diabetic autonomic neuropathy. Q J Med 1980;49:95–108.

    PubMed  CAS  Google Scholar 

  40. Ewing DJ. Cardiovascular reflexes and autonomic neuropathy. Clin Sci Mol Med 1978;55:321–327.

    PubMed  CAS  Google Scholar 

  41. American Diabetes Association and American Academy of Neurology. Proceedings of a consensus development conference on standardized measures in diabetic neuropathy. Diabetes Care 1992; 15:1080–1107.

    Google Scholar 

  42. Hayano J, Mukai S, Fukuta H, Sakata S, Ohte N, Kimura G. Postural response of lowfrequency component of heart rate variability is an increased risk for mortality in patients with coronary artery disease. Chest 2001; 120:1942–1952.

    Article  PubMed  CAS  Google Scholar 

  43. Wieland DM, Brown LE, Tobes MC, et al. Imaging the primate adrenal medulla with [I-123] and [I-131] metaiodobenzylguanidine: concise communication. J Nucl Med 1981;22:358–364.

    PubMed  CAS  Google Scholar 

  44. Sisson JC, Wieland DM, Mangner TJ, Tobes MC, Jacques S. Metaiodobenzylguanidine as an index of the adrenergic system integrity and function. J Nucl Med 1987;28:1620–1624.

    PubMed  CAS  Google Scholar 

  45. Glowniak JV. Cardiac studies with metaiodobenzylguanidine: a critique of methods and interpretation of results. J Nucl Med 1995;36:2133–2137.

    PubMed  CAS  Google Scholar 

  46. Raffel DM, Corbett JR, Schwaiger M, Wieland DM. Mechanism-based strategies for mapping heart sympathetic function. Nucl Med Biol 1995;22:1019–1026.

    Article  PubMed  CAS  Google Scholar 

  47. Allman KC, Wieland DM, Muzik O, DeGrado TR, Wolfe ER, Schwaiger M. Carbon-11 hydroxyephedrine with positron emission tomography for serial assessment of cardiac adrenergic neuronal function after acute myocardial infarction in humans. J Am Coll Cardiol 1993;22:368–375.

    PubMed  CAS  Google Scholar 

  48. DeGrado TR, Hutchins GD, Toorongian SA, Wieland DM, Schwaiger M. Myocardial kinetics of carbon-11-meta-hydroxyephedrine (HED): retention mechanisms and effects of norepinephrine. J Nucl Med 1993;34:1287–1293.

    PubMed  CAS  Google Scholar 

  49. Nakajo M, Shapiro B, Glowniak J, Sisson JC, Beierwaltes WH. Inverse relationship between cardiac accumulation of meta-[131I]iodobenzylguanidine (I-131 MIBG) and circulating catecholamines in suspected pheochromocytoma. J Nucl Med 1983;24:1127–1134.

    PubMed  CAS  Google Scholar 

  50. Gasnier B, Roisin MP, Scherman D, Coornaert S, Desplanches G, Henry JP. Uptake of meta-iodobenzylguanidine by bovine chromaffin granule membranes. Mol Pharmacol 1986;29:275–280.

    PubMed  CAS  Google Scholar 

  51. Vinik AI, Erbas T. Neuropathy, in Handbook of Exercise in Diabetes (Ruderman N, Devlin JT, Schneider SH, Kriska A, eds.), Alexandria, VA, 2002, pp. 463–496.

    Google Scholar 

  52. Vinik AI, Park TS, Stansberry KB, Pittenger GL. Diabetic neuropathies. Diabetologia 2000;43:957–973.

    Article  PubMed  CAS  Google Scholar 

  53. Hilsted J. Pathophysiology in diabetic autonomic neuropathy: Cardiovascular, hormonal, and metabolic studies. Diabetes 1982;31:730–737.

    PubMed  CAS  Google Scholar 

  54. Zola B, Kahn JK, Juni JE, Vinik AI. Abnormal cardiac function in diabetic patients with autonomic neuropathy in the absence of ischemic heart disease. J Clin Endocrinol Metab 1986;63:208–214.

    PubMed  CAS  Google Scholar 

  55. Willenheimer RB, Erhardt LR, Nilsson H, Lilja B, Juul-Moller S, Sundkvist G. Parasympathetic neuropathy associated with left ventricular diastolic dysfunction in patients with insulin-dependent diabetes mellitus. Scand Cardiovasc J 1998;32:172–180.

    Google Scholar 

  56. Dhalla NS, Liu X, Panagia V, Takeda N. Subcellular remodelling and heart dysfunction in chronic diabetes. J Cardiovasc Res 1988;40:239–247.

    Article  Google Scholar 

  57. Roy TM, Peterson HR, Snider HL, et al. Autonomic influence on cardiovascular performance in diabetic subjects. Am J Med 1989;87:382–388.

    Article  PubMed  CAS  Google Scholar 

  58. Position paper. Orthostatic hypotension, multiple system atrophy (the Shy Drager syndrome) and pure autonomic failure. JAuton Nerv Syst 1996;58:123–124.

    Google Scholar 

  59. Hilsted J, Parving HH, Christensen NJ, Benn J, Galbo H. Hemodynamics in diabetic orthostatic hypotension. J Clin Invest 1981;68:1427–1434.

    PubMed  CAS  Google Scholar 

  60. Hornung RS, Mahler RF, Raftery EB. Ambulatory blood pressure and heart rate in diabetic patients: an assessment of autonomic function. Diabet Med 1989;6:579–585.

    PubMed  CAS  Google Scholar 

  61. Burgos LG, Ebert TJ, Asiddao C, et al. Increased intraoperative cardiovascular morbidity in diabetics with autonomic neuropathy. Anesthesiology 1989;70:591–597.

    Article  PubMed  CAS  Google Scholar 

  62. Sobotka PA, Liss HP, Vinik AI. Impaired hypoxic ventilatory drive in diabetic patients with autonomic neuropathy. J Clin Endocrinol Metab 1986;62:658–663.

    PubMed  CAS  Google Scholar 

  63. Ewing DJ, Campbell IW, Clarke BF. Assessment of cardiovascular effects in diabetic autonomic neuropathy and prognostic implications. Ann Int Med 1980;92:308–311.

    PubMed  CAS  Google Scholar 

  64. Hjalmarson A, Elmfeldt D, Herlitz J, et al. Effect on mortality of metoprolol in acute myocardial infarction, a double-blind randomized trial. Lancet 1981;ii: 123–127.

    Google Scholar 

  65. Beta-blocker Heart Attack Trial Research Group. A randomized trial of propranolol in patients with acute myocardial infarction. I. Mortality results. JAMA 1982;247:1707–1714.

    Article  Google Scholar 

  66. Norwegian Multicentre Study Group. Timolol-induced reduction in mortality and reinfarction in patients surviving acute myocardial infarction. N Engl J Med 1981;304: 801–807.

    Article  Google Scholar 

  67. Australian and Swedish Pindolol Study Group. The effect of pindolol on the two year mortality after complicated myocardial infarction. Eur Heart J 1983;4:367–375.

    Google Scholar 

  68. Jaffe AS, Spadaro JJ, Schectman K, Roberts R, Geltman EM, Sobel BE. Increased congestive heart failure after myocardial infarction of modest extent in patients with diabetes mellitus. Am Heart J 1984;108:31–37.

    Article  PubMed  CAS  Google Scholar 

  69. Gundersen T, Kjekshus JT. Timolol treatment after myocardial infarction in diabetic patients. Diabetes Care 1983;6:285–290.

    Article  PubMed  CAS  Google Scholar 

  70. Smith JW, Marcus FI, Serokman R. With the Multicentre Postinfarction Research Group. Prognosis of patients with diabetes mellitus after acute myocardial infarction. Am J Cardiol 1984;54:718–721.

    Article  PubMed  CAS  Google Scholar 

  71. Fava S, Azzopardi J, Muscatt HA, Fenech FF. Factors that influence outcome in diabetic subjects with myocardial infarction. Diabetes Care 1993;16:1615–1618.

    Article  PubMed  CAS  Google Scholar 

  72. Ziegler D. Cardiovascular autonomic neuropathy: clinical manifestations and measurement. Diabetes Rev 1999;7:342–357.

    Google Scholar 

  73. Kennedy WR, Navarro X, Sakuta M, Mandell H, Knox CK, Sutherland DE. Physiological and clinical correlates of cardiovascular reflexes in diabetes mellitus. Diabetes Care 1989; 12:399–408.

    Article  PubMed  CAS  Google Scholar 

  74. Chen HS, Hwu CM, Kuo BI, et al. Abnormal cardiovascular reflex tests are predictors of mortality in Type 2 diabetes mellitus. Diabete Med 2001;18:268–273.

    Article  CAS  Google Scholar 

  75. Mankovsky BN, Piolot R, Mankovsky OL, Ziegler D. Impairment of cerebral autoregulation in diabetic patients with cardiovascular autonomic neuropathy and orthostatic hypotension. Diabete Med 2003;20:119–126.

    Article  CAS  Google Scholar 

  76. Cohen JA, Estacio RO, Lundgren RA, Esler AL, Schrier RW. Diabetic autonomic neuropathy is associated with an increased incidence of strokes. Aut Neurosci Basic Clin 2003; 108:73–78.

    Article  Google Scholar 

  77. Gerritsen J, Dekker JM, ten Voorde BJ, et al. Impaired autonomic function is associated with increased mortality, especially in subjects with diabetes, hypertension, or a history of cardiovascular disease: the Hoorn Study. Diabetes Care 2001;24:1793–1798.

    Article  PubMed  CAS  Google Scholar 

  78. Suarez GA, Clark VM, Norell JE, et al. Sudden cardiac death in diabetes mellitus: risk factors in the Rochester diabetic neuropathy study. J Neurol Neurosurg Psych 2005;76: 240–245.

    Article  CAS  Google Scholar 

  79. Orchard TJ, Lloyd CE, Maser RE, Kuller LH. Why does diabetic autonomic neuropathy predict IDDM mortality? An analysis from the Pittsburgh Epidemiology of Diabetes Complications Study. Diabetes Res Clin Pract 1996;34(Suppl):S165–S171.

    Article  PubMed  Google Scholar 

  80. Rathman W, Ziegler D, Jahnke M, Haastert B, Gries FA. Mortality in diabetic patients with cardiovascular autonomic neuropathy. Diabet Med 1993; 10:820–824.

    Article  Google Scholar 

  81. Lee KH, Jang HJ, Kim YH, et al. Prognostic value of cardiac autonomic neuropathy independent and incremental to perfusion defects in patients with diabetes and suspected coronary artery disease. Am J Cardiol 2003;92:1458–1461.

    Article  PubMed  Google Scholar 

  82. Page MM, Watkins PJ. Cardiorespiratory arrest and diabetic autonomic neuropathy. Lancet 1978;1:14–16.

    Article  PubMed  CAS  Google Scholar 

  83. Meyer C, Grossmann R, Mitrakou A, et al. Effects of autonomic neuropathy on counter-regulation and awareness of hypoglycemia in type 1 diabetic patients. Diabetes Care 1998;21:1960–1966.

    Article  PubMed  CAS  Google Scholar 

  84. Sivieri R, Veglio M, Chinaglia A, Scaglione P, Cavallo-Perin P. Prevalence of QT prolongation in a type 1 diabetic population and its association with autonomic neuropathy. Diabet Med 1993; 10:920–924.

    PubMed  CAS  Google Scholar 

  85. Veglio M, Borra M, Stevens LK, Fuller JH, Perin PC. The relation between QTc interval prolongation and diabetic complications: the EURODIAB IDDM Complications Study Group. Diabetologia 1999;42:68–75.

    Article  PubMed  CAS  Google Scholar 

  86. Valensi PE, Johnson NB, Maison-Blanche P, Extramania F, Motte G, Coumel P. Influence of cardiac autonomic neuropathy on heart rate dependence of ventricular repolarization in diabetic patients. Diabetes Care 2002;25:918–923.

    Article  PubMed  Google Scholar 

  87. Miettinen H, Lehto S, Salomaa V, et al. Impact of diabetes on mortality after the first myocardial infarction: The FINMONICA Myocardial Infarction Register Study Group. Diabetes Care 1998;21:69–75.

    Article  PubMed  CAS  Google Scholar 

  88. Morning peak in the incidence of myocardial infarction: experience in the ISIS-2 trial. ISIS-2 (Second International Study of Infarct Survival) Collaborative Group. Eur Heart J 1992;13:594–598.

    Google Scholar 

  89. Aronson D, Weinrauch LA, D’Elia JA, Tofler GH, Burger AJ. Circadian patterns of heart rate variability, fibrinolytic activity, and hemostatic factors in type I diabetes mellitus with cardiac autonomic neuropathy. Am J Cardiol 1999;84:449–453.

    Article  PubMed  CAS  Google Scholar 

  90. Valensi P, Sachs RN, Harfouche B, et al. Predictive value of cardiac autonomic neuropathy in diabetic patients with or without silent myocardial ischemia. Diabetes Care 2001;24: 339–343.

    Article  PubMed  CAS  Google Scholar 

  91. Milan Study on Atherosclerosis and Diabetes (MiSAD) Group. Prevalence of unrecognized silent myocardial ischemia and its association with atherosclerotic risk factors in noninsulin-dependent diabetes mellitus. Am J Cardiol 1997;79:134–139.

    Article  Google Scholar 

  92. Zarich S, Waxman S, Freeman RT, Mittleman M, Hegarty P, Nesto RW. Effect of autonomic nervous system dysfunction on the circadian pattern of myocardial ischemia in diabetes mellitus. J Am Coll Cardiol 1994;24:956–962.

    PubMed  CAS  Google Scholar 

  93. Campbell IW, Ewing DJ, Clarke BF. Painful myocardial infarction in severe diabetic autonomic neuropathy. Acta Diabetol Lat 1978; 15:210–214.

    Article  Google Scholar 

  94. Sawickim PT, Kiwitt S, Bender R, Berger M. The value of QT interval dispersion for identification of total mortality risk in non-insulin-dependent diabetes mellitus. J Intern Med 1998;24:49–56.

    Article  Google Scholar 

  95. Naas AA, Davidson NC, Thompson C, et al. QT and QTc dispersion are accurate predictors of cardiac death in newly diagnosed non-insulin dependent diabetes: cohort study. BMJ 1998;316:745–746.

    PubMed  CAS  Google Scholar 

  96. Poulsen PL, Ebbehoj E, Arildsen H, et al. Increased QTc dispersion is related to blunted circadian blood pressure variation in normoalbuminuric type 1 diabetic patients. Diabetes 2001;50:837–842.

    Article  PubMed  CAS  Google Scholar 

  97. Takahashi N, Nakagawa M, Saikawa T, et al. Regulation of QT indices mediated by autonomic nervous function in patients with type 2 diabetes. Int J Cardiol 2004;96: 375–379.

    Article  PubMed  Google Scholar 

  98. Lee SP, Yeoh L, Harris ND, et al. Influence of autonomic neuropathy on QTc interval lengthening during hypoglycemia in type 1 diabetes. Diabetes 2004;53:1535–1542.

    Article  PubMed  CAS  Google Scholar 

  99. Matsuo S, Takahashi M, Nakamura Y, Kinoshita M. Evaluating of cardiac sympathetic innervation with iodine-123-metaiodobenzylguanidine imaging in silent myocardial ischemia. J Nucl Med 1996;37:712–717.

    PubMed  CAS  Google Scholar 

  100. Koistinen MJ, Airaksinen KE, Huikuri HV, et al. No difference in cardiac innervation of diabetic patients with painful and asymptomatic coronary artery disease. Diabetes Care 1996; 19:231–235.

    Article  PubMed  CAS  Google Scholar 

  101. Langen K-J, Ziegler D, Weise F, et al. Evaluation of QT interval length, QT dispersion and myocardial m-iodobenzylguanidine uptake in insulin-dependent diabetic patients with autonomic neuropathy. Clin Sci 1997;92:325–333.

    Google Scholar 

  102. Shimabukuro M, Chibana T, Yoshida H, Nagamine F, Komiya I, Takasu N. Increased QT disperson and cardiac adrenergic dysinnervation in diabetic patients with autonomic neuropathy. Am J Cardiol 1996;78:1057–1059.

    Article  PubMed  CAS  Google Scholar 

  103. Hara M, Sakino H, Katsuragi I, Tanaka K, Yoshimatsu H. Regulation of QT indices mediated by autonomic nervous function in patients with type 2 diabetes. Int J Cardiol 2004; 96:375–379.

    Article  PubMed  Google Scholar 

  104. Kahn JK, Sisson JC, Vinik AI. Prediction of sudden cardiac death in diabetic autonomic neuropathy. J Nucl Med 1988;29:1605–1606.

    PubMed  CAS  Google Scholar 

  105. Nitenberg A, Valensi P, Sachs R, Dali M, Aptecar E, Attali JR. Impairment of coronary vascular reserve and ACh-induced coronary vasodilation in diabetic patients with angiographically normal coronary arteries and normal left ventricular systolic function. Diabetes 1993;42:1017–1025.

    Article  PubMed  CAS  Google Scholar 

  106. Di Carli MF, Janisse J, Grunberger G, Ager J. Role of chornic hyperglycemia in the pathogenesis of coronary microvascular dysfunction in diabetes. J Am Coll Cardiol 2003; 41:1387–1393.

    Article  PubMed  CAS  Google Scholar 

  107. Pitkanen OP, Nuutila P, Raitakari OT, et al. Coronary flow reserve is reduced in young men with IDDM. Diabetes 1998;47:248–254.

    Article  PubMed  CAS  Google Scholar 

  108. Di Carli MF, Bianco-Batlles D, Landa ME, et al. Effects of autonomic neuropathy on coronary blood flow in patients with diabetes mellitus. Circulation 1999;100:813–819.

    PubMed  Google Scholar 

  109. Yokoyama I, Ohtake T, Momomura S, et al. Hyperglycemia rather than insulin resistance is related to reduced coronary flow reserve in NIDDM. Diabetes 1998;47:119–124.

    Article  PubMed  CAS  Google Scholar 

  110. Torry RJ, Connell PM, O’Brien DM, Chilian WM, Tomanek RJ. Sympathectomy stimulates capillary but not precapillary growth in hypertrophic hearts. Am J Physiol 1991;260: H1515–H1521.

    PubMed  CAS  Google Scholar 

  111. Fang ZY, Yuda S, Anderson V, Short L, Case C, Marwick TH. Echocardiographic detection of early diabetic myocardial disease. J Am Coll Cardiol 2003;41:611–617.

    Article  PubMed  CAS  Google Scholar 

  112. Vered A, Battler A, Segal P, et al. Exercise-induced left ventricular dysfunction in young men with asymptomatic diabetes mellitus (diabetic cardiomyopathy). Am J Cardiol 1984; 54:633–637.

    Article  PubMed  CAS  Google Scholar 

  113. Taskiran M, Rasmussen V, Rasmussen B, et al. Left ventricular dysfunction in normotensive Type 1 diabetic patients: the impact of autonomic neuropathy. Diab Med 2004;21:524–530.

    Article  CAS  Google Scholar 

  114. Didangelos TP, Arsos GA, Karamitsos DT, Athyros VG, Karatzas ND. Left ventricular systolic and diastolic function in normotensive type 1 diabetic patients with or without autonomic neuropathy: a radionuclide ventriculography study. Diabetes Care 2003;26:1955–1960.

    Article  PubMed  Google Scholar 

  115. Johnson BF, Nesto RW, Pfeifer MA, et al. Cardiac abnormalities in diabetic patients with neuropathy: effects of aldose reductase inhibitor administration. Diabetes Care 2004; 27:448–454.

    Article  PubMed  CAS  Google Scholar 

  116. Bristow MR. beta-adrenergic receptor blockade in chronic heart failure. Circulation 2000; 101:558–569.

    PubMed  CAS  Google Scholar 

  117. Sugiyama T, Kurata C, Tawarahara K, Nakano T. Is abnormal iodine-123-MIBG kinetics associated with left ventricular dysfunction in patients with diabetes mellitus? J Nucl Cardiol 2000;7:562–568.

    Article  PubMed  CAS  Google Scholar 

  118. Nakata T, Wakabayashi T, Kyuma M, et al. Prognostic implications of an initial loss of cardiac metaiodobenzylguanidine uptake and diabetes mellitus in patients with left ventricular dysfunction. J Card Fail 2003;9:113–121.

    Article  PubMed  CAS  Google Scholar 

  119. Hogikyan RV, Galecki AT, Halter JB, Supiano MA. Heightened norepinephrine-mediated vasoconstriction in type 2 diabetes. Metabolism 1999;48:1536–1541.

    Article  PubMed  CAS  Google Scholar 

  120. Christensen NJ. Plasma norepinephrine and epinephrine in untreated diabetics, during fasting and after insulin administration. Diabetes 1974;23:1–8.

    PubMed  CAS  Google Scholar 

  121. Eckberg DL, Harkins SW, Fritsch JM, Musgrave GE, Gardner DF. Baroreflex control of plasma norepinephrine and heart period in healthy subjects and diabetic patients. J Clin Invest 1986;78:366–374.

    Article  PubMed  CAS  Google Scholar 

  122. Eichler HG, Blaschke TF, Kraemer FB, Ford GA, Blochl-Daum B, Hoffman BB. Responsiveness of superficial hand veins to alpha-adrenoceptor agonists in insulindependent diabetic patients. Clin Sci (Lond) 1992;82:163–168.

    CAS  Google Scholar 

  123. Weidmann P, Beretta-Piccoli C, Trost BN. Pressor factors and responsiveness in hypertension accompanying diabetes mellitus. Hypertension 1985;7:1133–1142.

    Google Scholar 

  124. Hoogenberg K, Dullaart RP. Abnormal plasma noradrenaline response and exercise induced albuminuria in type 1 (insulin-dependent) diabetes mellitus. Scand J Clin Lab Invest 1992; 52:803–811.

    Article  PubMed  CAS  Google Scholar 

  125. Tamborlane WV, Sherwin RS, Koivisto V, Hendler R, Genel M, Felig P. Normalization of the growth hormone and catecholamine response to exercise in juvenile-onset diabetic subjects treated with a portable insulin infusion pump. Diabetes 1979;28:785–788.

    PubMed  CAS  Google Scholar 

  126. Meyer C, Grossmann R, Mitrakou A, et al. Effects of autonomic neuropathy on counter-regulation and awareness of hypoglycemia in type 1 diabetic patients. Diabetes Care 1998; 21:1960–1966.

    Article  PubMed  CAS  Google Scholar 

  127. Francis GS. Diabetic cardiomyopathy: fact or fiction? Heart 2001;85:247–248.

    Article  PubMed  CAS  Google Scholar 

  128. Frustaci A, Kajstura J, Chimenti C, et al. Myocardial cell death in human diabetes. Circ Res 2000;87:1123–1132.

    PubMed  CAS  Google Scholar 

  129. Thiene G, Nava A, Corrado D, Rossi L, Pennelli N. Right ventricular cardiomyopathy and sudden death in young people. N Engl J Med 1988; 318:129–133.

    Article  PubMed  CAS  Google Scholar 

  130. Marcus FI, Fontaine GH, Guiraudon G, et al. Right ventricular dysplasia: a report of 24 adult cases. Circulation 1982;65:384–398.

    PubMed  CAS  Google Scholar 

  131. Mallat Z, Tedgui A, Fontaliran F, Frank R, Durigon M, Fontaine G. Evidence of apoptosis in arrhythmogenic right ventricular dysplasia. N Engl J Med 1996;335:1190–1196.

    Article  PubMed  CAS  Google Scholar 

  132. Givertz MM, Sawyer DB, Colucci WS. Antioxidants and myocardial contractility: illuminating the “Dark Side” of beta-adrenergic receptor activation? Circulation 2001; 103: 782–783.

    PubMed  CAS  Google Scholar 

  133. Communal C, Singh K, Pimentel DR, Colucci WS. Norepinephrine stimulates apoptosis in adult rat ventricular myocytes by activation of the beta-adrenergic pathway Circulation 1998;98:1329–1334.

    PubMed  CAS  Google Scholar 

  134. Eichhorn EJ, Bristow MR. Medical therapy can improve the biological properties of the chronically failing heart. A new era in the treatment of heart failure. Circulation 1996;94: 2285–2296.

    PubMed  CAS  Google Scholar 

  135. Gambardella S, Frontoni S, Spallone V, et al. Am J Hypertens 1993;6:97–102.

    PubMed  CAS  Google Scholar 

  136. Valette H, Deleuze P, Syrota A, et al. Canine myocardial beta-adrenergic, muscarinic receptor densities after denervation: a PET study. J NuclMed 1995;36:140–146.

    CAS  Google Scholar 

  137. Van der Vusse GJ, Dubelaar ML, Coumans WA, et al. Depletion of endogenous dopamine stores and shift in beta-adrenoceptor subtypes in cardiac tissue following five weeks of chronic denervation. Mol Cell Biochem 1998;183:215–219.

    Article  PubMed  Google Scholar 

  138. Brown M, Marshall DR, Sobel BE, Bergmann SR. Delineation of myocardial oxygen utilization with carbon-11-labeled acetate. Circulation 1987;76:687–696.

    PubMed  CAS  Google Scholar 

  139. Buxton DB, Schwaiger M, Nguyen A, Phelps ME, Schelbert HR. Radiolabeled acetate as a tracer of myocardial tricarboxylic acid cycle flux. Circ Res 1988;63:628–634.

    PubMed  CAS  Google Scholar 

  140. Drake-Holland AJ, Van der Vusse GJ, Roemen TH, et al. Cardiovasc Drugs Ther 2001; 15:111–117.

    Article  PubMed  CAS  Google Scholar 

  141. Tesfaye S, Chaturvedi N, Eaton SE, et al. Vascular risk factors and diabetic neuropathy. N Engl J Med 2005;352:341–350.

    Article  PubMed  CAS  Google Scholar 

  142. Howorka K, Pumprla J, Haber P, Koller-Strametz J, Mondrzyk J, Schabmann A. Effects of physical training on heart rate variability in diabetic patients with various degrees of cardiovascular autonomic neuropathy. Cardiovascular Res 1997;34:206–214.

    Article  CAS  Google Scholar 

  143. Kontopoulos AG, Athyros VG, Didangelos TP, et al. Effect of chronic quinapril administration on heart rate variability in patients with diabetic autonomic neuropathy. Diabetes Care 1997;20:355–361.

    Article  PubMed  CAS  Google Scholar 

  144. Malik RA, Williamson S, Abbott C, et al. Effect of angiotensin-converting-enzyme (ACE) inhibitor trandolapril on human diabetic neuropathy: randomised double-blind controlled trial. Lancet 1998;352:1978–1981.

    Article  PubMed  CAS  Google Scholar 

  145. Bakris GL, Fonseca V, Katholi RE, et al. Metabolic effects of carvedilol vs metoprolol in patients with type 2 diabetes mellitus and hypertension: a randomized controlled trial. JAMA 2004;292:2227–2236.

    Article  PubMed  CAS  Google Scholar 

  146. Stevens MJ, Obrosova I, Cao X, Van Huysen C, Greene DA. Effects of DL-a-lipoic acid on peripheral nerve conduction, blood flow, energy metabolism, and oxidative stress in experimental diabetic neuropathy. Diabetes 2000;49:1006–1015.

    Article  PubMed  CAS  Google Scholar 

  147. Cameron NE, Cotter MA, Archibald V, Dines KC, Maxfield EK. Anti-oxidant and pro-oxidant effects on nerve conduction velocity, endoneurial blood flow and oxygen tension in non-diabetic and streptozotocin-diabetic rats. Diabetologia 1994;37:449–459.

    Article  PubMed  CAS  Google Scholar 

  148. Low PA, Nickander KK. Oxygen free radical effects in sciatic nerve in experimental diabetes. Diabetes 1991;40:873–877.

    Article  PubMed  CAS  Google Scholar 

  149. Loven D, Schedl H, Wilson H, et al. Effect of insulin and oral glutathione on glutathione levels and superoxide dismutase activities in organs of rats with streptozocininduced diabetes. Diabetes 1986;35:503–507.

    Article  PubMed  CAS  Google Scholar 

  150. Godin DV, Wohaieb SA, Garnett ME, Doumeniouk AD. Antioxidant enzyme alterations in experimental and clinical diabetes. Mol Cell Biochem 1988;84:223–231.

    Article  PubMed  CAS  Google Scholar 

  151. Bravenboer B, Kappelle AC, Hamers FP, van Buren T, Erkelens DW, Gispen WH. Potential use of glutathione for the prevention and treatment of diabetic neuropathy in the streptozotocin-induced diabetic rat. Diabetologia 1992;35:813–817.

    Article  PubMed  CAS  Google Scholar 

  152. Ward KK, Low PA, Schmelzer JD, Zochodne DW. Prostacyclin and noradrenaline in peripheral nerve of chronic experimental diabetes in rats. Brain 1989; 112:197–208.

    Article  PubMed  Google Scholar 

  153. Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes 2001; 50:1414–1424.

    Article  PubMed  CAS  Google Scholar 

  154. Tesfamariam B, Cohen RA. Free radicals mediate endothelial cell dysfunction caused by elevated glucose. Am J Physiol 1992;263:H321–H326.

    PubMed  CAS  Google Scholar 

  155. Ting HH, Timimi FK, Boles KS, Creager SJ, Ganz P, Creager MA. Vitamin C improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J Clin Invest 1996;97:22–28.

    PubMed  CAS  Google Scholar 

  156. Upritchard JE, Sutherland WH, Mann JI. Effect of supplementation with tomato juice, vitamin E, and vitamin C on LDL oxidation and products of inflammatory activity in type 2 diabetes. Diabetes Care 2000;23:733–738.

    Article  PubMed  CAS  Google Scholar 

  157. Cook SA, Sugden PH, Clerk A. Regulation of bcl-2 family proteins during development and in response to oxidative stress in cardiac myocytes: association with changes in mitochondrial membrane potential. Circ Res 1999;85:940–949.

    PubMed  CAS  Google Scholar 

  158. von Harsdorf R, Li P, Dietz R. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation 1999;99:2934–2941.

    Google Scholar 

  159. Bisognano JD, Weinberger HD, Bohlmeyer TJ, et al. Myocardial-directed overexpression of the human beta(1)-adrenergic receptor in transgenic mice. J Mol Cell Cardiol 2001;32:817–830.

    Article  CAS  Google Scholar 

  160. Naveilhan P, Neveu I, Jehan F, Baudet C, Wion D, Brachet P. Reactive oxygen species influence nerve growth factor synthesis in primary rat astrocytes. J Neurochem 1994; 62:2178–2186.

    Article  PubMed  CAS  Google Scholar 

  161. Garrett NE, Malcangio M, Dewhurst M, Tomlinson DR. á-lipoic acid corrects neuropeptide deficits in diabetic rats via induction of trophic support. NeurosciLett 1997;222:191–194.

    CAS  Google Scholar 

  162. Schmid H, Forman LA, Cao X, Sherman PS, Stevens MJ. Heterogeneous cardiac sympathetic denervation and decreased myocardial nerve growth factor in streptozotocin diabetic rats: implications for cardiac sympathetic dysinnervation complicating diabetes. Diabetes 1999;48:603–608.

    Article  PubMed  CAS  Google Scholar 

  163. Obrosova IG, Fathallah L, Stevens MJ. Taurine counteracts oxidative stress and nerve growth factor deficits in early experimental diabetic neuropathy. Exp Neurol 2001; 172: 211–219.

    Article  PubMed  CAS  Google Scholar 

  164. Murase K, Hattori A, Kohno M, Hayashi K. Stimulation of nerve growth factor synthesis/ secretion in mouse astroglial cells by coenzymes. Biochem Mol Biol Int 1993;30:615–621.

    PubMed  CAS  Google Scholar 

  165. Ghiselli A, Serafini M, Maiani G, Azzini E, Ferro-Luzzi A. A fluorescence-based method for measuring total plasma antioxidant capability. Free Radic Biol Med 1995;18:29–36.

    Article  PubMed  CAS  Google Scholar 

  166. Ceriello A, Bortolotti N, Falleti E, et al. Total radical-trapping antioxidant parameter in NIDDM patients. Diabetes Care 1997;20:194–197.

    Article  PubMed  CAS  Google Scholar 

  167. Ziegler D, Sohr CG, Nourooz-Zadeh J. Oxidative stress and antioxidant defense in relation to the severity of diabetic polyneuropathy and cardiovascular autonomic neuropathy Diabetes Care 2004;27:2178–2183.

    Article  PubMed  CAS  Google Scholar 

  168. Stevens MJ, Feldman EL, Thomas TP, Greene DA. The pathogenesis of diabetic neuropathy, in Clinical Management of Diabetic Neuropathy (Veves A, Conn PMC, eds.), Humana, Totowa, NJ, 1997, pp. 13–47.

    Google Scholar 

  169. Obrosova IG, Van Huysen C, Fathallah L, Cao X, Greene DA, Stevens MJ. Evaluation of aldose reductase inhibitior on nerve blood flow, conduction, metabolism, and antioxidant defense in streptozotocin-diabetic rats: an intervention study. FASEB J 2002;16:123–125.

    PubMed  CAS  Google Scholar 

  170. Ziegler D, Schatz H, Conrad F, et al. Effects of treatment with the antioxidant á-lipoic acid on cardiac autonomic neuropathy in NIDDM patients. A 4-month randomized controlled multicenter trial (DEKAN study). Diabetes Care 1997;20:369–373.

    Article  PubMed  CAS  Google Scholar 

  171. Ametov AS, Barinov A, Dyck PJ, et al. The sensory symptoms of diabetic polyneuropathy are improved with alpha-lipoic acid: The Sydney trial. Diabetes Care 2003;26:770–776.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Humana Press Inc., Totowa, NJ

About this chapter

Cite this chapter

Stevens, M.J. (2007). Cardiovascular Autonomic Neuropathy. In: Veves, A., Malik, R.A. (eds) Diabetic Neuropathy. Clinical Diabetes. Humana Press. https://doi.org/10.1007/978-1-59745-311-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-1-59745-311-0_24

  • Publisher Name: Humana Press

  • Print ISBN: 978-1-58829-626-9

  • Online ISBN: 978-1-59745-311-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics