Skip to main content

MRD Detection in B-Cell Non-Hodgkin Lymphomas Using Ig Gene Rearrangements and Chromosomal Translocations as Targets for Real-Time Quantitative PCR

  • Protocol
  • First Online:
Lymphoma

Abstract

Minimal residual disease (MRD) diagnostics is of high clinical relevance in patients with indolent B-cell non-Hodgkin lymphomas (B-NHL) and serves as a surrogate parameter to evaluate treatment effectiveness and long-term prognosis. MRD diagnostics performed by real-time quantitative PCR (RQ-PCR) is still the gold standard and currently the most sensitive and the most broadly applied method in follicular lymphoma (FL) and mantle cell lymphoma (MCL). Alternatively, droplet digital PCR (ddPCR) can be used for MRD monitoring in multiple myeloma, mantle cell lymphoma, and follicular lymphoma with comparable sensitivity, accuracy, and reproducibility.

The most broadly applicable MRD target in B-NHL is the junctional regions of the rearranged immunoglobulin heavy chain gene (IGHV). Chromosomal translocations like the t(14;18) translocation in FL and t(11;14) translocation in MCL can be used as MRD target in selected lymphoma subtypes. In patients with B-cell chronic lymphocytic leukemia, both flow-cytometry and RQ-PCR are equally suited for MRD assessment as long as a sensitivity of 10−4 shall be achieved.

MRD diagnostics targeting the IGHV gene is complex and requires extensive knowledge and experience because the junctional regions of each lymphoma have to be identified before the patient-specific RQ-PCR assays can be designed for MRD monitoring. In addition, the presence and load of somatic hypermutation (SHM) within the rearranged IG heavy variable (IGHV) gene occurring as during B-cell development of germinal center and post-germinal center lymphomas may hamper appropriate primer binding leading to false-negative results. The translocations mentioned above have the advantage that consensus forward primers and probes, both placed in the breakpoint regions of chromosome 18 in FL and chromosome 11 in MCL, can be used in combination with a reverse primer placed in the IGH joining region of chromosome 14. RQ-PCR-based methods can reach a good sensitivity (≤10−4). This chapter provides all relevant background information and technical aspects for the complete laboratory process from detection of the clonal IGHV gene rearrangement and the chromosomal translocations at diagnosis to the actual MRD measurements in clinical follow-up samples of B-NHL. However, it should be noted that MRD diagnostics for clinical treatment protocols has to be accompanied by regular international quality control rounds to ensure the reproducibility and reliability of the MRD results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    ddPCR should be repeated on more replicates (≥  6, based on the sample availability) to verify if the results are reproducible.

References

  1. Brown JR, Feng Y, Gribben JG, Neuberg D, Fisher DC, Mauch P, Nadler LM, Freedman AS (2007) Long-term survival after autologous bone marrow transplantation for follicular lymphoma in first remission. Biol Blood Marrow Transplant 13:1057–1065

    Article  Google Scholar 

  2. Goff L, Summers K, Iqbal S, Kuhlmann J, Kunz M, Louton T, Hagenbeek A, Morschhauser F, Putz B, Lister A, Rohatiner A (2009) Quantitative PCR analysis for Bcl-2/IgH in a phase III study of yttrium-90 ibritumomab tiuxetan as consolidation of first remission in patients with follicular lymphoma. J Clin Oncol 27:6094–6100

    Article  CAS  Google Scholar 

  3. Hirt C, Schuler F, Kiefer T, Schwenke C, Haas A, Niederwieser D, Neser S, Assmann M, Srock S, Rohrberg R, Dachselt K, Leithauser M, Rabkin CS, Herold M, Dolken G (2008) Rapid and sustained clearance of circulating lymphoma cells after chemotherapy plus rituximab: clinical significance of quantitative t(14;18) PCR monitoring in advanced stage follicular lymphoma patients. BrJ Haematol 141:631–640

    Article  CAS  Google Scholar 

  4. Galimberti S, Luminari S, Ciabatti E, Grassi S, Guerrini F, Dondi A, Marcheselli L, Ladetto M, Piccaluga PP, Gazzola A, Mannu C, Monitillo L, Mantoan B, Del Giudice I, Della Starza I, Cavalli M, Arcaini L, Tucci A, Palumbo GA, Rigacci L, Pulsoni A, Vitolo U, Boccomini C, Vallisa D, Bertoldero G, Gaidano G, Musto P, Petrini M, Federico M (2014) Minimal residual disease after conventional treatment significantly impacts on progression-free survival of patients with follicular lymphoma: the FIL FOLL05 trial. Clin Cancer Res 20:6398–6405

    Article  CAS  Google Scholar 

  5. Ladetto M, Lobetti-Bodoni C, Mantoan B, Ceccarelli M, Boccomini C, Genuardi E, Chiappella A, Baldini L, Rossi G, Pulsoni A, Di Raimondo F, Rigacci L, Pinto A, Galimberti S, Bari A, Rota-Scalabrini D, Ferrari A, Zaja F, Gallamini A, Specchia G, Musto P, Rossi FG, Gamba E, Evangelista A, Vitolo U (2013) Persistence of minimal residual disease in bone marrow predicts outcome in follicular lymphomas treated with a rituximab-intensive program. Blood 122:3759–3766

    Article  CAS  Google Scholar 

  6. Ladetto M, De Marco F, Benedetti F, Vitolo U, Parti C, Rambaldi A, Pulsoni A, Musso M, Liberati AM, Olivieri A, Gallamini A, Pogliani E, Scalabrini DR, Callea V, Di Raimondo F, Pavone V, Tucci A, Cortelazzo S, Levis A, Boccadoro M, Majolino I, Pileri A, Gianni AM, Passera R, Corradini P, Tarella C (2008) Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall surviva. Blood 111:4004–4013

    Article  CAS  Google Scholar 

  7. Rambaldi A, Carlotti E, Oldani E, Della Starza I, Baccarani M, Cortelazzo S, Lauria F, Arcaini L, Morra E, Pulsoni A, Rigacci L, Rupolo M, Zaja F, Zinzani PL, Barbui T, Foa R (2005) Quantitative PCR of bone marrow BCL2/IgH positive cells at diagnosis predicts treatment response and long-term outcome in Follicular non Hodgkin’s Lymphoma. Blood 105:3428–3433

    Article  CAS  Google Scholar 

  8. Geisler CH, Kolstad A, Laurell A, Jerkeman M, Räty R, Andersen NS, Pedersen LB, Eriksson M, Nordström M, Kimby E, Bentzen H, Kuittinen O, Lauritzsen GF, Nilsson-Ehle H, Ralfkiaer E, Ehinger M, Sundström C, Delabie J, Karjalainen-Lindsberg ML, Brown P, Elonen E, Nordic Lymphoma Group (2012) Nordic MCL2 trial update: six-year follow-up after intensive immunochemotherapy for untreated mantle cell lymphoma followed by BEAM or BEAC + autologous stem-cell support: still very long survival but late relapses do occur. Br J Haematol 158:355–362

    Article  CAS  Google Scholar 

  9. Hermine O, Hoster E, Walewski J, Bosly A, Stilgenbauer S, Thieblemont C, Szymczyk M, Bouabdallah R, Kneba M, Hallek M, Salles G, Feugier P, Ribrag V, Birkmann J, Forstpointner R, Haioun C, Hänel M, Casasnovas RO, Finke J, Peter N, Bouabdallah K, Sebban C, Fischer T, Dührsen U, Metzner B, Maschmeyer G, Kanz L, Schmidt C, Delarue R, Brousse N, Klapper W, Macintyre E, Delfau-Larue M-H, Pott C, Hiddemann W, Unterhalt M, Dreyling M (2016) Addition of high-dose cytarabine to immunochemotherapy before autologous stem-cell transplantation in patients aged 65 years or younger with mantle cell lymphoma (MCL Younger): a randomised, open-label, phase 3 trial of the European Mantle Cell Lymphoma N. Lancet 388:565–575

    Article  CAS  Google Scholar 

  10. Pott C, Schrader C, Gesk S, Harder L, Tiemann M, Raff T, Bruggemann M, Ritgen M, Gahn B, Unterhalt M, Dreyling M, Hiddemann W, Siebert R, Dreger P, Kneba M (2006) Quantitative assessment of molecular remission after high-dose therapy with autologous stem cell transplantation predicts long-term remission in mantle cell lymphoma. Blood 107:2271–2278

    Article  CAS  Google Scholar 

  11. Pott C, Hoster E, Delfau-Larue MH, Beldjord K, Bottcher S, Asnafi V, Plonquet A, Siebert R, Callet-Bauchu E, Andersen N, van Dongen JJ, Klapper W, Berger F, Ribrag V, van Hoof AL, Trneny M, Walewski J, Dreger P, Unterhalt M, Hiddemann W, Kneba M, Kluin-Nelemans HC, Hermine O, Macintyre E, Dreyling M (2010) Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood 115:3215–3223

    Article  CAS  Google Scholar 

  12. Hoster E, Klapper W, Hermine O, Kluin-Nelemans HC, Walewski J, Van HA, Trneny M, Geisler CH, Di RF, Szymczyk M, Stilgenbauer S, Thieblemont C, Hallek M, Forstpointner R, Pott C, Ribrag V, Doorduijn J, Hiddemann W, Dreyling MH, Unterhalt M (2014) Confirmation of the mantle-cell lymphoma International Prognostic Index in randomized trials of the European Mantle-Cell Lymphoma Network. JClinOncol 32:1338–1346

    Article  Google Scholar 

  13. Rambaldi A, Carlotti E, Oldani E, Della Starza I, Baccarani M, Cortelazzo S, Lauria F, Arcaini L, Morra E, Pulsoni A, Rigacci L, Rupolo M, Zaja F, Zinzani PL, Barbui T, Foa R (2005) Quantitative PCR of bone marrow BCL2/IgH+ cells at diagnosis predicts treatment response and long-term outcome in follicular non-Hodgkin lymphoma. Blood 105:3428–3433

    Article  CAS  Google Scholar 

  14. Voena C, Locatelli G, Castellino C, Omede P, Ladetto M, Zappone E, Milani R, Perfetti V, Boccadoro M, Pileri A, Lusso P, Villa C, Malnati M, Corradini P (2002) Qualitative and quantitative polymerase chain reaction detection of the residual myeloma cell contamination after positive selection of CD34+ cells with small- and large-scale Miltenyi cell sorting system. Br J Haematol 117:642–645

    Article  CAS  Google Scholar 

  15. Ladetto M, Corradini P, Vallet S, Benedetti F, Vitolo U, Martelli M, Brugiatelli M, Coser P, Perrotti A, Majolino I, Fioritoni G, Morandi S, Musso M, Zambello R, Chisesi T, Di Renzo N, Vivaldi P, De Crescenzo A, Gallamini A, Salvi F, Santini G, Boccomini C, Sorio M, Astolfi M, Drandi D, Pileri A, Tarella C (2002) High rate of clinical and molecular remissions in follicular lymphoma patients receiving high-dose sequential chemotherapy and autografting at diagnosis: a multicenter, prospective study by the Gruppo Italiano Trapianto Midollo Osseo (GITMO). Blood 100:1559–1565

    Article  CAS  Google Scholar 

  16. Andersen NS, Donovan JW, Borus JS, Poor CM, Neuberg D, Aster JC, Nadler LM, Freedman AS, Gribben JG (1997) Failure of immunologic purging in mantle cell lymphoma assessed by polymerase chain reaction detection of minimal residual disease. Blood 90:4212–4221

    CAS  PubMed  Google Scholar 

  17. van Krieken JHJM, Langerak AW, Macintyre EA, Kneba M, Hodges E, Sanz RG, Morgan GJ, Parreira A, Molina TJ, Cabeçadas J, Gaulard P, Jasani B, Garcia JF, Ott M, Hannsmann ML, Berger F, Hummel M, Davi F, Brüggemann M, Lavender FL, Schuuring E, Evans PAS, White H, Salles G, Groenen PJTA, Gameiro P, Pott C, Van Dongen JJM (2007) Improved reliability of lymphoma diagnostics via PCR-based clonality testing: report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 21:201–206

    Article  Google Scholar 

  18. Payne K, Wright P, Grant JW, Huang Y, Hamoudi R, Bacon CM, Du MQ, Liu H (2011) BIOMED-2 PCR assays for IGK gene rearrangements are essential for B-cell clonality analysis in follicular lymphoma. Br J Haematol 155:84–92

    Article  CAS  Google Scholar 

  19. Cavalli M, De Novi LA, Della I, Cappelli LV, Nunes V, Pulsoni A, Del Giudice I, Guarini A, Fo R (2017) Comparative analysis between RQ-PCR and digital droplet PCR of BCL2/IGH gene rearrangement in the peripheral blood and bone marrow of early stage follicular lymphoma. Br J Haematol 177:588–596

    Article  CAS  Google Scholar 

  20. Drandi D, Kubiczkova-besse L, Ferrero S, Dani N, Passera R, Mantoan B, Gambella M, Monitillo L, Saraci E, Ghione P, Genuardi E, Barbero D, Omedè P, Barberio D, Hajek R, Vitolo U, Palumbo A, Cortelazzo S, Boccadoro M, Inghirami G, Ladetto M (2015) Minimal residual disease detection by droplet digital PCR in multiple myeloma, mantle cell lymphoma, and follicular lymphoma: a comparison with real-time PCR. J Mol Diagn 17:652–660

    Article  CAS  Google Scholar 

  21. Evans PA, Pott C, Groenen PJ, Salles G, Davi F, Berger F, Garcia JF, van Krieken JH, Pals S, Kluin P, Schuuring E, Spaargaren M, Boone E, Gonzalez D, Martinez B, Villuendas R, Gameiro P, Diss TC, Mills K, Morgan GJ, Carter GI, Milner BJ, Pearson D, Hummel M, Jung W, Ott M, Canioni D, Beldjord K, Bastard C, Delfau-Larue MH, van Dongen JJ, Molina TJ, Cabecadas J (2007) Significantly improved PCR-based clonality testing in B-cell malignancies by use of multiple immunoglobulin gene targets. Report of the BIOMED-2 Concerted Action BHM4-CT98-3936. Leukemia 21:207–214

    Article  CAS  Google Scholar 

  22. van Dongen JJ, Langerak AW, Brüggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, García-Sanz R, van Krieken JH, Droese J, González D, Bastard C, White HE, Spaargaren M, González M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317

    Article  Google Scholar 

  23. Van Der Velden V, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer E, Flohr T, Sutton R (2007) Analysis of minimal residual disease by Ig/TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21:604–611

    Article  Google Scholar 

  24. Stamatopoulos K, Kosmas C, Belessi C, Stavroyianni N, Kyriazopoulos P, Papadaki T (2000) Molecular insights into the immunopathogenesis of follicular lymphoma. Immunol Today 21:298–305

    Article  CAS  Google Scholar 

  25. Akasaka T, Yonetani N, Ohno H, Yamabe H, Fukuhara S, Okuma MAH (1998) Refinement of the BCL2/immunoglobulin heavy chain fusion gene in t(14;18)(q32;q21) by polymerase chain reaction amplification for long targets. Genes Chromosomes Cancer 21:17–29

    Article  CAS  Google Scholar 

  26. Buchonnet G, Lenain P, Ruminy P, Lepretre S, Stamatoullas A, Parmentier F, Jardin F, Duval C, Tilly H, Bastard C (2000) Characterisation of BCL2-JH rearrangements in follicular lymphoma: PCR detection of 3′ BCL2 breakpoints and evidence of a new cluster. Leukemia 14:1563–1569

    Article  CAS  Google Scholar 

  27. Buchonnet G, Jardin F, Jean N, Bertrand P, Parmentier F, Tison S, Lepretre S, Contentin N, Lenain P, Stamatoullas-Bastard A, Tilly H, Bastard C (2002) Distribution of BCL2 breakpoints in follicular lymphoma and correlation with clinical features: specific subtypes or same disease? Leukemia 16:1852–1856

    Article  CAS  Google Scholar 

  28. Rosenberg CL, Wong E, Petty EM, Bale AE, Tsujimoto Y, Harris NL, Arnold A (1991) PRAD1, a candidate BCL1 oncogene: mapping and expression in centrocytic lymphoma. Proc Natl Acad Sci USA 88:9638–9642

    Article  CAS  Google Scholar 

  29. Kneba M, Eick S, Herbst H, Willigeroth S, Pott C, Bolz I, Bergholz M, Neumann C, Stein H, Krieger G (1991) Frequency and structure of t(14;18) major breakpoint regions in non-Hodgkin’s lymphomas typed according to the Kiel classification: analysis by direct DNA sequencing. Cancer Res 51:3243–3250

    CAS  PubMed  Google Scholar 

  30. Pott C, Tiemann M, Linke B, Ott MM, von Hofen M, Bolz I, Hiddemann W, Parwaresch R, Kneba M (1998) Structure of Bcl-1 and IgH-CDR3 rearrangements as clonal markers in mantle cell lymphomas. Leukemia 12:1630–1637

    Article  CAS  Google Scholar 

  31. Williams ME, Meeker TC, Swerdlow SH (1991) Rearrangement of the chromosome 11 bcl-1 locus in centrocytic lymphoma: analysis with multiple breakpoint probes. Blood 78:493–498

    CAS  PubMed  Google Scholar 

  32. Williams ME, Swerdlow SH, Rosenberg CL, Arnold A (1992) Characterization of chromosome 11 translocation breakpoints at the bcl-1 and PRAD1 loci in centrocytic lymphoma. Cancer Res 52:5541s–5544s

    CAS  PubMed  Google Scholar 

  33. Ladetto M, Mantoan B, De Marco F, Drandi D, Aguzzi C, Astolfi M, Vallet S, Ricca I, Aquila MD, Pagliano G, Monitillo L, Pollio B, Santo L, Cristiano C, Rocci A, Francese R, Bodoni CL, Borchiellini A, Schinco P, Boccadoro M, Tarella C (2006) Cells carrying nonlymphoma-associated bcl-2/IgH rearrangements (NLABR) are phenotypically related to follicular lymphoma and can establish as long-term persisting clonal populations. Exp Hematol 34:1680–1686

    Article  CAS  Google Scholar 

  34. van der Velden VHJ, van Dongen JJ (2009) MRD detection in acute lymphoblastic leukemia patients using Ig/TCR gene rearrangements as targets for real-time quantitative PCR In: Walker J (ed) Methods in Molecular Biology. Humana Press A Part of Springer Science and Media, New York, pp 115–150

    Google Scholar 

  35. van Dongen JJ, Langerak AW, Bruggemann M, Evans PA, Hummel M, Lavender FL, Delabesse E, Davi F, Schuuring E, Garcia-Sanz R, van Krieken JH, Droese J, Gonzalez D, Bastard C, White HE, Spaargaren M, Gonzalez M, Parreira A, Smith JL, Morgan GJ, Kneba M, Macintyre EA (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317

    Article  Google Scholar 

  36. Pott C, Schrader C, Trautmann H, Irmer S, Desgranges C, Ritgen M, Siebert R, Harder S, Unterhalt M, Hiddemann W, Hansmann ML, Parwaresch MR, Kneba M (2003) VH mutational status and VH gene usage define molecular heterogeneity in mantle cell lymphoma. Onkologie 26:162

    Google Scholar 

  37. Gimenez E, Chauvet M, Rabin L, Puteaud I, Duley S, Hamaidia S, Bruder J, Rolland-Neyret V, Le Gouill S, Tournilhac O, Voog E, Maisonneuve H, Jacob MC, Leroux D, Béné MC, Formisano-Tréziny C, Gabert J, Gressin R, Callanan MB (2012) Cloned IGH VDJ targets as tools for personalized minimal residual disease monitoring in mature lymphoid malignancies; a feasibility study in mantle cell lymphoma by the Groupe Ouest Est d’Etude des Leucémies et Autres Maladies du Sang. Br J Haematol 158:186–197

    Article  CAS  Google Scholar 

  38. Brüggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG, Asnafi V, Baruchel A, Bassan R, Benoit Y, Biondi A, Cavé H, Dombret H, Fielding AK, Foà R, Gökbuget N, Goldstone AH, Goulden N, Henze G, Hoelzer D, Janka-Schaub GE, Macintyre EA, Pieters R, Rambaldi A, Ribera J-MM, Schmiegelow K, Spinelli O, Stary J, von Stackelberg A, Kneba M, Schrappe M, van Dongen JJM, Bruggemann M, Schrauder A, Raff T, Pfeifer H, Dworzak M, Ottmann OG, Asnafi V, Baruchel A, Bassan R, Benoit Y, Biondi A, Cave H, Dombret H, Fielding AK, Foa R, Gokbuget N, Goldstone AH, Goulden N, Henze G, Hoelzer D, Janka-Schaub GE, Macintyre EA, Pieters R, Rambaldi A, Ribera J-MM, Schmiegelow K, Spinelli O, Stary J, Von SA, Kneba M, Schrappe M, van Dongen JJM (2010) Standardized MRD quantification in European ALL trials: proceedings of the second international symposium on MRD assessment in Kiel, Germany, 18–20 September 2008. Leukemia 24:521–535

    Article  Google Scholar 

  39. Bruggemann M, Raff T, Flohr T, Gokbuget N, Nakao M, Droese J, Luschen S, Pott C, Ritgen M, Scheuring U, Horst HA, Thiel E, Hoelzer D, Bartram CR, Kneba M (2006) Clinical significance of minimal residual disease quantification in adult patients with standard-risk acute lymphoblastic leukemia. Blood 107:1116–1123

    Article  Google Scholar 

  40. SantaLucia J (1998) A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proc Natl Acad Sci USA 95:1460–1465

    Article  CAS  Google Scholar 

  41. Albinger-Hegyi A, Hochreutener B, Abdou M-TT, Hegyi I, Dours-Zimmermann MT, Kurrer MO, Heitz PU, Zimmermann DR (2002) High frequency of t(14;18)-translocation breakpoints outside of major breakpoint and minor cluster regions in follicular lymphomas: improved polymerase chain reaction protocols for their detection. Am J Pathol 160:823–832

    Article  CAS  Google Scholar 

  42. Pongers-Willemse MJ, Verhagen OJ, Tibbe GJ, Wijkhuijs AJ, de Haas V, Roovers E, van der Schoot CE, van Dongen JJ (1998) Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia 12:2006–2014

    Article  CAS  Google Scholar 

  43. van der Velden VHJ, Cazzaniga G, Schrauder A, Hancock J, Bader P, Panzer-Grumayer ER, Flohr T, Sutton R, Cave H, Madsen HO, Cayuela JM, Trka J, Eckert C, Foroni L, Zur Stadt U, Beldjord K, Raff T, van der Schoot CE, van Dongen JJM (2007) Analysis of minimal residual disease by Ig//TCR gene rearrangements: guidelines for interpretation of real-time quantitative PCR data. Leukemia 21:604–611

    Article  Google Scholar 

  44. Summers KE, Davies AJ, Matthews J, Jenner MJ, Cornelius V, Amess JA, Norton AJ, Rohatiner AZ, Fitzgibbon J, Lister TA, Goff LK (2002) The relative role of peripheral blood and bone marrow for monitoring molecular evidence of disease in follicular lymphoma by quantitative real-time polymerase chain reaction. Br J Haematol 118:563–566

    Article  CAS  Google Scholar 

  45. Pott C, Hoster E, Kehden B, Unterhalt M, Herold M, van der Jagt R, Janssens A, Kneba M, Mayer M, Pocock C, Danesi N, Fingerle-Rowson G, Harbron C, Mundt K, Marcus RE, Hiddemannnn W (2016) Minimal residual disease in patients with follicular lymphoma treated with Obinutuzumab or Rituximab as first-line induction immunochemotherapy and maintenance in the phase 3 GALLIUM study. Blood 128:abstract 623

    Google Scholar 

Download references

Acknowledgment

We gratefully acknowledge Anne-Wiebke Kruse for her excellent technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christiane Pott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pott, C., Brüggemann, M., Ritgen, M., van der Velden, V.H.J., van Dongen, J.J.M., Kneba, M. (2019). MRD Detection in B-Cell Non-Hodgkin Lymphomas Using Ig Gene Rearrangements and Chromosomal Translocations as Targets for Real-Time Quantitative PCR. In: Küppers, R. (eds) Lymphoma. Methods in Molecular Biology, vol 1956. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-9151-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-9151-8_9

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-9150-1

  • Online ISBN: 978-1-4939-9151-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics