Skip to main content

A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells

  • Protocol
  • First Online:
Chaperones

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1709))

Abstract

We have developed an enhanced molecular chaperone-based vaccine through rapid isolation of Hsp70 peptide complexes after the fusion of tumor and dendritic cells (Hsp70.PC-F). In this approach, the tumor antigens are introduced into the antigen processing machinery of dendritic cells through the cell fusion process and thus we can obtain antigenic tumor peptides or their intermediates that have been processed by dendritic cells. Our results show that Hsp70.PC-F has increased immunogenicity compared to preparations from tumor cells alone and therefore constitutes an improved formulation of chaperone protein-based tumor vaccine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lindquist S, Craig EA (1988) The heat shock proteins. Ann Rev Genet 22:631–637

    Article  CAS  PubMed  Google Scholar 

  2. Georgopolis C, Welch WJ (1993) Role of the major heat shock proteins as molecular chaperones. Ann Rev Cell Biol 9:601–634

    Article  Google Scholar 

  3. Richter K, Haslbeck M, Buchner J (2010) The heat shock response: life on the verge of death. Mol Cell 40(2):253–266

    Article  CAS  PubMed  Google Scholar 

  4. Bukau B, Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92(3):351–366

    Article  CAS  PubMed  Google Scholar 

  5. Tang D et al (2005) Expression of heat shock proteins and HSP messenger ribonucleic acid in human prostate carcinoma in vitro and in tumors in vivo. Cell Stress Chaperones 10:46–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Kityk R et al (2015) Pathways of allosteric regulation in Hsp70 chaperones. Nat Commun 6:8308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Noessner E et al (2002) Tumor-derived heat shock protein 70 peptide complexes are cross-presented by human dendritic cells. J Immunol 169(10):5424–5432

    Article  CAS  PubMed  Google Scholar 

  8. Srivastava PK, Amato RJ (2001) Heat shock proteins: the ‘Swiss Army Knife’ vaccines against cancers and infectious agents. Vaccine 19(17–19):2590–2597

    Article  CAS  PubMed  Google Scholar 

  9. Nylandsted J, Brand K, Jaattela M (2000) Heat shock protein 70 is required for the survival of cancer cells. Ann N Y Acad Sci 926:122–125

    Article  CAS  PubMed  Google Scholar 

  10. Cornford PA et al (2000) Heat shock protein expression independently predicts clinical outcome in prostate cancer. Cancer Res 60(24):7099–7105

    CAS  PubMed  Google Scholar 

  11. Clark PR, Menoret A (2001) The inducible Hsp70 as a marker of tumor immunogenicity. Cell Stress Chaperones 6(2):121–125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Calderwood SK, Gong J (2016) Heat shock proteins promote cancer: it’s a protection racket. Trends Biochem Sci 41:311–323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Srivastava P (2002) Interaction of heat shock proteins with peptides and antigen presenting cells: chaperoning of the innate and adaptive immune responses. Annu Rev Immunol 20:395–425

    Article  CAS  PubMed  Google Scholar 

  14. Srivastava P (2003) Hypothesis: controlled necrosis as a tool for immunotherapy of human cancer. Cancer Immun 3:4

    PubMed  Google Scholar 

  15. Srivastava PK (2000) Immunotherapy of human cancer: lessons from mice. Nat Immunol 1(5):363–366

    Article  CAS  PubMed  Google Scholar 

  16. Belli F et al (2002) Vaccination of metastatic melanoma patients with autologous tumor-derived heat shock protein gp96-peptide complexes: clinical and immunologic findings. J Clin Oncol 20(20):4169–4180

    Article  CAS  PubMed  Google Scholar 

  17. Mazzaferro V et al (2003) Vaccination with autologous tumor-derived heat-shock protein gp96 after liver resection for metastatic colorectal cancer. Clin Cancer Res 9(9):3235–3245

    CAS  PubMed  Google Scholar 

  18. Parmiani G et al (2006) Heat shock proteins gp96 as immunogens in cancer patients. Int J Hyperth 22(3):223–227

    Article  CAS  Google Scholar 

  19. Pilla L et al (2006) A phase II trial of vaccination with autologous, tumor-derived heat-shock protein peptide complexes Gp96, in combination with GM-CSF and interferon-alpha in metastatic melanoma patients. Cancer Immunol Immunother 55(8):958–968

    Article  CAS  PubMed  Google Scholar 

  20. Testori A et al (2008) Phase III comparison of vitespen, an autologous tumor-derived heat shock protein gp96 peptide complex vaccine, with physician's choice of treatment for stage IV melanoma: the C-100-21 Study Group. J Clin Oncol 26(6):955–962

    Article  CAS  PubMed  Google Scholar 

  21. Wood C et al (2008) An adjuvant autologous therapeutic vaccine (HSPPC-96; vitespen) versus observation alone for patients at high risk of recurrence after nephrectomy for renal cell carcinoma: a multicentre, open-label, randomised phase III trial. Lancet 372(9633):145–154

    Article  CAS  PubMed  Google Scholar 

  22. Enomoto Y et al (2006) Enhanced immunogenicity of heat shock protein 70 peptide complexes from dendritic cell-tumor fusion cells. J Immunol 177(9):5946–5955

    Article  CAS  PubMed  Google Scholar 

  23. Weng D et al (2013) Immunotherapy of radioresistant mammary tumors with early metastasis using molecular chaperone vaccines combined with ionizing radiation. J Immunol 191(2):755–763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Steinman RM (1991) The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296

    Article  CAS  PubMed  Google Scholar 

  25. Steinman RM (2001) Dendritic cells and the control of immunity: enhancing the efficiency of antigen presentation. Mt Sinai J Med 68(3):106–166

    Google Scholar 

  26. Gong J et al (1997) Induction of antitumor activity by immunization with fusions of dendritic and carcinoma cells. Nat Med 3(5):558–561

    Article  CAS  PubMed  Google Scholar 

  27. Gong J et al (2002) Immunization against murine multiple myeloma with fusions of dendritic and plasmacytoma cells is potentiated by interleukin 12. Blood 99(7):2512–2517

    Article  CAS  PubMed  Google Scholar 

  28. Liu Y et al (2002) Engineered fusion hybrid vaccine of IL-4 gene-modified myeloma and relative mature dendritic cells enhances antitumor immunity. Leuk Res 26(8):757–763

    Article  CAS  PubMed  Google Scholar 

  29. Lindner M, Schirrmacher V (2002) Tumour cell-dendritic cell fusion for cancer immunotherapy: comparison of therapeutic efficiency of polyethylen-glycol versus electro-fusion protocols. Eur J Clin Investig 32(3):207–217

    Article  Google Scholar 

  30. Homma S et al (2001) Preventive antitumor activity against hepatocellular carcinoma (HCC) induced by immunization with fusions of dendritic cells and HCC cells in mice. J Gastroenterol 36(11):764–771

    Article  CAS  PubMed  Google Scholar 

  31. Cao X et al (1999) Therapy of established tumour with a hybrid cellular vaccine generated by using granulocyte-macrophage colony-stimulating factor genetically modified dendritic cells. Immunology 97(4):616–625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Wang J et al (1998) Eliciting T cell immunity against poorly immunogenic tumors by immunization with dendritic cell-tumor fusion vaccines. J Immunol 161(10):5516–5524

    CAS  PubMed  Google Scholar 

  33. Hayashi T et al (2002) Immunogenicity and therapeutic efficacy of dendritic-tumor hybrid cells generated by electrofusion. Clin Immunol 104(1):14–20

    Article  CAS  PubMed  Google Scholar 

  34. Xia J et al (2003) Prevention of spontaneous breast carcinoma by prophylactic vaccination with dendritic/tumor fusion cells. J Immunol 170(4):1980–1986

    Article  CAS  PubMed  Google Scholar 

  35. Kao JY et al (2003) Tumor-derived TGF-beta reduces the efficacy of dendritic cell/tumor fusion vaccine. J Immunol 170(7):3806–3811

    Article  CAS  PubMed  Google Scholar 

  36. Takeda A et al (2003) Immature dendritic cell/tumor cell fusions induce potent antitumour immunity. Eur J Clin Investig 33(10):897–904

    Article  CAS  Google Scholar 

  37. Zhang JK et al (2003) Antitumor immunopreventive and immunotherapeutic effect in mice induced by hybrid vaccine of dendritic cells and hepatocarcinoma in vivo. World J Gastroenterol 9(3):479–484

    Article  PubMed  PubMed Central  Google Scholar 

  38. Li J et al (2001) Purified hybrid cells from dendritic cell and tumor cell fusions are superior activators of antitumor immunity. Cancer Immunol Immunother 50(9):456–462

    Article  CAS  PubMed  Google Scholar 

  39. Xia D, Chan T, Xiang J (2005) Dendritic cell/myeloma hybrid vaccine. Methods Mol Med 113:225–233

    CAS  PubMed  Google Scholar 

  40. Homma S et al (2005) Cancer immunotherapy by fusions of dendritic and tumour cells and rh-IL-12. Eur J Clin Investig 35(4):279–286

    Article  CAS  Google Scholar 

  41. Kao JY et al (2005) Superior efficacy of dendritic cell-tumor fusion vaccine compared with tumor lysate-pulsed dendritic cell vaccine in colon cancer. Immunol Lett 101(2):154–159

    Article  CAS  PubMed  Google Scholar 

  42. Ogawa F, Iinuma H, Okinaga K (2004) Dendritic cell vaccine therapy by immunization with fusion cells of interleukin-2 gene-transduced, spleen-derived dendritic cells and tumour cells. Scand J Immunol 59(5):432–439

    Article  CAS  PubMed  Google Scholar 

  43. Akasaki Y et al (2001) Antitumor effect of immunizations with fusions of dendritic and glioma cells in a mouse brain tumor model. J Immunother 24(2):106–113

    Article  CAS  Google Scholar 

  44. Scott-Taylor TH et al (2000) Human tumour and dendritic cell hybrids generated by electrofusion: potential for cancer vaccines. Biochim Biophys Acta 1500(3):265–279

    Article  CAS  PubMed  Google Scholar 

  45. Tanaka H et al (2002) Therapeutic immune response induced by electrofusion of dendritic and tumor cells. Cell Immunol 220(1):1–12

    Article  CAS  PubMed  Google Scholar 

  46. Siders WM et al (2003) Induction of specific antitumor immunity in the mouse with the electrofusion product of tumor cells and dendritic cells. Mol Ther 7(4):498–505

    Article  CAS  PubMed  Google Scholar 

  47. Jantscheff P et al (2002) Cell fusion: an approach to generating constitutively proliferating human tumor antigen-presenting cells. Cancer Immunol Immunother 51(7):367–375

    Article  CAS  PubMed  Google Scholar 

  48. Goddard RV et al (2003) In vitro dendritic cell-induced T cell responses to B cell chronic lymphocytic leukaemia enhanced by IL-15 and dendritic cell-B-CLL electrofusion hybrids. Clin Exp Immunol 131(1):82–89

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Marten A et al (2003) Allogeneic dendritic cells fused with tumor cells: preclinical results and outcome of a clinical phase I/II trial in patients with metastatic renal cell carcinoma. Hum Gene Ther 14(5):483–494

    Article  PubMed  Google Scholar 

  50. Trevor KT et al (2004) Generation of dendritic cell-tumor cell hybrids by electrofusion for clinical vaccine application. Cancer Immunol Immunother 53(8):705–714

    Article  PubMed  Google Scholar 

  51. Suzuki T et al (2005) Vaccination of dendritic cells loaded with interleukin-12-secreting cancer cells augments in vivo antitumor immunity: characteristics of syngeneic and allogeneic antigen-presenting cell cancer hybrid cells. Clin Cancer Res 11(1):58–66

    CAS  PubMed  Google Scholar 

  52. Trefzer U et al (2005) Tumour-dendritic hybrid cell vaccination for the treatment of patients with malignant melanoma: immunological effects and clinical results. Vaccine 23(17–18):2367–2373

    Article  CAS  PubMed  Google Scholar 

  53. Shimizu K et al (2004) Comparative analysis of antigen loading strategies of dendritic cells for tumor immunotherapy. J Immunother 27(4):265–272

    Article  CAS  PubMed  Google Scholar 

  54. Phan V et al (2003) A new genetic method to generate and isolate small, short-lived but highly potent dendritic cell-tumor cell hybrid vaccines. Nat Med 9(9):1215–1219

    Article  CAS  PubMed  Google Scholar 

  55. Hiraoka K et al (2004) Enhanced tumor-specific long-term immunity of hemagglutinating [correction of hemaggluttinating] virus of Japan-mediated dendritic cell-tumor fused cell vaccination by coadministration with CpG oligodeoxynucleotides. J Immunol 173(7):4297–4307

    Article  CAS  PubMed  Google Scholar 

  56. Koido S et al (2004) Dendritic cells fused with human cancer cells: morphology, antigen expression, and T cell stimulation. Clin Immunol 113(3):261–269

    Article  CAS  PubMed  Google Scholar 

  57. Galea-Lauri J et al (2002) Eliciting cytotoxic T lymphocytes against acute myeloid leukemia-derived antigens: evaluation of dendritic cell-leukemia cell hybrids and other antigen-loading strategies for dendritic cell-based vaccination. Cancer Immunol Immunother 51(6):299–310

    Article  CAS  PubMed  Google Scholar 

  58. Gong J et al (2000) Fusions of human ovarian carcinoma cells with autologous or allogeneic dendritic cells induce antitumor immunity. J Immunol 165(3):1705–1711

    Article  CAS  PubMed  Google Scholar 

  59. Gong J et al (2000) Activation of antitumor cytotoxic T lymphocytes by fusions of human dendritic cells and breast carcinoma cells. Proc Natl Acad Sci U S A 97(6):2715–2718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Koido S et al (2005) Assessment of fusion cells from patient-derived ovarian carcinoma cells and dendritic cells as a vaccine for clinical use. Gynecol Oncol 99(2):462–471

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianlin Gong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Weng, D., Calderwood, S.K., Gong, J. (2018). A Novel Heat Shock Protein 70-based Vaccine Prepared from DC-Tumor Fusion Cells. In: Calderwood, S., Prince, T. (eds) Chaperones. Methods in Molecular Biology, vol 1709. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4939-7477-1_26

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7477-1_26

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4939-7476-4

  • Online ISBN: 978-1-4939-7477-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics