Skip to main content

Rat Models of Metabolic Syndrome

  • Protocol
  • First Online:
Rat Genomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2018))

Abstract

Metabolic syndrome is a complex disorder that comprises several other complex disorders, including obesity, hypertension, dyslipidemia, and diabetes. There are several rat models that encompass component features of MetS. Some models are inbred strains selected for one or more traits underlying MetS; others are population models with genetic risk for MetS traits, are induced by environmental stressors such as diet, are spontaneous monogenic mutant models, or are congenic strains derived from a combination of these models. Together they can be studied to identify the genetic and physiological underpinnings of MetS to identify candidate genes or mechanisms for study in human MetS subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Reaven GM (1988) Banting lecture 1988. Role of insulin resistance in human disease. Diabetes 37(12):1595–1607

    Article  CAS  PubMed  Google Scholar 

  2. Alberti KG, Eckel RH, Grundy SM, Zimmet PZ, Cleeman JI, Donato KA et al (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 120(16):1640–1645. https://doi.org/10.1161/CIRCULATIONAHA.109.192644

    Article  CAS  PubMed  Google Scholar 

  3. Saklayen MG (2018) The global epidemic of the metabolic syndrome. Curr Hypertens Rep 20(2):12. https://doi.org/10.1007/s11906-018-0812-z

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nolan PB, Carrick-Ranson G, Stinear JW, Reading SA, Dalleck LC (2017) Prevalence of metabolic syndrome and metabolic syndrome components in young adults: a pooled analysis. Prev Med Rep 7:211–215. https://doi.org/10.1016/j.pmedr.2017.07.004

    Article  PubMed  PubMed Central  Google Scholar 

  5. Lin HF, Boden-Albala B, Juo SH, Park N, Rundek T, Sacco RL (2005) Heritabilities of the metabolic syndrome and its components in the Northern Manhattan Family Study. Diabetologia 48(10):2006–2012. https://doi.org/10.1007/s00125-005-1892-2

    Article  PubMed  PubMed Central  Google Scholar 

  6. Henneman P, Aulchenko YS, Frants RR, van Dijk KW, Oostra BA, van Duijn CM (2008) Prevalence and heritability of the metabolic syndrome and its individual components in a Dutch isolate: the Erasmus Rucphen Family study. J Med Genet 45(9):572–577. https://doi.org/10.1136/jmg.2008.058388

    Article  CAS  PubMed  Google Scholar 

  7. Khan RJ, Gebreab SY, Sims M, Riestra P, Xu R, Davis SK (2015) Prevalence, associated factors and heritabilities of metabolic syndrome and its individual components in African Americans: the Jackson Heart Study. BMJ Open 5(10):e008675. https://doi.org/10.1136/bmjopen-2015-008675

    Article  PubMed  PubMed Central  Google Scholar 

  8. van Dongen J, Willemsen G, Chen WM, de Geus EJ, Boomsma DI (2013) Heritability of metabolic syndrome traits in a large population-based sample. J Lipid Res 54(10):2914–2923. https://doi.org/10.1194/jlr.P041673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Hayman GT, Laulederkind SJ, Smith JR, Wang SJ, Petri V, Nigam R et al (2016) The disease portals, disease-gene annotation and the rgd disease ontology at the rat genome database. Database 2016:baw034. https://doi.org/10.1093/database/baw034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Oschry Y, Eisenberg S (1982) Rat plasma lipoproteins: re-evaluation of a lipoprotein system in an animal devoid of cholesteryl ester transfer activity. J Lipid Res 23(8):1099–1106

    CAS  PubMed  Google Scholar 

  11. Bergen WG, Mersmann HJ (2005) Comparative aspects of lipid metabolism: impact on contemporary research and use of animal models. J Nutr 135(11):2499–2502. https://doi.org/10.1093/jn/135.11.2499

    Article  CAS  PubMed  Google Scholar 

  12. Yin W, Carballo-Jane E, McLaren DG, Mendoza VH, Gagen K, Geoghagen NS et al (2012) Plasma lipid profiling across species for the identification of optimal animal models of human dyslipidemia. J Lipid Res 53(1):51–65. https://doi.org/10.1194/jlr.M019927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tryon RC (1940) Genetic differences in maze-learning ability in rats. In: Thirty-ninth yearbook of the National Society for the Study of Education. Intelligence: its nature and nurture, part 1. Comparative and critical exposition. Public School Publishing Co., Bloomington, IN, pp 111–119

    Google Scholar 

  14. Eriksson K (1968) Genetic selection for voluntary alcohol consumption in the albino rat. Science 159(3816):739–741. https://doi.org/10.1126/science.159.3816.739

    Article  CAS  PubMed  Google Scholar 

  15. Rapp JP (2000) Genetic analysis of inherited hypertension in the rat. Physiol Rev 80(1):135–172

    Article  CAS  PubMed  Google Scholar 

  16. Goto Y, Kakizaki M, Masaki N (1976) Production of spontaneous diabetic rats by repetition of selective breeding. Tohoku J Exp Med 119(1):85–90

    Article  CAS  PubMed  Google Scholar 

  17. Dupont J, Dupont JC, Froment A, Milon H, Vincent M (1973) Selection of three strains of rats with spontaneously different levels of blood pressure. Biomedicine 19(1):36–41

    CAS  PubMed  Google Scholar 

  18. Su DF, Cerutti C, Barres C, Vincent M, Sassard J (1986) Blood pressure and baroreflex sensitivity in conscious hypertensive rats of Lyon strain. Am J Phys 251(6 Pt 2):H1111–H1117

    CAS  Google Scholar 

  19. Sassard J, Vincent M, Orea V, Privat P, Bataillard A (1997) Genetics of blood pressure and associated phenotypes in the Lyon rat. Clin Exp Hypertens 19(5–6):567–575

    Article  CAS  PubMed  Google Scholar 

  20. Florin M, Lo M, Liu KL, Sassard J (2001) Salt sensitivity in genetically hypertensive rats of the Lyon strain. Kidney Int 59(5):1865–1872

    Article  CAS  PubMed  Google Scholar 

  21. Sassolas A, Vincent M, Benzoni D, Sassard J (1981) Plasma lipids in genetically hypertensive rats of the Lyon strain. J Cardiovasc Pharmacol 3(5):1008–1014

    Article  CAS  PubMed  Google Scholar 

  22. Vincent M, Boussairi EH, Cartier R, Lo M, Sassolas A, Cerutti C et al (1993) High blood pressure and metabolic disorders are associated in the Lyon hypertensive rat. J Hypertens 11(11):1179–1185

    Article  CAS  PubMed  Google Scholar 

  23. Boulanger M, Duhault J, Broux O, Bataillard A, Sassard J (1997) Lack of insulin resistance in the Lyon hypertensive rat. Fundam Clin Pharmacol 11(6):546–549

    Article  CAS  PubMed  Google Scholar 

  24. Vincent M, Cartier R, Privat P, Benzoni D, Samani NJ, Sassard J (1996) Major cardiovascular risk factors in Lyon hypertensive rats. A correlation analysis in a segregating population. J Hypertens 14(4):469-474

    Article  Google Scholar 

  25. Dubay C, Vincent M, Samani NJ, Hilbert P, Kaiser MA, Beressi J-P et al (1993) Genetic determinants of diastolic and pulse pressure map to different loci in Lyon hypertensive rats. Nat Genet 3(4):354–357

    Article  CAS  PubMed  Google Scholar 

  26. Bilusic M, Bataillard A, Tschannen MR, Gao L, Barreto NE, Vincent M et al (2004) Mapping the genetic determinants of hypertension, metabolic diseases, and related phenotypes in the lyon hypertensive rat. Hypertension 44(5):695–701. https://doi.org/10.1161/01.HYP.0000144542.57306.5e

    Article  CAS  PubMed  Google Scholar 

  27. Ma MCJ, Pettus JM, Jakoubek JA, Traxler MG, Clark KC, Mennie AK et al (2017) Contribution of independent and pleiotropic genetic effects in the metabolic syndrome in a hypertensive rat. PLoS One 12(8):e0182650. https://doi.org/10.1371/journal.pone.0182650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wang J, Ma MC, Mennie AK, Pettus JM, Xu Y, Lin L et al (2015) Systems biology with high-throughput sequencing reveals genetic mechanisms underlying the metabolic syndrome in the Lyon hypertensive rat. Circ Cardiovasc Genet 8(2):316–326. https://doi.org/10.1161/CIRCGENETICS.114.000520

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kloting N, Bluher M, Kloting I (2006) The polygenetically inherited metabolic syndrome of WOKW rats is associated with insulin resistance and altered gene expression in adipose tissue. Diabetes Metab Res Rev 22(2):146–154. https://doi.org/10.1002/dmrr.582

    Article  CAS  PubMed  Google Scholar 

  30. van den Brandt J, Kovacs P, Kloting I (2002) Metabolic syndrome and aging in Wistar Ottawa Karlsburg W rats. Int J Obes Relat Metab Disord 26(4):573–576

    Article  PubMed  Google Scholar 

  31. van den Brandt J, Kovacs P, Kloting I (2000) Features of the metabolic syndrome in the spontaneously hypertriglyceridemic Wistar Ottawa Karlsburg W (RT1u Haplotype) rat. Metabolism 49(9):1140–1144. https://doi.org/10.1053/meta.2000.8610

    Article  PubMed  Google Scholar 

  32. Kovacs P, Voigt B, Berg S, Vogt L, Kloting I (1997) WOK.1W rats. A potential animal model of the insulin resistance syndrome. Ann N Y Acad Sci 827:94–99

    Article  CAS  PubMed  Google Scholar 

  33. Yagi K, Kim S, Wanibuchi H, Yamashita T, Yamamura Y, Iwao H (1997) Characteristics of diabetes, blood pressure, and cardiac and renal complications in Otsuka Long-Evans Tokushima Fatty rats. Hypertension 29(3):728–735

    Article  CAS  PubMed  Google Scholar 

  34. Kawano K, Hirashima T, Mori S, Saitoh Y, Kurosumi M, Natori T (1992) Spontaneous long-term hyperglycemic rat with diabetic complications. Otsuka Long-Evans Tokushima Fatty (OLETF) strain. Diabetes 41(11):1422–1428

    Article  CAS  PubMed  Google Scholar 

  35. Weingarten A, Turchetti L, Krohn K, Kloting I, Kern M, Kovacs P et al (2016) Novel genes on rat chromosome 10 are linked to body fat mass, preadipocyte number and adipocyte size. Int J Obes 40(12):1832–1840. https://doi.org/10.1038/ijo.2016.127

    Article  CAS  Google Scholar 

  36. Baguhl R, Wilke B, Kloting N, Kloting I (2009) Genes on rat chromosomes 3, 5, 10, and 16 are linked with facets of metabolic syndrome. Obesity (Silver Spring) 17(6):1215–1219. https://doi.org/10.1038/oby.2008.658

    Article  CAS  Google Scholar 

  37. Kloting N, Wilke B, Kloting I (2007) Triplet repeat in the Repin1 3′-untranslated region on rat chromosome 4 correlates with facets of the metabolic syndrome. Diabetes Metab Res Rev 23(5):406–410. https://doi.org/10.1002/dmrr.713

    Article  CAS  PubMed  Google Scholar 

  38. Kose H, Moralejo DH, Ogino T, Mizuno A, Yamada T, Matsumoto K (2002) Examination of OLETF-derived non-insulin-dependent diabetes mellitus QTL by construction of a series of congenic rats. Mamm Genome 13(10):558–562. https://doi.org/10.1007/s00335-002-2199-y

    Article  CAS  PubMed  Google Scholar 

  39. Muramatsu Y, Yamada T, Taniguchi Y, Ogino T, Kose H, Matsumoto K et al (2005) Pnlip encoding pancreatic lipase is possible candidate for obesity QTL in the OLETF rat. Biochem Biophys Res Commun 331(4):1270–1276. https://doi.org/10.1016/j.bbrc.2005.04.040

    Article  CAS  PubMed  Google Scholar 

  40. Watanabe TK, Suzuki M, Yamasaki Y, Okuno S, Hishigaki H, Ono T et al (2005) Mutated G-protein-coupled receptor GPR10 is responsible for the hyperphagia/dyslipidaemia/obesity locus of Dmo1 in the OLETF rat. Clin Exp Pharmacol Physiol 32(5–6):355–366. https://doi.org/10.1111/j.1440-1681.2005.04196.x

    Article  CAS  PubMed  Google Scholar 

  41. Moran TH (2008) Unraveling the obesity of OLETF rats. Physiol Behav 94(1):71–78. https://doi.org/10.1016/j.physbeh.2007.11.035

    Article  CAS  PubMed  Google Scholar 

  42. Swales JD (1994) Textbook of hypertension. Blackwell Scientific Publications, Oxford

    Google Scholar 

  43. de Jong W (1984) Experimental and genetic models of hypertension. In: Birkenhager WH, Reid JL (eds) Handbook of hypertension, vol 4. Elsevier, Amsterdam

    Google Scholar 

  44. Coan PM, Hummel O, Garcia Diaz A, Barrier M, Alfazema N, Norsworthy PJ et al (2017) Genetic, physiological and comparative genomic studies of hypertension and insulin resistance in the spontaneously hypertensive rat. Dis Model Mech 10(3):297–306. https://doi.org/10.1242/dmm.026716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Pravenec M, Kren V, Landa V, Mlejnek P, Musilova A, Silhavy J et al (2014) Recent progress in the genetics of spontaneously hypertensive rats. Physiol Res 63(Suppl 1):S1–S8

    CAS  PubMed  Google Scholar 

  46. Tofovic SP, Jackson EK (2003) Rat models of the metabolic syndrome. Methods Mol Med 86:29–46. https://doi.org/10.1385/1-59259-392-5:29

    Article  CAS  PubMed  Google Scholar 

  47. Aitman TJ, Gotoda T, Evans AL, Imrie H, Heath KE, Trembling PM et al (1997) Quantitative trait loci for cellular defects in glucose and fatty acid metabolism in hypertensive rats. Nat Genet 16(2):197–201. https://doi.org/10.1038/ng0697-197

    Article  CAS  PubMed  Google Scholar 

  48. Doris PA (2017) Genetics of hypertension: an assessment of progress in the spontaneously hypertensive rat. Physiol Genomics 49(11):601–617. https://doi.org/10.1152/physiolgenomics.00065.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Pravenec M, Kurtz TW (2010) Recent advances in genetics of the spontaneously hypertensive rat. Curr Hypertens Rep 12(1):5–9. https://doi.org/10.1007/s11906-009-0083-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Aitman TJ, Glazier AM, Wallace CA, Cooper LD, Norsworthy PJ, Wahid FN et al (1999) Identification of Cd36 (Fat) as an insulin-resistance gene causing defective fatty acid and glucose metabolism in hypertensive rats. Nat Genet 21(1):76–83

    Article  CAS  PubMed  Google Scholar 

  51. Pravenec M, Kozich V, Krijt J, Sokolova J, Zidek V, Landa V et al (2016) Genetic variation in renal expression of folate receptor 1 (Folr1) gene predisposes spontaneously hypertensive rats to metabolic syndrome. Hypertension 67(2):335–341. https://doi.org/10.1161/HYPERTENSIONAHA.115.06158

    Article  CAS  PubMed  Google Scholar 

  52. Pravenec M, Zidek V, Landa V, Mlejnek P, Silhavy J, Simakova M et al (2017) Mutant Wars2 gene in spontaneously hypertensive rats impairs brown adipose tissue function and predisposes to visceral obesity. Physiol Res 66(6):917–924

    CAS  PubMed  Google Scholar 

  53. Zicha J, Pechanova O, Cacanyiova S, Cebova M, Kristek F, Torok J (2006) Hereditary hypertriglyceridemic rat: a suitable model of cardiovascular disease and metabolic syndrome? Physiol Res 55(Suppl 1):S49–S63

    CAS  PubMed  Google Scholar 

  54. Klimes I, Vrana A, Kunes J, Sebokova E, Dobesova Z, Stolba P et al (1995) Hereditary hypertriglyceridemic rat: a new animal model of metabolic alterations in hypertension. Blood Press 4(3):137–142

    Article  CAS  PubMed  Google Scholar 

  55. Stolba P, Dobesova Z, Husek P, Opltova H, Zicha J, Vrana A et al (1992) The hypertriglyceridemic rat as a genetic model of hypertension and diabetes. Life Sci 51(10):733–740

    Article  CAS  PubMed  Google Scholar 

  56. Ueno T, Tremblay J, Kunes J, Zicha J, Dobesova Z, Pausova Z et al (2004) Rat model of familial combined hyperlipidemia as a result of comparative mapping. Physiol Genomics 17(1):38–47

    Article  CAS  PubMed  Google Scholar 

  57. Sedova L, Kazdova L, Seda O, Krenova D, Kren V (2000) Rat inbred PD/cub strain as a model of dyslipidemia and insulin resistance. Folia Biol (Praha) 46(3):99–106

    CAS  Google Scholar 

  58. Seda O, Liska F, Krenova D, Kazdova L, Sedova L, Zima T et al (2005) Dynamic genetic architecture of metabolic syndrome attributes in the rat. Physiol Genomics 21(2):243–252. https://doi.org/10.1152/physiolgenomics.00230.2004

    Article  CAS  PubMed  Google Scholar 

  59. Sasase T, Ohta T, Masuyama T, Yokoi N, Kakehashi A, Shinohara M (2013) The spontaneously diabetic Torii rat: an animal model of nonobese type 2 diabetes with severe diabetic complications. J Diabetes Res 2013:976209. https://doi.org/10.1155/2013/976209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Shinohara M, Masuyama T, Shoda T, Takahashi T, Katsuda Y, Komeda K et al (2000) A new spontaneously diabetic non-obese Torii rat strain with severe ocular complications. Int J Exp Diabetes Res 1(2):89–100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Fuse M, Yokoi N, Shinohara M, Masuyama T, Kitazawa R, Kitazawa S et al (2008) Identification of a major locus for islet inflammation and fibrosis in the spontaneously diabetic Torii rat. Physiol Genomics 35(1):96–105. https://doi.org/10.1152/physiolgenomics.90214.2008

    Article  CAS  PubMed  Google Scholar 

  62. Masuyama T, Fuse M, Yokoi N, Shinohara M, Tsujii H, Kanazawa M et al (2003) Genetic analysis for diabetes in a new rat model of nonobese type 2 diabetes, Spontaneously Diabetic Torii rat. Biochem Biophys Res Commun 304(1):196–206

    Article  CAS  PubMed  Google Scholar 

  63. Cheng ZJ, Vaskonen T, Tikkanen I, Nurminen K, Ruskoaho H, Vapaatalo H et al (2001) Endothelial dysfunction and salt-sensitive hypertension in spontaneously diabetic Goto-Kakizaki rats. Hypertension 37(2 Pt 2):433–439

    Article  CAS  PubMed  Google Scholar 

  64. Kaisaki PJ, Otto GW, Argoud K, Collins SC, Wallis RH, Wilder SP et al (2016) Transcriptome profiling in rat inbred strains and experimental cross reveals discrepant genetic architecture of genome-wide gene expression. G3 (Bethesda) 6(11):3671–3683. https://doi.org/10.1534/g3.116.033274

    Article  CAS  Google Scholar 

  65. Dumas ME, Wilder SP, Bihoreau MT, Barton RH, Fearnside JF, Argoud K et al (2007) Direct quantitative trait locus mapping of mammalian metabolic phenotypes in diabetic and normoglycemic rat models. Nat Genet 39(5):666–672. https://doi.org/10.1038/ng2026

    Article  CAS  PubMed  Google Scholar 

  66. Portha B, Giroix MH, Tourrel-Cuzin C, Le-Stunff H, Movassat J (2012) The GK rat: a prototype for the study of non-overweight type 2 diabetes. Meth Mol Biol 933:125–159. https://doi.org/10.1007/978-1-62703-068-7_9

    Article  CAS  Google Scholar 

  67. Nobrega MA, Woods LC, Fleming S, Jacob HJ (2009) Distinct genetic regulation of progression of diabetes and renal disease in the Goto-Kakizaki rat. Physiol Genomics 39(1):38–46. https://doi.org/10.1152/physiolgenomics.90389.2008

    Article  CAS  PubMed  Google Scholar 

  68. Cohen AM, Rosenmann E, Rosenthal T (1993) The Cohen diabetic (non-insulin-dependent) hypertensive rat model. Description of the model and pathologic findings. Am J Hypertens 6(12):989–995

    Article  CAS  PubMed  Google Scholar 

  69. Younis F, Leor J, Abassi Z, Landa N, Rath L, Hollander K et al (2018) Beneficial effect of the SGLT2 inhibitor empagliflozin on glucose homeostasis and cardiovascular parameters in the Cohen Rosenthal Diabetic Hypertensive (CRDH) rat. J Cardiovasc Pharmacol Ther 23(4):358–371. https://doi.org/10.1177/1074248418763808

    Article  CAS  PubMed  Google Scholar 

  70. Younis F, Stern N, Limor R, Oron Y, Zangen S, Rosenthal T (2010) Telmisartan ameliorates hyperglycemia and metabolic profile in nonobese Cohen-Rosenthal diabetic hypertensive rats via peroxisome proliferator activator receptor-gamma activation. Metabolism 59(8):1200–1209. https://doi.org/10.1016/j.metabol.2009.11.013

    Article  CAS  PubMed  Google Scholar 

  71. Rosenthal T, Erlich Y, Rosenmann E, Cohen A (1997) Effects of enalapril, losartan, and verapamil on blood pressure and glucose metabolism in the Cohen-Rosenthal diabetic hypertensive rat. Hypertension 29(6):1260–1264

    Article  CAS  PubMed  Google Scholar 

  72. Reaven GM, Twersky J, Chang H (1991) Abnormalities of carbohydrate and lipid metabolism in Dahl rats. Hypertension 18(5):630–635

    Article  CAS  PubMed  Google Scholar 

  73. Somova L, Channa ML (1999) Glucose metabolism and insulin sensitivity in Dahl hypertensive rats. Methods Find Exp Clin Pharmacol 21(6):421–425

    Article  CAS  PubMed  Google Scholar 

  74. Zicha J, Dobesova Z, Vokurkova M, Rauchova H, Hojna S, Kadlecova M et al (2012) Age-dependent salt hypertension in Dahl rats: fifty years of research. Physiol Res 61(Suppl 1):S35–S87

    CAS  PubMed  Google Scholar 

  75. Donnelly R, Ho H, Reaven GM (1995) Effects of low sodium diet and unilateral nephrectomy on the development of carbohydrate-induced hypertension. Blood Press 4(3):164–169

    Article  CAS  PubMed  Google Scholar 

  76. Kotchen TA, Zhang HY, Covelli M, Blehschmidt N (1991) Insulin resistance and blood pressure in Dahl rats and in one-kidney, one-clip hypertensive rats. Am J Phys 261(6 Pt 1):E692–E697

    CAS  Google Scholar 

  77. Nagae A, Fujita M, Kawarazaki H, Matsui H, Ando K, Fujita T (2009) Effect of high fat loading in Dahl salt-sensitive rats. Clin Exp Hypertens 31(5):451–461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Zhang HY, Reddy S, Kotchen TA (1999) A high sucrose, high linoleic acid diet potentiates hypertension in the Dahl salt sensitive rat. Am J Hypertens 12(2 Pt 1):183–187

    Article  CAS  PubMed  Google Scholar 

  79. De Miguel C, Lund H, Mattson DL (2011) High dietary protein exacerbates hypertension and renal damage in Dahl SS rats by increasing infiltrating immune cells in the kidney. Hypertension 57(2):269–274. https://doi.org/10.1161/HYPERTENSIONAHA.110.154302

    Article  CAS  PubMed  Google Scholar 

  80. Mattson DL, Meister CJ, Marcelle ML (2005) Dietary protein source determines the degree of hypertension and renal disease in the Dahl salt-sensitive rat. Hypertension 45(4):736–741. https://doi.org/10.1161/01.HYP.0000153318.74544.cc

    Article  CAS  PubMed  Google Scholar 

  81. Levin BE, Dunn-Meynell AA, Balkan B, Keesey RE (1997) Selective breeding for diet-induced obesity and resistance in Sprague-Dawley rats. Am J Phys 273(2 Pt 2):R725–R730. https://doi.org/10.1152/ajpregu.1997.273.2.R725

    Article  CAS  Google Scholar 

  82. Chang S, Graham B, Yakubu F, Lin D, Peters JC, Hill JO (1990) Metabolic differences between obesity-prone and obesity-resistant rats. Am J Phys 259(6 Pt 2):R1103–R1110. https://doi.org/10.1152/ajpregu.1990.259.6.R1103

    Article  CAS  Google Scholar 

  83. Levin BE, Triscari J, Hogan S, Sullivan AC (1987) Resistance to diet-induced obesity: food intake, pancreatic sympathetic tone, and insulin. Am J Phys 252(3 Pt 2):R471–R478. https://doi.org/10.1152/ajpregu.1987.252.3.R471

    Article  CAS  Google Scholar 

  84. Schemmel R, Mickelsen O, Gill JL (1970) Dietary obesity in rats: body weight and body fat accretion in seven strains of rats. J Nutr 100(9):1041–1048. https://doi.org/10.1093/jn/100.9.1041

    Article  CAS  PubMed  Google Scholar 

  85. Dobrian AD, Davies MJ, Prewitt RL, Lauterio TJ (2000) Development of hypertension in a rat model of diet-induced obesity. Hypertension 35(4):1009–1015

    Article  CAS  PubMed  Google Scholar 

  86. Giles ED, Jackman MR, MacLean PS (2016) Modeling diet-induced obesity with obesity-prone rats: implications for studies in females. Front Nutr 3:50. https://doi.org/10.3389/fnut.2016.00050

    Article  PubMed  PubMed Central  Google Scholar 

  87. Panchal SK, Poudyal H, Iyer A, Nazer R, Alam A, Diwan V et al (2011) High-carbohydrate high-fat diet-induced metabolic syndrome and cardiovascular remodeling in rats. J Cardiovasc Pharmacol 57(1):51–64. https://doi.org/10.1097/FJC.0b013e3181feb90a

    Article  CAS  PubMed  Google Scholar 

  88. Moreno-Fernandez S, Garces-Rimon M, Vera G, Astier J, Landrier JF, Miguel M (2018) High fat/high glucose diet induces metabolic syndrome in an experimental rat model. Nutrients 10(10):E1502. https://doi.org/10.3390/nu10101502

    Article  CAS  PubMed  Google Scholar 

  89. Wong SK, Chin KY, Suhaimi FH, Fairus A, Ima-Nirwana S (2016) Animal models of metabolic syndrome: a review. Nutr Metab (Lond) 13:65. https://doi.org/10.1186/s12986-016-0123-9

    Article  CAS  Google Scholar 

  90. Kwitek AE, Jacob HJ, Baker JE, Dwinell MR, Forster HV, Greene AS et al (2006) BN phenome: detailed characterization of the cardiovascular, renal, and pulmonary systems of the sequenced rat. Physiol Genomics 25(2):303–313. https://doi.org/10.1152/physiolgenomics.00288.2005

    Article  CAS  PubMed  Google Scholar 

  91. Brower M, Grace M, Kotz CM, Koya V (2015) Comparative analysis of growth characteristics of Sprague Dawley rats obtained from different sources. Lab Anim Res 31(4):166–173. https://doi.org/10.5625/lar.2015.31.4.166

    Article  PubMed  PubMed Central  Google Scholar 

  92. Hansen C, Spuhler K (1984) Development of the National Institutes of Health genetically heterogeneous rat stock. Alcohol Clin Exp Res 8(5):477–479

    Article  CAS  PubMed  Google Scholar 

  93. Hermsen R, de Ligt J, Spee W, Blokzijl F, Schafer S, Adami E et al (2015) Genomic landscape of rat strain and substrain variation. BMC Genomics 16:357. https://doi.org/10.1186/s12864-015-1594-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Baud A, Guryev V, Hummel O, Johannesson M, Rat Genome Sequencing and Mapping Consortium, Flint J (2014) Genomes and phenomes of a population of outbred rats and its progenitors. Sci Data 1:140011. https://doi.org/10.1038/sdata.2014.11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Woods LC, Mott R (2017) Heterogeneous stock populations for analysis of complex traits. Meth Mol Biol 1488:31–44. https://doi.org/10.1007/978-1-4939-6427-7_2

    Article  CAS  Google Scholar 

  96. Alam I, Koller DL, Canete T, Blazquez G, Mont-Cardona C, Lopez-Aumatell R et al (2015) Fine mapping of bone structure and strength QTLs in heterogeneous stock rat. Bone 81:417–426. https://doi.org/10.1016/j.bone.2015.08.013

    Article  PubMed  PubMed Central  Google Scholar 

  97. Holl K, He H, Wedemeyer M, Clopton L, Wert S, Meckes JK et al (2017) Heterogeneous stock rats: a model to study the genetics of despair-like behavior in adolescence. Genes Brain Behav 17(2):139–148. https://doi.org/10.1111/gbb.12410

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Keele GR, Prokop JW, He H, Holl K, Littrell J, Deal A et al (2017) Genetic fine-mapping and identification of candidate genes and variants for adiposity traits in outbred rats. Obesity (Silver Spring) 26(1):213–222. https://doi.org/10.1002/oby.22075

    Article  CAS  Google Scholar 

  99. Koch LG, Britton SL (2001) Artificial selection for intrinsic aerobic endurance running capacity in rats. Physiol Genomics 5(1):45–52. https://doi.org/10.1152/physiolgenomics.2001.5.1.45

    Article  CAS  PubMed  Google Scholar 

  100. Koch LG, Britton SL, Wisloff U (2012) A rat model system to study complex disease risks, fitness, aging, and longevity. Trends Cardiovasc Med 22(2):29–34. https://doi.org/10.1016/j.tcm.2012.06.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Koch LG, Britton SL (2008) Development of animal models to test the fundamental basis of gene-environment interactions. Obesity (Silver Spring) 16(Suppl 3):S28–S32. https://doi.org/10.1038/oby.2008.513

    Article  CAS  Google Scholar 

  102. Ren YY, Overmyer KA, Qi NR, Treutelaar MK, Heckenkamp L, Kalahar M et al (2013) Genetic analysis of a rat model of aerobic capacity and metabolic fitness. PLoS One 8(10):e77588. https://doi.org/10.1371/journal.pone.0077588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Zucker LM, Zucker TF (1961) FATTY, a new mutation in the rat. J Hered 52(6):275–278. https://doi.org/10.1093/oxfordjournals.jhered.a107093

    Article  Google Scholar 

  104. Takaya K, Ogawa Y, Isse N, Okazaki T, Satoh N, Masuzaki H et al (1996) Molecular cloning of rat leptin receptor isoform complementary DNAs—identification of a missense mutation in Zucker fatty (fa/fa) rats. Biochem Biophys Res Commun 225(1):75–83. https://doi.org/10.1006/bbrc.1996.1133

    Article  CAS  PubMed  Google Scholar 

  105. White DW, Wang DW, Chua SC Jr, Morgenstern JP, Leibel RL, Baumann H et al (1997) Constitutive and impaired signaling of leptin receptors containing the Gln --> Pro extracellular domain fatty mutation. Proc Natl Acad Sci U S A 94(20):10657–10662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Peterson RG, Shaw WN, Neel M-A, Little LA, Eichberg J (1990) Zucker diabetic fatty rat as a model for non-insulin-dependent diabetes mellitus. ILAR J 32(3):16–19. https://doi.org/10.1093/ilar.32.3.16

    Article  Google Scholar 

  107. Hattori T, Murase T, Ohtake M, Inoue T, Tsukamoto H, Takatsu M et al (2011) Characterization of a new animal model of metabolic syndrome: the DahlS.Z-Lepr(fa)/Lepr(fa) rat. Nutr Diabetes 1:e1. https://doi.org/10.1038/nutd.2010.1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Hiraoka-Yamamoto J, Nara Y, Yasui N, Onobayashi Y, Tsuchikura S, Ikeda K (2004) Establishment of a new animal model of metabolic syndrome: SHRSP fatty (fa/fa) rats. Clin Exp Pharmacol Physiol 31(1–2):107–109

    Article  CAS  PubMed  Google Scholar 

  109. Koletsky S (1973) Obese spontaneously hypertensive rats—a model for study of atherosclerosis. Exp Mol Pathol 19(1):53–60

    Article  CAS  PubMed  Google Scholar 

  110. Koletsky S (1975) Pathologic findings and laboratory data in a new strain of obese hypertensive rats. Am J Pathol 80(1):129–142

    CAS  PubMed  PubMed Central  Google Scholar 

  111. Takaya K, Ogawa Y, Hiraoka J, Hosoda K, Yamori Y, Nakao K et al (1996) Nonsense mutation of leptin receptor in the obese spontaneously hypertensive Koletsky rat. Nat Genet 14(2):130–131. https://doi.org/10.1038/ng1096-130

    Article  CAS  PubMed  Google Scholar 

  112. Moralejo DH, Hansen CT, Treuting P, Hessner MJ, Fuller JM, Van Yserloo B et al (2010) Differential effects of leptin receptor mutation on male and female BBDR Gimap5−/Gimap5− spontaneously diabetic rats. Physiol Genomics 41(1):9–20. https://doi.org/10.1152/physiolgenomics.00186.2009

    Article  CAS  PubMed  Google Scholar 

  113. Qi NR, Wang J, Zidek V, Landa V, Mlejnek P, Kazdova L et al (2005) A new transgenic rat model of hepatic steatosis and the metabolic syndrome. Hypertension 45(5):1004–1011

    Article  CAS  PubMed  Google Scholar 

  114. Pravenec M, Landa V, Zidek V, Musilova A, Kazdova L, Qi N et al (2003) Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension. Physiol Res 52(6):681–688

    CAS  PubMed  Google Scholar 

  115. Herrera VL, Makrides SC, Xie HX, Adari H, Krauss RM, Ryan US et al (1999) Spontaneous combined hyperlipidemia, coronary heart disease and decreased survival in Dahl salt-sensitive hypertensive rats transgenic for human cholesteryl ester transfer protein. Nat Med 5(12):1383–1389. https://doi.org/10.1038/70956

    Article  CAS  PubMed  Google Scholar 

  116. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J et al (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135(7):1287–1298

    Article  CAS  PubMed  Google Scholar 

  117. Li P, Tong C, Mehrian-Shai R, Jia L, Wu N, Yan Y et al (2008) Germline competent embryonic stem cells derived from rat blastocysts. Cell 135(7):1299–1310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Tesson L, Usal C, Menoret S, Leung E, Niles BJ, Remy S et al (2011) Knockout rats generated by embryo microinjection of TALENs. Nat Biotechnol 29(8):695–696. https://doi.org/10.1038/nbt.1940

    Article  CAS  PubMed  Google Scholar 

  119. Geurts AM, Cost GJ, Freyvert Y, Zeitler B, Miller JC, Choi VM et al (2009) Knockout rats via embryo microinjection of zinc-finger nucleases. Science 325(5939):433. pii: 325/5939/433. https://doi.org/10.1126/science.1172447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Li W, Teng F, Li T, Zhou Q (2013) Simultaneous generation and germline transmission of multiple gene mutations in rat using CRISPR-Cas systems. Nat Biotechnol 31(8):684–686. https://doi.org/10.1038/nbt.2652

    Article  CAS  PubMed  Google Scholar 

  121. Meek S, Mashimo T, Burdon T (2017) From engineering to editing the rat genome. Mamm Genome 28(7):302–314. https://doi.org/10.1007/s00335-017-9705-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Izumi R, Kusakabe T, Noguchi M, Iwakura H, Tanaka T, Miyazawa T et al (2018) CRISPR/Cas9-mediated Angptl8 knockout suppresses plasma triglyceride concentrations and adiposity in rats. J Lipid Res 59(9):1575–1585. https://doi.org/10.1194/jlr.M082099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Zallar LJ, Tunstall BJ, Richie CT, Zhang YJ, You ZB, Gardner EL et al (2019) Development and initial characterization of a novel ghrelin receptor CRISPR/Cas9 knockout wistar rat model. Int J Obes 43:344–354. https://doi.org/10.1038/s41366-018-0013-5

    Article  CAS  Google Scholar 

  124. You P, Hu H, Chen Y, Zhao Y, Yang Y, Wang T et al (2016) Effects of melanocortin 3 and 4 receptor deficiency on energy homeostasis in rats. Sci Rep 6:34938. https://doi.org/10.1038/srep34938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anne E. Kwitek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kwitek, A.E. (2019). Rat Models of Metabolic Syndrome. In: Hayman, G., Smith, J., Dwinell, M., Shimoyama, M. (eds) Rat Genomics. Methods in Molecular Biology, vol 2018. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-9581-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9581-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-9580-6

  • Online ISBN: 978-1-4939-9581-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics